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Abstract: Highly fractionated granites are widely distributed in the crust and provide unique win-
dows into magmatic evolution. This study reports petrography, zircon U–Pb ages, trace elemental,
and Hf isotopic, as well as whole-rock elemental and Nd isotopic data of highly fractionated granite
porphyries from the Shiguanshan area in western Yunnan, southeastern Tibet. The granite por-
phyries were formed at 34.0 ± 0.3 Ma in a post-collisional setting. They are strongly peraluminous
(A/CNK = 1.95–2.80), have high SiO2 content (SiO2 = 78.16–79.13 wt.%) and zircon saturation tem-
peratures (803–829 ◦C, average 819 ◦C), and low MgO, with pronounced enrichment in Pb, U, Th, and
Rb, and depletion in Ti, Eu, P, Sr, and Ba, and belong to highly fractionated A-type granites. These
rocks define linear trends on Harker diagrams and display similar enriched whole-rock Nd isotopic
(εNd(t) = −12.8 to −12.3) and zircon Hf isotopic (εHf(t) = −10.4 to −8.8) compositions compared to
the published data of coeval mantle-derived syenite porphyries, which can be attributed to fractional
crystallization processes. A quantitative model suggests that the Shiguanshan granite porphyries
likely formed through the fractionation process of a mineral assemblage consisting of plagioclase,
K-feldspar, biotite, and amphibole (in a ratio of 40:30:25:5), with fractionation degrees of 50%–55%.
The magmatic textures and zircons, decoupling between the REE tetrad effect and fractionation of
twin-elements, along with the modeling result of Rayleigh fractionation, suggest that the REE tetrad
effect in the Shiguanshan granite porphyries may be caused by fractionation of accessory minerals.
Our data, along with regional observations, propose that the generation of these granite porphyries
is possibly related to lithospheric removal following the Indo–Asia collision.

Keywords: highly fractionated granite porphyry; REE tetrad effect; fractional crystallization; western
Yunnan; southeastern Tibet

1. Introduction

Highly fractionated or evolved granites are generally considered to be the ultimate
products of extreme differentiation of a parent magma [1,2], and their origin has always
been a focus of research on orogenic evolution [1,3]. Generally, these granites have a low
content of mafic minerals, but are sometimes accompanied by intense rare-metal miner-
alization [1,4]. In terms of geochemistry, most highly fractionated granites are high-silica
(SiO2 > 75 wt.%) and strongly peraluminous [5]. They are enriched in strong incompatible
trace elements and significantly depleted in Ti, Eu, P, Sr, and Ba [6,7], and occasionally
demonstrate relatively low Nb/Ta and Zr/Hf ratios [8,9]. It is noteworthy that the highly
fractionated granites often exhibit significantly negative Eu anomalies and an REE tetrad
effect [10], which is widely and controversially interpreted because of melt–fluid interac-
tion [11,12], fluoride–silicate liquid immiscibility [13,14], or mineral fractionation [15,16].
These highly fractionated granites are extensively developed in regions such as the Hi-
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malayan orogen and South China and can provide significant constraints on the magmatic
processes and petrogenesis and geodynamic mechanisms.

In southeastern Tibet, the voluminous Eocene–Oligocene magmatism documents the
post-collisional processes of the Indo–Asia interaction and provides direct magmatic records
of the mantle melting and crustal evolution [17–20]. It has been recognized that the Eocene–
Oligocene magmatism is dominated by potassic–ultrapotassic rocks, including adakite-like
granites, quartz monzonites, shoshonitic syenites, lamprophyres, and basalts [18,21–26].
Some of the felsic intrusions host significant Cu(–Mo–Au) mineralization and form the
Jinshajiang–Red River porphyry Cu-polymetallic metallogenic belt [21,23,24]. Recently, a
suite of Eocene highly fractionated granite porphyries with high-silica and an REE tetrad
effect was identified in Shiguanshan, western Yunnan. These non-adakitic Shiguanshan
granite porphyries are significantly distinguished from the regional adakite-like granites
but show a close spatial relationship with coeval mafic rocks and shoshonitic syenites, sug-
gesting a possibly genetic relationship with the latter. To date, studies of Eocene–Oligocene
magmatism have focused on potassic–ultrapotassic rocks and little or no information about
highly fractionated granite porphyries is available. Thus, the process by which Eocene
highly fractionated granite porphyries occur remains enigmatic, inhibiting detailed insight
into the petrogenesis and geodynamic implications of those rocks, as well as the cause and
mechanism of the REE tetrad effect in them.

This study reports the petrogenesis and tectonic setting of highly fractionated granite
porphyries from the Shiguanshan, in western Yunnan, and the formation mechanism of
the REE tetrad effect in them through analysis of zircon U–Pb age, mineral chemistry and
Hf isotopic data, whole-rock elemental and Nd isotopic data, and fractionation modeling.
Based on the comparison of whole-rock geochemistry between the Shiguanshan highly
fractionated granite porphyries and the coeval mantle-derived shoshonitic rocks in adjacent
regions, as well as modeling results using partition coefficients, we propose that the highly
fractionated granite porphyries in the Shiguanshan area are A-type granites resulting from
high-degree differentiation of the coeval syenite porphyries. Their formation is possibly
related to lithospheric removal following the Indo–Asia collision. The occurrence of the REE
tetrad effect in these highly fractionated samples can be attributed to mineral fractionation.
Thus, our work provides significant insights into the origin and evolution of the Eocene
highly fractionated granite porphyries and associated geodynamics in post-collisional
settings of the SE Tibetan plateau.

2. Geological Setting and Petrography

The Tibetan Plateau, one of the typical representatives of continent–continent collision
orogenic zone on the planet [27], consists of intricate tectonic collages involving some
Paleozoic arc terranes, Gondwana-derived microcontinental fragments, and flysch com-
plexes (Figure 1a) [28–30]. Tectonically, the SE Tibetan Plateau comprises principally the
Simao–Indochina block, Songpan–Garzê fold belt, Baoshan and Tengchong blocks, and
Yangtze Craton, which are separated by the Longmu Tso–Shuanghu, Changning–Menglian,
Jinshajiang, and Ailaoshan–Song Ma suture zones (Figure 1a,b) [30,31].

The Yangtze Craton (SE Tibetan Plateau; Figure 1a,b) was positioned on the mar-
gin of Rodinia during the Neoproterozoic [32,33] and underwent two major geodynamic
transitions from convergent plate settings related to arc subduction in the Early Neo-
proterozoic (Qingbaikouan) [34,35] to divergent plate settings related to a superconti-
nent breakup in the Middle–Late Neoproterozoic (Nanhua–Sinian) [36]. It contains a
pre-Neoproterozoic crystalline basement covered by Late Neoproterozoic to Cenozoic sedi-
mentary sequences [37,38]. There exist numerous remains of Neoproterozoic (1000–740 Ma)
magmatic rocks with arc-like geochemical affinity within the western and northern margins
of the craton. They are deemed to represent a Neoproterozoic continental arc developed at
ca. 840 Ma, associated with the Panxi–Hannan arc [34], and discordantly covered by Late
Neoproterozoic to Cretaceous strata [38]. The cover strata consist primarily of the Late Pa-
leozoic to Early Mesozoic clastic–carbonate sequences and the Emeishan continental flood
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basalts (260–250 Ma) associated with the Emeishan mantle plume [39,40]. During the Late
Permian–Triassic, the closure of the Jinshajiang–Ailaoshan Ocean (a branch of the Paleo-
Tethys) resulted in the formation of the Jinshajiang–Ailaoshan suture and Simao–Indochina
block [41,42].
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Figure 1. (a) Distribution of principal continental blocks and suture zones of Tibetan Plateau (modified
from Metcalfe [31]). (b) Geological framework of western Yunnan in SE Tibetan Plateau showing the
major Cenozoic magmatic rocks and porphyry Cu–Au–Mo deposits (modified from Lu et al. [19];
Deng et al. [30]). (c) Geological sketch map of the Shiguanshan granite porphyries, showing the
locations of the studied samples.

The Indo–Asia collision resulted in significant potassic magmatism (ca. 43–32 Ma)
in the western Yangtze Craton, proximal to the translithospheric Jinshajiang–Ailaoshan
suture. These Eocene–Oligocene magmas, accordingly, form a long potassic igneous belt
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in excess of 2000 km along the suture [25,43]; it includes both mafic and felsic lithologies
(Figure 1b). The former is dominated by lamprophyre dykes [20,25] with a few potassic
lavas [26], whereas the latter forms small-volume intrusions [22,44] comprising granite,
syenite, and quartz monzonite in lithology, some of which host significant Cu(-Mo-Au)
mineralization (Figure 1b).

The Shiguanshan highly fractionated granite porphyry is an Eocene high-silica magma
suite in western Yunnan and is located in the southern part of the Jinshajiang–Ailaoshan
potassic magmatic belt (Figure 1b). It also exhibits a close spatial relationship with the
coeval Yao’an syenitic pluton (Figure 1b). These intrusive rocks occur within Jurassic
mudstones (Figures 1c and 2a). The greyish–white granite porphyries are characterized
by a porphyritic texture and contain phenocrysts of quartz (30–45 vol%), K-feldspar
(55–65 vol%), and minor muscovite (1–10 vol%), which account for 35–40 vol% of the
whole-rock (Figure 2b–f). Accessory minerals comprise zircon, titanite, monazite, allanite,
and minimal apatite.
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3. Analytical Methods

Zircon in situ U–Pb dating, trace element analysis, and Lu–Hf isotope, as well as whole-
rock Sr–Nd isotopic compositions, were measured at the Wuhan SampleSolution Analytical
Technology Co., Ltd., Wuhan, China. Whole-rock elemental analyses were carried out at the
Northwest Geological Testing Center, a laboratory of the China Nonferrous Metal Mining
Group Co., Ltd., Xian, China.

3.1. Zircon U–Pb Dating and Trace Element Analysis

The procedure for zircon separation in sample processing included crushing, standard
density and subsequent magnetic separation, and purification by handpicking. To reveal
the internal zonation and inclusions, microphotographs of transmitted and reflected light,
as well as cathodoluminescence (CL) images, were utilized. Different areas within the
zircon grains were chosen for analysis based on their structures.

The U–Pb age and trace element were measured using an Agilent 7900 ICP-MS instru-
ment (Aglient Technologies, Santa Clara, CA, USA) that was furnished with a 193 nm laser.
The spot size and frequency of the laser were set to 32 µm and 5 Hz, respectively. For data
calibration, external standards such as Zircon Tanz and glass NIST610 were employed [45],
respectively. The laser ablation system, the ICP-MS instrument, and the procedure for
data reduction were carried out following the detailed operating conditions described by
Zong et al. [46]. ICPMSDataCal [47] was used for data reduction and ISOPLOT (ver 3.0) [48]
was used for age calculation and concordia diagrams.

3.2. Zircon In Situ Lu–Hf Isotope Analyses

Experiments of in situ Hf isotope ratio analysis were conducted on the dated spots
using a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Bremen, Germany) in combina-
tion with a Geolas HD excimer ArF laser ablation system (Coherent, Göttingen, Germany).
During analyses, a spot size of 44 µm and laser repetition of 8 Hz with an energy density
of ~7.0 J/cm2 were used. Detailed operating conditions and the analytical method are the
same as described by Hu et al. [49].

3.3. Whole-Rock Major and Trace Elements

Representative samples were selected and powdered in an agate mill to a grain size of
less than 200 mesh. The Rigaku Primus II X-ray fluorescence (XRF) system was employed
to analyze the major elements of the whole-rock sample. The XRF analyses revealed that
both the duplicate analyses and rock standards analyses of the samples exhibited relative
standard deviations below 1%. REEs and trace element contents were measured by X-7
ICP-MS, with an analytical precision of ≥10%. Detailed analytical programs were described
by Qi et al. [50].

3.4. Whole-Rock Sr–Nd Isotopes

The Sr and Nd elements were extracted using a cation-exchange technique and their
isotope ratios were measured using a Neptune Plus MC-ICP-MS (Thermo Fisher Scien-
tific, Dreieich, Germany). An aliquot of the international standard solution containing
200 µg L−1 was used for mass discrimination correction via internal normalization, result-
ing in an 88Sr/86Sr ratio of 8.375209 and a 146Nd/144Nd ratio of 0.7219 [51]. During the
testing process, one international NIST 987 standard [52] was measured for every seven
unknown samples analyzed. The analysis of the 87Sr/86Sr ratio in the NIST 987 standard
solution resulted in a measurement of 0.710244 ± 8 (2SD, n = 5), which is consistent with
published values (0.710248 ± 12) [52] within the range of experimental error. One GSB
04-3258-2015 standard was measured for every seven samples analyzed. The analysis of the
143Nd/144Nd ratio in the GSB 04-3258-2015 standard solution resulted in a measurement
of 0.512440 ± 6 (2SD, n = 9), which is consistent with published values (0.512438 ± 6) [53]
within the range of experimental error.
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4. Results
4.1. Zircon U–Pb Geochronology and Trace Elements

The U–Pb dating and trace element analysis results are presented in Supplementary
Tables S1 and S2, respectively, and illustrated through CL images, concordia diagrams,
and normalized REE patterns (Figure 3). Zircon grains from the Shiguanshan highly
fractionated granite porphyry are elongated, columnar, euhedral grains, with a length
of 100–250 µm (Figure 3a). In general, these zircons are transparent, and display clearly
oscillatory zoning, without inherited cores under CL images (Figure 3a). The zircons have
2.6–20.2 ppm Pb, 253–2944 ppm Th, 378–2713 ppm U, and Th/U = 0.7–1.5 (Supplementary
Table S1). They also display enrichment in HREEs, with marked positive Ce anomalies
(108–316) and negative Eu anomalies (0.36–0.63) (Supplementary Table S2; Figure 3b). All
these characteristics suggest that the zircons have a typical magmatic origin [54]. The
206Pb/238U ages of 22 zircon grains from sample SGS-7 are 33.1–35.1 Ma, with a weighted
average of 34.0 ± 0.3 Ma (MSWD = 2.8) (Figure 3a).
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4.2. Geochemical and Isotopic Results
4.2.1. Major and Trace Elements

The whole-rock elemental composition for the Shiguanshan granite porphyry and
coeval Yao’an syenite porphyry are compiled from the published literature and this study
(Supplementary Table S3). All the Shiguanshan samples fall within the subalkaline granite
field in a total alkali–silica (TAS) diagram (Figure 4a), with high SiO2 (78.16–79.13 wt.%)
content. They show high K2O (3.99–4.90 wt.%) and low CaO (0.17–0.27 wt.%) and are high-
K calc-alkalic rocks (Figure 4b). All samples are strongly peraluminous (Figure 4c), with
A/CNK (molar Al2O3/(CaO + Na2O + K2O)) = 1.95–2.80 (Supplementary Table S3). They
have a high differentiation index (DI = 87.2–90.0; from CIPW calculating values) and low
MgO (0.21–0.26 wt.%) content and belong to highly fractionated granite (Figure 4d). Most
major elements of Shiguanshan granite porphyries and coeval Yao’an syenite porphyries
exhibit a linear association with SiO2 (Supplementary Table S3). For example, TiO2, Al2O3,
and TFe2O3 show inverse correlation trends with SiO2 (Figure 5a–c). This suggests that
these intrusions should be genetically connected, perhaps by fractional crystallization.
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vs. SiO2, (d) Ba vs. Sr, (e) Rb/Sr vs. Sr, and (f) Rb/Ba vs. Sr. Sample YA16-2-1, with the lowest
SiO2 from the coeval Yao’an syenite porphyries [61], is assumed to represent the parental magma
composition. The mineral compositions of fractionated minerals are from Xu and Qiu [62] and are
given in Supplementary Table S4a. The partition coefficients of trace elements are from Nash and
Crecraft [63] and Tiepolo et al. [64]. The partitioning coefficients, fractionated mineral assemblage,
and modeling results are listed in Supplementary Table S4b,c. Data sources are the same as in Figure 4.

Similarly, to the Yao’an syenite porphyries, the Shiguanshan granite porphyries exhibit
obvious enrichment of light REEs (LREEs) with (La/Yb)N of 1.82–7.80, but with more
significant Eu negative anomalies with Eu/Eu* of 0.50–0.80 (Figure 6a). Both the felsic
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intrusions from Shiguanshan and Yao’an exhibit enrichment in Pb, U, Th, and Rb, as well
as depletion in Ti, Eu, P, Sr, and Ba. These enrichments and depletions are particularly
pronounced in the granitic rocks (Figure 6b). They both exhibit non-adakite-like affinities,
with low Sr/Y ratios (0.35–106.89) and high Y/Ho ratios (25.69–42.43) (Supplementary
Table S3). It should be noted that the Shiguanshan granite porphyries exhibit an obvious
REE tetrad effect, with TE1,3 of 0.98–1.21, average 1.11 (Supplementary Table S3) [10]. In
addition, the tetrad granite porphyries have lower LREEs compared with the No-tetrad
syenite porphyries. The (La/Yb)N, La/La*, and Nd/Nd* ratios show inverse correlation
trends with TE1,3 values from the syenite porphyries to granite porphyries (Figure 7).
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4.2.2. Sr–Nd Isotopes

The whole-rock Sr–Nd isotopic compositions for the Shiguanshan granite porphyries
are listed in Table 1 and illustrated in Figure 8a. Due to the high Rb/Sr ratios (14.89–53.45;
Supplementary Table S3) commonly observed in granitic samples, the radiogenic 86Sr
content is also high, leading to significant errors and a wide range of calculated (87Sr/86Sr)i
ratios (0.70470–0.70837). As a result, the reliability of Sr isotope data from these samples are
relatively poor. However, the variation range of Sm/Nd ratios (0.19–0.29; Supplementary
Table S3) is relatively limited, and thus the Nd isotope data are relatively stable. In this
context, two granitic samples exhibit negative εNd(t) values (−12.8 to −12.3; Figure 8a) and
uniform two-stage Nd-isotope depleted mantle model ages (TDM2 = 1.8 Ga) (Table 1).

4.2.3. Zircon Lu–Hf Isotopes

In situ Lu–Hf isotopic analyses of all zircons were performed on the same grains that
were used for U–Pb ages. The zircon Lu–Hf isotopic data and calculation method are
provided in Table 2 for the Shiguanshan granite porphyry and illustrated in Figure 8b.
Zircon spot analyses from the granite porphyry (SGS-7, 12 spots) show 176Hf/177Hf ratios
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ranging from 0.282456 to 0.282502, with negative εHf(t) values ranging from −10.4 to −8.8.
The two-stage Hf mantle model ages (TDM2) range from 1.8 to 1.7 Ga.

Table 1. Whole-rock Sr–Nd isotopic data for the Shiguanshan granite porphyry in western Yunnan.

Sample 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i
147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)i εNd(t) TDM2 (Ma)

SGS-7 43.902 0.729566 0.000007 0.70837 0.1150 0.511963 0.000007 0.511937 −12.82 1887
SGS-8 64.9084 0.736048 0.000005 0.70470 0.1707 0.512004 0.000007 0.511966 −12.26 1829

Notes: 87Rb/86Sr and 147Sm/144Nd are calculated using whole-rock Rb, Sr, Sm, and Nd values in Supplementary Table
S3; (87Sr/86Sr)i = (87Sr/86Sr)s − (87Rb/86Sr) × (eλT − 1); λRb-Sr = 1.42 × 10−11 year−1; 87Rb/86Sr = (Rb/Sr) × 2.8956;
εNd(t) = [(143Nd/144Nd)i/(143Nd/144Nd)CHUR(t) − 1] × 10,000; (143Nd/144Nd)i = (143Nd/144Nd)s − (147Sm/144Nd) ×
(eλT − 1); (143Nd/144Nd)CHUR(t) = 0.512638 − 0.1967 × (eλT – 1); λSm-Nd = 6.54×10−12 year−1; 147Sm/144Nd = (Sm/Nd)
× 0.60456; TDM = 1/λSm–Nd × ln {1 + [((143Nd/144Nd)S − 0.51315)/((147Sm/144Nd)S − 0.2137)]}, where subscripts
S, CHUR, and DM represent the sample, Chondritic Uniform Reservoir, and depleted mantle, respectively.
Chondritic Uniform Reservoir (CHUR) at the present day [(147Sm/144Nd)CHUR = 0.1967; (143Nd/144Nd)CHUR =
0.512638] [65,66] was used for the calculations. Nd depleted mantle model ages (TDM) were calculated using
(147Sm/144Nd)DM = 0.2137 and (143Nd/144Nd)DM = 0.51315 [67] at the present day. λRb = 1.42 × 10−11 year−1 [68];
λSm = 6.54 × 10−12 year−1 [69]. Initial 87Sr/86Sr ratios and εNd(t) values are corrected at the ages based on the
zircon U–Pb dating.
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Figure 8. Plots of (a) SiO2 vs. whole-rock εNd(t) values and (b) zircon U–Pb ages vs. εHf(t) val-
ues for the Cenozoic felsic and mafic rocks in western Yunnan. Data are from Lu et al. [20],
Shen et al. [22], Chang et al. [24], Guo et al. [25], Luo et al. [61], He et al. [70], Yan et al. [71,72],
and Yang et al. unpublished.

Table 2. Hf isotopic compositions for zircon from the Shiguanshan highly fractionated granite
porphyry (SGS-7) in western Yunnan.

Spot 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 1σ 176Hf/177Hfi εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf

1 0.033915 0.001009 0.282477 0.000015 0.282476 −10.4 −9.7 1095 1729 −0.97
2 0.046189 0.001395 0.282470 0.000017 0.282469 −10.7 −10.0 1116 1745 −0.96
3 0.028756 0.000891 0.282483 0.000012 0.282483 −10.2 −9.5 1083 1715 −0.97
4 0.041486 0.001294 0.282456 0.000017 0.282456 −11.2 −10.4 1132 1775 −0.96
5 0.038821 0.001179 0.282458 0.000012 0.282457 −11.1 −10.4 1127 1773 −0.96
6 0.046810 0.001398 0.282502 0.000013 0.282501 −9.6 −8.8 1071 1674 −0.96
7 0.035780 0.001057 0.282467 0.000012 0.282466 −10.8 −10.1 1111 1753 −0.97
8 0.022749 0.000704 0.282487 0.000013 0.282487 −10.1 −9.3 1072 1706 −0.98
9 0.030921 0.000919 0.282472 0.000012 0.282471 −10.6 −9.9 1100 1741 −0.97
10 0.034426 0.001041 0.282487 0.000014 0.282486 −10.1 −9.4 1082 1707 −0.97
11 0.042083 0.001310 0.282478 0.000013 0.282477 −10.4 −9.7 1102 1727 −0.96
12 0.046712 0.001464 0.282496 0.000016 0.282495 −9.8 −9.1 1081 1687 −0.96

Notes: εHf(t) = 10000 × {[(176Hf/177Hf)S − (176Lu/177Hf)S × (eλt − 1)]/[(176Hf/177Hf)CHUR,0 − (176Lu/177Hf)CHUR
× (eλt – 1)] − 1}; TDM1 = 1/λ × ln {1 + [(176Hf/177Hf)S − (176Hf/177Hf)DM]/[(176Lu/177Hf)S − (176Lu/177Hf)DM]};
TDM2 = 1/λ × ln {1 + [(176Hf/177Hf)S, t − (176Hf/177Hf)DM, t]/[(176Lu/177Hf)C − (176Lu/177Hf)DM]} + t; fLu/Hf
= (176Lu/177Hf)S/(176Lu/177Hf)CHUR – 1; (176Lu/177Hf)CHUR = 0.0332 and (176Hf/177Hf)CHUR,0 = 0.282772 [73];
(176Lu/177Hf)DM = 0.0384 and (176Hf/177Hf)DM = 0.28325 [74]; λ = 1.867 × 10−11 year−1 [75]; (176Lu/177Hf)C = 0.015 [76];
t = 34 Ma.
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5. Discussion
5.1. Age of the Shiguanshan Granite Porphyry

Zircon grains from the Shiguanshan granite porphyry lack complex core-rim tex-
tures and exhibit concordant U–Pb ages (Figure 3a), indicating that their weighted mean
206Pb/238U ages represent the timing of crystallization of the magma. In this study, we gain
the crystallization age of Shiguanshan granite porphyry (SGS-7) at 34.0 ± 0.3 Ma (Figure 3a),
which coincides with those of syenite porphyry in the Yao’an area (ca. 33 Ma) [23,61]. In
addition, the Shiguanshan granite porphyries are contemporaneous with the adjacent
(e.g., Beiya and Machangqing) adakite-like granites and mafic rocks in western Yunnan,
which were emplaced ranging from 37 to 31 Ma (Figure 1b).

5.2. Petrogenesis of the Shiguanshan Granite Porphyry

The Shiguanshan Tetrad granite porphyries and Yao’an No-tetrad syenite porphyries
exhibit similar tectonic settings, whole-rock elemental (excluding REEs) and Nd isotopic
compositions, and zircon Hf isotopic compositions, indicating a similar genetic type,
comparable processes of fractional crystallization, and a shared magma source.

5.2.1. Genetic Type: Highly Fractionated A-Type Granites

The Shiguanshan samples exhibit characteristics of peraluminous high-silica granites
(SiO2 > 75 wt.%) [6], with high DI, low MgO content, enriched abundances of Pb, U, Th,
and Rb, and depleted abundances of Ti, Eu, P, Sr, and Ba (Figures 4–6). These features align
with those typically observed in highly fractionated granites (Figure 4d) [77]. Due to the
similar mineral assemblage and geochemical compositions of high differentiation granites,
it is difficult to distinguish their petrogenetic type [78]. Fortunately, the coeval low-silica
Yao’an felsic rocks that are genetically associated with the Shiguanshan highly fractionated
granite porphyries may preserve more original characteristics of the parent magma.

In the genetic type diagrams for granites, the Yao’an syenite porphyries fall within
the A-type granite field (Figure 9). In addition, the sample (YA16-2-1) with the lowest SiO2
content (SiO2 = 67.12 wt.%) in the Yao’an syenite porphyries displays the highest zircon
saturation temperature (883 ◦C; Supplementary Table S3) [79], which may represent the ini-
tial temperature of the magma and possess characteristics of high-temperature magma [80].
These characteristics suggest that the Yao’an syenite porphyries exhibit an A-type granite
affinity. For the Shiguanshan highly fractionated granite porphyries, the absence of zircon
inheritance (Figure 3a) and relatively uniform zircon Hf isotopes (Figure 8b) exclude the
possibility of it being S-type rocks. In the genetic classification diagram, the Shiguanshan
granite porphyries and the coeval adakite-like granites in western Yunnan distinctly fall
into different ranges (Figure 9), with the latter showing affinity to I-type granites. It is im-
portant that the Shiguanshan granite porphyries have high zircon saturation temperatures
(803–829 ◦C, average 819 ◦C; Supplementary Table S3) and exhibit a trend of evolving from
A-type granites towards fractionated granites (Figure 9e,f). Accordingly, the Shiguanshan
granite porphyries can be classified as highly fractionated A-type granites, which possibly
evolved from the adjacent and coeval Yao’an A-type granites. In addition, the Y/Nb ratios
of these samples do not show significant changes during magma evolution, and they are
all less than 1.2. Therefore, they can be further classified as A1-type granites, as proposed
by Eby [81] (Figure 10).
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and S-type granitic rocks in Tibet are from Shuai et al. [83] and references therein. The data of the
coeval adakite-like granites in western Yunnan are from He et al. [70] and Shen et al. [22]. The data of
the Chaelundi Complex A-type suit are from Landenberger and Collins [84].

5.2.2. Fractional Crystallization Processes

Field investigation, mineral species, and their chemical variations, as well as geo-
chemical compositions, support the occurrence of effective fractional crystallization in
granite magmas [5]. On the Harker diagrams, most major elements of Shiguanshan granite
porphyries and coeval Yao’an syenite porphyries display linear trends with SiO2, imply-
ing features of differentiation. For example, the decreasing trend of Al2O3, TFe2O3, and
TiO2 indicates the fractionation of plagioclase, K-feldspar, biotite, amphibole, and Fe–Ti
oxides (Figure 5a–c). The P5O2 content (Figure 9b) is mainly controlled by apatite. The
significant Eu negative anomalies supporting the plagioclase play a significant role as a
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fractionating phase (Figure 6a). As discussed above, the high-level fractionation of the
Yao’an syenite porphyries may result in the generation of high-silica granite porphyries
in the Shiguanshan, which is in accordance with previous interpretations suggesting the
evolution of intermediate-felsic magmas to the silicic extreme through ultimate high-level
fractionation and melt extraction [85]. Quantitative modeling using mass balance reveals
that the Shiguanshan granite porphyries likely formed through the fractional crystallization
of a mineral assemblage consisting of plagioclase, K-feldspar, biotite, and amphibole (in a
ratio of 40:30:25:5). This fractionation process is estimated to have a degree of 50%–55%.
The assumption is made that the parental magma composition is represented by the lowest
felsic sample YA16-2-1 from the coeval Yao’an syenite porphyries (Figure 5a–c), and the
mineral assemblage is common in the Yao’an intrusion [23,61]. In this model, the deviation
of Al2O3 (Figure 5b) may be attributed to the presence of muscovite, which occurs in the late
stages of acidic magma. This fractionation process is also confirmed by modeling results of
trace elements (e.g., Rb, Sr, and Ba), which are mainly influenced by feldspar (Figure 5d–f).
It is worth mentioning that the Shiguanshan granite porphyries could potentially undergo a
higher degree of differentiation (>55%) due to the possibility of the parental magma having
lower SiO2 content compared to the Yao’an syenite porphyries.
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5.2.3. Magma Source

The origin of A-type granites remains hotly debated, with proposed ideas involving
the melting of crustal sources, crust- and mantle-derived magma mixing, or fractional
crystallization, with/without crustal assimilation of mantle-derived magmas [81,86,87].
No mafic dykes and enclaves were observed within the Shiguanshan granite porphyries,
together with the relatively uniform zircon Hf isotopes (Figure 8b), indicating a lack of
magma mixing in the Shiguanshan granite porphyries. Additionally, they have different
Nd–Hf isotopic compositions from the coeval adakite-like granites in western Yunnan
(Figure 8), indicating that these intrusions were probably not derived from thickened mafic
lower crust [22,70]. The high SiO2 (78.16–79.13 wt.%) and low MgO (0.21–0.26 wt.%) con-
tent of the Shiguanshan granite porphyries suggest that they were not directly derived from
the upper mantle, as lithospheric mantle cannot generate melts with SiO2 concentrations
higher than those of dacite (SiO2 < 55 wt.%) [88]. It is important to note that the large
variation of zircon εHf(t) values of the Shiguanshan granite porphyries and Yao’an syenite
porphyries (Figure 8b) suggests enriched sources, e.g., sediments [89], continental crust,
and/or enriched mantle components [90]. Furthermore, both the Shiguanshan granite
porphyries and Yao’an syenite porphyries exhibit similar enriched Nd isotopic composi-
tions to the coeval mafic rocks in western Yunnan (Figure 8b), indicating that they share
a similar magma source, that is, enriched lithospheric mantle. This is consistent with the
mantle-derived A1-type granite Eby [81].
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5.3. The Formation Mechanism of the REE Tetrad Effect in Shiguanshan Granite Porphyries

REEs generally behave similarly in purely magmatic systems and show smooth
chondrite-normalized patterns, except for Ce and Eu. However, many highly fraction-
ated granites exhibit abnormal REE patterns with the tetrad effect [91]. There are three
controversial processes used to explain this formation mechanism: (1) The melt–fluid
interaction during magmatic–hydrothermal transition [10,91,92]; (2) The fluoride–silicate
liquid immiscibility in F-rich magmatic systems [13,14]; (3) The fractionation of accessory
minerals during magmatic evolution or magmatic–hydrothermal transition [15,83,93].

Petrographic observations show that intrusions with a significant REE tetrad effect
caused by melt–fluid interaction commonly undergo extensively hydrothermal alteration
(e.g., albitization or greisenization) and generate hydrothermal minerals, such as fluorites
and hydrothermal zircons [11,55]. However, the Shiguanshan granite porphyries exhibit
pristine magmatic textures (Figure 2) and contain typical magmatic zircons (Figure 3). No
observation of hydrothermal alteration minerals was made (Figure 2). These features indi-
cate that hydrothermal fluid activity is insignificant in the Shiguanshan granite porphyries.
In terms of geochemistry, some intrusions with a significant REE tetrad effect (TE1,3 > 1.1)
often exhibit decreased twin-elemental ratios (e.g., leucogranites from Ongon Khairkhan;
Figure 11a–c) [9,11], which are different from their usual chondritic ratios (Nb/Ta = 17.6,
Zr/Hf = 36.3, and K/Rb = 235) [56] in purely magmatic systems [94], suggesting frac-
tionation of twin-elements within these rocks (Figure 11a–c). Researchers attribute this
coupling between the twin-elemental fractionation and REE tetrad effect to melt–fluid
interaction [10,11,91], whereas the ratios of twin-elements of both the No-tetrad Yao’an
syenite porphyries and Shiguanshan Tetrad granite porphyries are broadly within the
range of common granites (Figure 11a–c) and closely resemble chondritic ratios, indicating
a decoupling between the REE tetrad effect and fractionation of twin-elements. Similar
examples can be seen in other granites reported elsewhere, such as the Gaijin batholith [83]
and Zengjialong granites [95] (Figure 11a–c). Moreover, peraluminous granites that
demonstrate substantial indications of interaction with melt–fluid (e.g., Sn > 30 ppm and
Cs >35 ppm) usually exhibit Nb/Ta ratios < 5 [9], which are significantly different from our
samples (Sn = 2.58–3.72 ppm, Cs = 8.17–13.81 ppm, and Nb/Ta > 5; Supplementary Table S3;
Figure 11a). Therefore, although quartz phenocrysts displaying resorption textures have
been observed in the thin section (Figure 2), more evidence, as discussed above, suggests
that melt–fluid interaction may not be responsible for the REE tetrad effect in Shiguanshan
granite porphyries. These petrographic and geochemical observations enable us to infer
that the REE tread effect in highly fractionated granites may have been generated before
the activity of hydrothermal fluids if granites experienced both magmatic and hydrother-
mal evolution. On the other hand, the absence of F-rich minerals (such as fluorite) and
the presence of high non-chondritic Y/Ho ratios (>15; Supplementary Table S3) in our
samples eliminates the possibility of fluoride–silicate liquid immiscibility in magmatic
systems [13,14]. In contrast, it is more plausible that the REE tetrad effect is attributed to
fractional crystallization (Figure 11).

As discussed above, excluding melt–fluid interaction and fluoride–silicate liquid im-
miscibility, the fractionation of accessory minerals is most likely responsible for the REE
tetrad effect in the Shiguanshan granite porphyries. This is also supported by mineralogical
experiments, that is, the fractionation of accessory minerals such as monazite, xenotime,
etc., leads to the REE tetrad effect in granites [15,16]. Based on a rough model of Rayleigh
fractionation (see Supplementary Table S4 for formulae and calculations), it appears that
the Shiguanshan granite porphyries exhibiting REE tetrad patterns can be most accurately
replicated through the separation of plagioclase, K-feldspar, biotite, amphibole, apatite,
monazite, and allanite (in a ratio of 40:30:25:4:0.5:0.3:0.2). This fractionation process, with
degrees of approximately 20% to 25%, is believed to originate from the parental composition
of sample YA16-2-1 from the No-tetrad Yao’an syenite porphyries (Figure 12). Accordingly,
the observed REE tetrad effect in highly fractionated granites is likely attributed to the
fractionation of accessory minerals, accompanied by the separation of rock-forming min-



Minerals 2023, 13, 1390 14 of 20

erals. The correlation between rare earth element ratios and TE1,3 further supports this
conclusion (Figure 7).
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Figure 11. (a–c) Plots of Nb/Ta vs. TE1,3, Zr/Hf vs. TE1,3, and K/Rb vs. TE1,3 from the Shiguanshan
Tetrad granite porphyries and Yao’an No-tetrad syenite porphyries, as well as other granites for
comparison, showing decoupling between the REE tetrad effect and fractionation of twin-elements.
(d–f) Plots of Ta vs. Nb, Hf vs. Zr, and Rb vs. K. The original diagrams are after Shuai et al. [83],
the leucogranites are from Dostal et al. [11], and the Gaijin and Zengjialong granites are from
Shuai et al. [83] and Chen et al. [95], respectively.
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Figure 12. Rayleigh modeling results of REE patterns. Sample YA16-2-1, with the lowest SiO2 from the
Yao’an No-tetrad syenite porphyry [61], is assumed to represent the parental magma composition. The
partition coefficients of REEs are from Mahood and Hildreth [96], Ward et al. [97], Stepanov et al. [15],
and Shimizu et al. [98]. Partitioning coefficients, the fractionated mineral assemblage, and modeling
results are listed in Supplementary Table S4b,d.

5.4. Implications of Tectonic Setting

A-type granites crystallize from relatively high-temperature magmas and occur in
extensional (rift, plume or hotspot, or post-collisional) settings [81]. This high melting
temperature can be realized by the emplacement of mantle-derived mafic magma or
upwelling of the asthenosphere [99]. These processes may be achieved through the break-
off of a subducted slab or delamination of thickened lithosphere, or convective removal of
the lower lithospheric mantle [100].
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As discussed above, the Shiguanshan A-type granite porphyry was emplaced at
34.0 ± 0.3 Ma, coinciding with the ages of the Yao’an syenite porphyries and adjacent
adakite-like granites and mafic rocks in western Yunnan (Figure 1b). These magmatic suites
were emplaced in a post-collisional setting, as geological events following the collision
(ca. 60 Ma) [43] of the Indian and Asian plates are referred to as “post-collision” [101].
This is consistent with previous interpretations that they are spatially distant from con-
temporary subduction zones [20,102]. Therefore, Eocene A-type granites should not be
associated with the break-off of a subducted slab but must be related to another tectonic
regime. The absence of coeval and direct asthenosphere-derived mafic magmas along
the Jinshajiang–Ailaoshan belt, suggesting that the complete removal of the mantle litho-
sphere perhaps might not have occurred in the western Yangtze Craton [26]. Alternatively,
the generation of the Shiguanshan granite porphyries is more likely responsible for the
convective removal of the mantle lithosphere from below, and this process leads to an
upwelling of hot asthenospheric mantle, causing a thermal anomaly, which in turn leads
to partial melting of lithospheric mantle, resulting in the formation of mafic melts. The
fractionation of mafic magmas, then, formed the shoshonitic felsic intrusions (e.g., the
Yao’an syenite porphyries). The ultimate high-level fractionation of the Yao’an syenite
porphyries may result in the generation of highly fractionated A-type granite porphyries in
the Shiguanshan. This plausible mechanism for triggering melting of lithospheric mantle is
consistent with previous interpretations [18,103]. The presence of post-collisional A-type
granite porphyries, therefore, provides new evidence for triggering melting of lithospheric
mantle through asthenosphere upwelling induced by convective removal of lithospheric
mantle beneath the western Yangtze Craton.

6. Conclusions

(1) The Shiguanshan granite porphyries were emplaced at 34.0 ± 0.3 Ma, which coeval
with those of the extensive Eocene—Oligocene felsic and mafic rocks identified in
western Yunnan, belonging to the post-collisional magmatic event.

(2) The Shiguanshan granite porphyries are high-silica and strongly peraluminous, have
high DI and zircon saturation temperatures and low MgO, and belong to highly
fractionated A-type granites, which likely formed by differentiation of the coeval
mantle-derived syenite porphyries. They are likely produced by the fractional crystal-
lization process of a mineral assemblage comprising plagioclase, K-feldspar, biotite,
and amphibole (in a ratio of 40:30:25:5), with fractionation degrees of 50%–55%.

(3) The REE tetrad effect in the Shiguanshan granite porphyries can be attributed to the
fractionation of accessory minerals (apatite, allanite, and monazite).

(4) The primary magma source for the Shiguanshan granite porphyries was derived
from enriched lithospheric mantle. The convective removal of the mantle lithosphere
can lead to the upwelling of the asthenosphere, which in turn acts as a triggering
mechanism for the formation of Shiguanshan A-type granite porphyries by providing
the necessary high-melting temperature.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/min13111390/s1: Table S1: LA-ICP-MS U-Pb data for zircon from the
Shiguanshan highly fractionated granite porphyry (SGS-7) in the western Yunnan. Table S2: LA-ICP-
MS trace elemental data for zircon from the Shiguanshan highly fractionated granite porphyry (SGS-7)
in the western Yunnan. Table S3: Whole-rock major and trace element data for the Shiguanshan
granite porphyry and Yao’an syenite porphyry in the western Yunnan. Table S4: The mineral
compositions and partition coefficients used for quantitative modeling of fractional crystallization.

https://www.mdpi.com/article/10.3390/min13111390/s1
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