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Abstract: The newly discovered Xiaohongshilazi deposit located in Panshi City, central Jilin Province,
NE China, is a medium-scale Pb–Zn–(Ag) deposit. The Pb–Zn–(Ag) orebodies are divided into
layered and vein-type orebodies, which have different ore geneses. The layered Pb–Zn orebodies
are mainly hosted within and spatially controlled by the volcanic rocks. To constrain the age and
tectonic setting of the layered Pb–Zn mineralization, we completed laser-ablation–ICP–MS zircon
U–Pb dating and whole-rock major and trace element analyses of the ore-bearing volcanic rocks.
The dacite samples were confirmed as belonging to the Daheshen Formation and were the main
ore-bearing volcanic rocks for the layered orebodies. They yielded concordia U–Pb ages of 278.1
± 1.8 Ma and 278.3 ± 1.8 Ma, respectively, indicating that the volcanic rocks from the Daheshen
Formation and related layered Pb–Zn mineralization were formed in the early Permian. The andesite
and rhyolite located above the layered orebodies yielded concordia U–Pb ages of 225.0 ± 1.1 Ma,
225.3 ± 1.5 Ma, and 224.7 ± 1.2 Ma, respectively; these substances are considered to be of the
Sihetun Formation and were first reported in the area. The dacite samples associated with layered
Pb–Zn mineralization were high in SiO2 (62.54–65.02 wt.%), enriched in LREEs and LILEs (e.g.,
Rb, Ba, and K), and showed depletion in HFSEs (e.g., P and Ti). It showed slightly negative Eu
anomalies (δEu = 0.60–0.65) and negative Nb anomalies, with Th/Nb (1.12–1.21) and La/Nb (2.8–4.7)
ratios, presenting subduction-related arc magma affinity formed in an active continental margin
setting. In agreement with previous studies on zircon Hf isotopes (εHf (t) = +0.23~ +10.60) of the
volcanic rocks from the Daheshen Formation, we infer that they were derived from the partial melting
of the depleted lower crust. In conclusion, mineralization characteristics, geochronological data,
geochemical features, and regional tectonic evolution suggest that two Pb–Zn–(Ag) mineralization
stages from the Xiaohongshilazi deposit occurred: the layered VMS-type Pb–Zn mineralization
associated with the marine volcanic rocks from the early Permian Daheshen Formation, which was
induced by the subduction of the Paleo-Asian oceanic plate beneath the northern margin of the
North China Craton, and the vein-type Pb–Zn–(Ag) mineralization caused by the subduction of the
Paleo-Pacific Plate in the early Jurassic. Considering this, along with the mineralization characteristics
of the same-type polymetallic deposits in this region, we propose that the early Permian marine
volcanic rocks have great prospecting potential for the VMS-type Pb–Zn polymetallic deposits.

Keywords: LA-ICP-MS zircon U–Pb dating; geochemistry of volcanic rocks; layered Pb–Zn orebodies;
Xiaohongshilazi deposit; central Jilin Province

1. Introduction

Central Jilin Province, Northeast China, located on the intersection between the eastern
segments of the northern margin of North China Craton (NCC) and Xing’an Mongolian
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Orogenic Belt (XMOB), experienced the evolution, superposition, and transition of the
Paleo-Asian Ocean and Paleo-Pacific Ocean tectonic domains from the late Paleozoic to the
early Mesozoic [1–5]. Numerous porphyry Mo deposits, mesothermal hydrothermal lode
gold deposits, and magmatic Cu–Ni sulfide deposits have been discovered in this region,
and they are temporally and spatially related to the widespread Mesozoic intrusions [6–13].
However, the deposits related to Paleozoic magmatism are relatively scarce and poorly
studied in the area. In recent years, Pb–Zn polymetallic deposits (such as the Xiaohong-
shilazi Pb–Zn deposit, Hongtaiping Pb–Zn–Cu deposit, Dongfengnanshan Pb–Zn–Cu
deposit, etc.) occurring in Paleozoic marine volcanic rocks have been discovered along
the Solonker–Xra Moron–Changchun–Yanji suture zone [14–17]. The discovery of these
deposits can contribute to the study of Paleozoic mineralization in Northeast China and
provide a new direction for the exploration of polymetallic deposits in this area, and also
has great scientific significance for the study of the evolution and metallogenesis of the
Paleo-Asian Ocean.

The newly discovered Xiaohongshilazi deposit is located ~30 km east of Panshi City
in central Jilin Province, NE China. It is a medium-scale Pb–Zn–(Ag) deposit containing
reserves of 34,968 t Pb, 100,150 t Zn, and 158 t Ag at average grades of 1.39% Zn, 0.486%
Pb, and 21.94 g/t Ag [18]. Until recently, studies of the Xiaohongshilazi deposit were
still focused on the vein-type orebodies [13,19,20], but the studies on the layered Pb–Zn
orebodies were scarce. Based on current research, the vein-type Pb–Zn–(Ag) mineralization
is related to an early Mesozoic (~200 Ma) tectono-magmatic–hydrothermal event induced
by the initial subduction of the Paleo-Pacific Plate [18–20]. The layered Pb–Zn orebodies
have the characteristics of VMS-type mineralization, according to the limited studies of the
ore-forming conditions [21,22]. However, significant scientific studies on the layered Pb–Zn
orebodies have not been reported so far. Firstly, the layered orebodies are interbedded with
the marine volcanic rocks, and clearly cut by the late vein-type orebodies. Nevertheless,
the mineralization timing of the layered Pb–Zn ore remains unknown due to the lack
of clarity on the age of the ore-bearing volcanic rocks. Secondly, there are two distinct
viewpoints about the tectonic setting in this region in the late Paleozoic: (1) the continental
rift, taphrogenic trough, and post-orogenic extension after the final closure of the Paleo-
Asian Ocean [23–26]; (2) the subduction of the Paleo-Asian oceanic plate beneath the
northern margin of NCC [5,8,12,27–32]. It is therefore uncertain whether the layered Pb–Zn
mineralization of the Xiaohongshilazi deposit was formed in an extensional setting after
the final closure of the Paleo-Asian Ocean or formed in the subduction of the Paleo-Asian
oceanic plate. Solving these scientific problems will not only improve understanding
of the mineralization process of the Xiaohongshilazi deposit, but will also be important
for the study of Paleozoic mineralization in this region and the evolution of the ancient
Asian Ocean.

As a result, our focus is on the characteristics of layered Pb–Zn mineralization in the
Xiaohongshilazi Pb–Zn–(Ag) deposit. We conducted laser-ablation–ICP–MS zircon U–Pb
dating and collected whole-rock major and trace element data from the ore-bearing volcanic
rocks to determine the age and tectonic setting of the layered Pb–Zn mineralization. This
study holds importance for the research and exploration of similar deposits in this region.

2. Geological Background and Deposit Geology

Located at the junction between the XMOB and the northern margin of NCC, central
Jilin Province successively experienced two distinct tectonic evolution stages during the
Paleozoic to Cenozoic era [3,5] (Figure 1A). The Paleozoic tectonic evolution was con-
trolled mainly by the progressive subduction of the Paleo-Asian oceanic plate beneath
the northern margin of NCC, and the Mesozoic–Cenozoic tectonic evolution was domi-
nated by the oblique subduction of the Paleo-Pacific oceanic plate beneath the Eurasian
continent [11,12,30–35]. More than 10 large Mesozoic deposits, including porphyry Mo
deposits (Daheishan, Jidetun, and Fu’anbu), lode gold deposits (Toudaochuan and Cuyu),
and magmatic Cu–Ni sulfide deposits (Hongqiling), have been discovered in this region.
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Figure 1. (A) Simplified tectonic map of NE China (modified from Wu et al. [2]); (B) Regional
geological map of the central Jilin Province (modified from Yang [13]). (C) Geological map of
Xiaohongshilazi Pb–Zn–(Ag) deposit (modified from Yang et al. [20]).

The Xiaohongshilazi deposit in central Jilin Province is located in the southeast seg-
ment of the intersection between the Yilan–Yitong fault and the Solonker–Xra Moron–
Changchun suture (Figure 1B). The mainly exposed strata in the area are Daheshen
Formation volcanic rocks (Figure 1C). The Daheshen Formation is composed of marine
intermediate-acidic volcanic rocks, terrigenous clastic rocks, and carbonate rocks, which
are locally mixed with a small number of continental clastic rocks. In addition, there are a
large number of fusulina fossils, mainly Monodiexodina; plant fossils, mainly Cardioneura;
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corals; brachiopods; and bryozoan fossils [13], indicating a marine environment. The
volcanic rocks in the Xiaohongshilazi deposit are composed of andesitic volcanic breccia,
andesite, dacite, rhyolite, andesitic tuff, dacitic tuff, rhyolitic tuff, etc. (Figure 2A). The
micropetrographic characteristics of the volcanic rocks from the Xiaohongshilazi deposit
are listed in Table 1 and shown in Figure 3. Dacite interbedded with the layered Pb–Zn
orebodies is the primary ore-bearing volcanic rock Figures 2A,B and 4A.
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Figure 2. (A) Profile map of exploration line from the Xiaohongshilazi Pb–Zn–(Ag) deposit (modified
from Chang [18]). (B) Vein-type Pb–Zn–(Ag) orebodies cut the layered orebodies and the volcanic
rocks; (C) vein-type Pb–Zn–(Ag) orebodies occur around the granodiorite porphyry, and both develop
along fissures and fractures and cut the volcanic rocks.

Table 1. Characteristics of the volcanic rocks in the Xiaohongshilazi ore district.

Sample No. Lithology Location Texture/Structure Phenocrysts Matrix

X370-9 Andesite 370 m-depth of
Xifeng mine

Porphyritic texture
massive structure

Phenocrysts account for 45% of
the rock, and consist of
plagioclase (~35%, 2–7.5 mm)
and amphibole (~10%, 0.5–4
mm, partly altered to chlorite)

Matrix is primarily pilotaxitic
texture and dominated by
plagioclase (~0.2 mm) and
minor amphibole (~0.2 mm)

7XH-3 Andesite
Above the layered
orebodies of
Dongfeng mine

Porphyritic texture
massive structure

Phenocrysts account for 40% of
the rock, and consist of
plagioclase (0.25–0.6 mm, partly
altered to calcite)

Matrix is primarily pilotaxitic
texture and dominated by
plagioclase (0.1–0.2 mm) and
minor amphibole (~0.1 mm)
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Table 1. Cont.

Sample No. Lithology Location Texture/Structure Phenocrysts Matrix

7XH-4 Rhyolite
Above the layered
orebodies of
Dongfeng mine

Porphyritic texture
rhyolitic structure

Phenocrysts account for 25% of
the rock, and consist of quartz
(~20%, 0.2–0.5 mm,) and minor
sanidine (5%, 0.3–0.4 mm)

Matrix is primarily
cryptocrystalline texture and
dominated by quartz (~30%),
K-feldspar (~25%) and
plagioclase

7XH-8-1 Dacite
Interbedding with
the layered orebodies
of Dongfeng mine

Porphyritic texture
massive structure

Phenocrysts account for 55% of
the rock, and consist of quartz
(15%, ~0.2 mm) and plagioclase
(40%, 0.5–2 mm) with minor
amphibole

Matrix is primarily
microcrystalline texture and
dominated by plagioclase and
quartz (10%, 0.03–0.1 mm)

7XH-8-2 Dacite
Interbedding with
the layered orebodies
of Xifeng mine

Porphyritic texture
massive structure

Phenocrysts account for 40% of
the rock, and consist of quartz
(10%, 0.2–0.25 mm), plagioclase
(30%, 0.3–2.2 mm) with minor
amphibole

Matrix is primarily
microcrystalline texture and
dominated by plagioclase and
quartz (15%, 0.01–0.1 mm)
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Figure 3. Photomicrographs of the volcanic rocks from Xiaohongshilazi deposit. (A,B) Andesite
(X370-9; A under polarized light; B under cross-polarized light); (C,D) andesite (7XH-3; C under
polarized light; D under cross-polarized light); (E,F) rhyolite (7XH-4; E under polarized light; F under
cross-polarized light); (G) dacite (7XH-8-1; polarized light); (H,I) dacite (7XH-8-2; H under polarized
light; I under cross-polarized light). Abbreviations: Sp: sphalerite; Am: amphibole; Pl: plagioclase;
Kfs: K-feldspar; Qz: quartz; Chl: chlorite; Cal: calcite.

According to the cross-cutting relationships of the faults, the structures in the ore dis-
trict can be classified into two groups: (1) the major N–S-trending faults, which controlled
the distribution of vein-type Pb–Zn–(Ag) mineralization and intrusions; and (2) the post-
mineralization NE–SW-trending faults, which cut the vein-type orebody and intrusions
(Figure 1C). The intrusions in the ore district, including diorite porphyry and granodi-
orite porphyry, with minor diorite and diabase dikes, are commonly N–S-trending and
parallel to the vein-type Pb–Zn–(Ag) orebodies (Figure 1C). The granodiorite porphyry
(203.6 ± 1.8 Ma, U–Pb zircon) within the internal Pb–Zn mineralization (Figure 4F–G) cut
the diorite porphyry (225.6 ± 5.1 Ma, U–Pb zircon), and was closely associated with the
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vein-type Pb–Zn–(Ag) mineralization of the Xiaohongshilazi deposit (195 ± 17 Ma; sulfide
Rb–Sr dating) [20].
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Figure 4. Representative photographs showing the texture and structure of orebodies in the Xi-
aohongshilazi Pb–Zn–(Ag) deposit. (A) Layered Pb–Zn orebodies, displaying a banded structure
and interbedding with the volcanic rocks; (B) banded structure of the layered ore; (C) pyrrhotite
interbedded with sphalerite in the layered ore (reflected light); (D) pyrrhotite interbedded with
sphalerite and minor galena in the layered ore (reflected light); (E) chloritization and epidotization
associated with layered Pb–Zn mineralization in the volcaniclastic rock (polarized light); (F) veinlet
Pb–Zn mineralization in the granodiorite porphyry; (G) granodiorite porphyry (cross-polarized light);
(H) sphalerite replaced by galena during the major stage of the vein-type mineralization (reflected
light). Abbreviations: Sp: sphalerite; Gn: galena; Po: pyrrhotite; Chl: chlorite; Ep: epidote; Qz: quartz;
Pl: plagioclase; Ser: sericite.

Forty-one Pb–Zn–(Ag) orebodies in the ore district were categorized into layered
orebodies (n = 19) and vein-type orebodies (n = 22). The layered Pb–Zn orebodies that were
mainly hosted within and spatially dominated by volcanic rocks were cut by vein-type
Pb–Zn–(Ag) orebodies (Figure 2), which had lengths of 100–400 m, depths of 110–280 m,
and thicknesses of 1–3 m in the ore district [18,19,22]. In addition, the ore fabrics, mineral
assemblages, and wall-rock alteration showed obvious differences between the layered
and vein-type ores. Layered ore occurred mainly as a banded structure (Figure 4A–D),
and the vein-type ore displayed a vein structure (Figure 2C). The metallic minerals in
layered ore were mainly composed of sphalerite, galena, pyrrhotite (Figure 4A–D), pyrite,
and minor chalcopyrite, and those in the vein-type ore dominantly consisted of galena,
sphalerite (Figure 4F,H), pyrite, and silver. In contrast with the metallic minerals of layered
ore, pyrrhotite and chalcopyrite were not found in the vein-type ore. Moreover, the layered
ore had more sphalerite, while the vein-type ore had more galena. Accompanied by Pb–Zn
mineralization in the layered ore, most of the crystal and rock fabric in the volcanic rocks,
including biotite, amphibole, plagioclase, and andesitic rock fabric, had been altered to
chlorite, epidote, and calcite minerals (Figure 4E). The wall-rock alteration related to the
layered Pb–Zn mineralization would have been controlled by the reaction between the
marine volcanic rocks and hot brine, because the layered orebodies were interbedded
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with the marine volcanic rocks (Figure 4A). The volcanic rocks and the layered orebodies
were cut by the vein-type Pb–Zn–(Ag) mineralization along fractures and fissures that
mainly occurred at the edge of the granodiorite porphyry (Figure 2B,C). In the granodiorite
porphyry, the primary plagioclase, biotite, and amphibole had been altered to become
hydrothermal quartz, chlorite, epidote, sericite, and calcite (Figure 4G), which was related
to vein-type Pb–Zn–(Ag) mineralization and most likely dominated by the reaction between
ore-bearing hydrothermal fluids and rock-forming minerals of the granodiorite porphyry.
The silicification related to vein-type Pb–Zn–(Ag) mineralization, forming abundant quartz-
polymetallic sulfide veins, was not found in the layered Pb–Zn mineralization, indicating
that the ore geneses of the layered and vein-type orebodies were different.

3. Sample and Analytical Methods
3.1. LA–ICP–MS Zircon U–Pb Dating

More than 100 zircon grains from each volcanic rock in the Xiaohongshilazi ore district
(Table 1), were extracted using magnetic and heavy liquid separation techniques, and then
handpicked under a binocular microscope at the Integrity Geological Service Corporation
in Langfang City, Heibei Province, China. The handpicked zircon grains were mounted
in the epoxy resin disk and polished to about half their thickness for exposing crystal
cores. Photomicrographs of the zircon grains were taken under reflected and transmitted
light. Cathodoluminescence (CL) images of the zircon grains were obtained using a JEOL
scanning electron microscope, and used to exhibit their internal structures and determine
the spot locations for zircon U–Pb isotope analyses. The spot locations should be selected
as far as possible on the growth zoning of zircon grains without inclusions and cracks
(Figure 5).
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Laser ablation (LA)–ICP–MS zircon U–Pb dating for more than 20 zircon grains from
each volcanic rock was completed at the Key Laboratory of Mineral Resources Evaluation
in Northeast Asia, Ministry of Land and Resources of China, Changchun, Jilin Province,
China. The instrument for LA–ICP–MS zircon U–Pb analyses couples a quadrupole ICP–MS
(Agilient 75,00c) and 193-nm ArF Excimer laser (COMPexPro 102, Coherent, DE, Saxonburg,
Pennsylvania) with the automatic positioning system. The diameter of the laser spot was
32 µm. One zircon standard (91,500) and National Institute of Science and Technology
(NIST) 610 reference standard were analyzed after each set of five unknown analyses. The
external zircon standard (91,500) was used to correct for isotope ratio fractionation. The
NIST610 reference standard was used in the calculations of element concentrations and Si
was used as an internal standard. Uncertainties on isotope ratios and ages are presented as
±2σ. The analytical process was described in detail by Hou et al. [36]. The isotope data
were calculated using the Glitter 4.0 [37]. Concordia and weighted-mean age diagrams
were produced using Isoplot 3.0 [38]. Corrections for common lead were carried out by the
method of Andersen [39].

3.2. Major and Trace Element Concentrations

Removing the weathered surfaces, 10 fresh rock samples from the rhyolite (7XH-
4) and dacite (7XH-8-1 and 7XH-8-2) were crushed, cleaned repeatedly with deionized
water, pulverized, and ground to 200 mesh using an agate mill. Major and trace elements
analyses were completed at the State Key Laboratory of Ore Deposit Geochemistry, Institute
of Geochemistry, Chinese Academy of Sciences (IGCAS), Guiyang, China. Major and
trace element concentrations were determined by the PANalytical Axios-advance X-ray
fluorescence spectrometer (XRF) and Perkin-Elmer-ELAN 6000 inductively coupled plasma
Mass Spectrometer (ICP–MS), respectively. The analysis error is less than 5%. Detailed
experimental operation process and method were described by Qi and Zhou [40].

4. Analytical Results
4.1. Zircon U–Pb Age

LA–ICP–MS zircon U–Pb ages for the andesite (X370-9 and 7XH-3), rhyolite (7XH-4)
and dacite (7XH-8-1 and 7XH-8-2) are listed in Supplementary Table S1 and shown in
Figure 6. All zircon grains from the five volcanic rock samples were euhedral–subhedral
in shape and transparent, and mostly displayed oscillatory growth zoning in CL images
(Figure 5) and high Th/U ratios (0.34–0.87; Supplementary Table S1), indicating their
magmatic origin [41–43].

For sample X370-9, except for one analytical spot showing a 206Pb/238U age of
279 ± 6 Ma, 20 analytical spots yielded 206Pb/238U ages ranging from 223 ± 5 Ma to
228 ± 5 Ma, with a concordia U–Pb age of 225.0 ± 1.1 Ma (Figure 6A) and a weighted mean
age of 225.0 ± 2.2 Ma (MSWD = 0.055, n = 20; Figure 6B). The 206Pb/238U ages of 18 ana-
lytical spots from sample 7XH-3 varied from 222 ± 9 Ma to 228 ± 6 Ma, with a concordia
U–Pb age and a weighted mean age of 225.3 ± 1.5 Ma (Figure 6C) and 225.5 ± 2.9 Ma
(MSWD = 0.032, n =18; Figure 6D), respectively. Twenty-five analytical spots from sample
7XH-4 yielded 206Pb/238U ages ranging from 220± 7 Ma to 226 ± 7 Ma, and a concordia
U–Pb age of 224.7 ± 1.2 Ma (Figure 6E) and a weighted mean age of 224.7 ± 2.3 Ma
(MSWD = 0.063, n =25; Figure 6F). From sample 7XH-8-1, the 206Pb/238U ages of 20 an-
alytical spots ranged from 274 ± 7 Ma to 284 ± 7 Ma, yielding a concordia U–Pb age of
278.1 ± 1.8 Ma (Figure 6G) and a weighted mean age of 278.3 ± 3.4 Ma (MSWD = 0.16,
n = 20; Figure 6H). Twenty-four analytical spots from sample 7XH-8-2 yielded 206Pb/238U
ages varying from 273 ± 9 Ma to 282 ± 13 Ma, which gave a concordia U–Pb age of
278.3 ± 1.8 Ma (Figure 6I) and a weighted mean age of 278.3 ± 3.4 Ma (MSWD = 0.063,
n = 24; Figure 6J). The older zircon grain (279 ± 6 Ma) from sample X370-9 was interpreted
to be the crystallization age of inherited or captured zircon entrained by the magma.
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4.2. Major and Trace Element

The whole-rock major and trace element concentrations of the rhyolite (7XH-4) and
dacite (7XH-8-1 and 7XH-8-2) from the Xiaohongshilazi deposit are listed in Supplementary
Table S2. The rhyolite had high SiO2 (73.70–76.44 wt.%) and Na2O + K2O (7.31–7.64 wt.%),
and contained a Al2O3 content of 12.76–13.09 wt.%, a TFe2O3 content of 1.54–2.89 wt.%,
a CaO content of 0.22–0.47 wt.%, a TiO2 content of 0.12–0.20 wt.%, and a MgO content of
0.68–0.87 wt.%, with Mg# [Mg# = 100 × Mg2+/(Mg2+ + TFe2+)] values varying from 31.62 to
50.51. Compared with the rhyolite, the dacite possessed relatively low SiO2 ratios ranging
from 62.54 to 65.02 wt.% and Na2O + K2O varying from 5.23 to 5.45 wt.%, but relatively
high Al2O3 (15.45–15.71 wt.%), TFe2O3(7.97–9.16 wt.%), CaO (0.82–1.25 wt.%), and TiO2
(0.56–0.68 wt.%), and similar MgO (0.76–0.81 wt.%), with lower Mg# values ranging from
14.88 to 16.12. Their A/CNK ratios varied from 1.30 to 1.36 and ranged from 1.66 to 1.82,
respectively, which is indicative of peraluminous rocks.

In the chondrite-normalized rare earth element (REE) patterns (Figure 7A), the rhyolite
and dacite samples from the Xiaohongshilazi deposit had different degrees of enrichment
in light rare-earth elements (LREEs), relative to heavy rare-earth elements (HREEs). The
dacite samples [LREE/HREE = 9.63–13.80, (La/Yb)N = 9.02–15.55] were more fractionated
than the rhyolite samples [LREE/HREE =5.37–6.71, (La/Yb)N = 3.94–5.15]. The rhyolite
had obviously negative Eu anomalies (δEu = 0.04–0.13), while the dacite showed slightly
negative Eu anomalies (δEu = 0.60–0.65). In the primitive mantle-normalized geochemical
patterns (Figure 7B), both of them were enriched in large-ion lithophile elements (LILEs,
e.g., Rb, Ba, and K) with obviously negative Nb, Sr, P, and Ti anomalies. The rhyolite,
relative to the dacite, displayed more intense depletion in high-field-strength elements
(HFSEs, e.g., P and Ti) and more enrichment in Zr and Hf. The rhyolite and dacite samples
were divided into the subalkaline series, and mainly plotted into the rhyolite and dacite
regions, respectively, on the Nb/Y vs. Zr/TiO2*0.0001 diagram (Figure 8A). They were
classified as high-K calc-alkaline and shoshonite series, respectively, on Co vs. Th and SiO2
vs. K2O diagrams (Figure 8B,C).
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5. Discussion
5.1. Age of Magmatic Hydrothermal Events and Layered Pb–Zn Mineralization

The dacite samples from Dongfeng and Xifeng mine of Xiaohongshilazi ore district
yielded concordia U–Pb ages of 278.1 ± 1.8 Ma and 278.3 ± 1.8 Ma, respectively, indicating
that the dacite formed during the early Permian. The andesite and rhyolite samples yielded
concordia U–Pb ages of 225.0 ± 1.1 Ma, 225.3 ± 1.5 Ma and 224.7 ± 1.2 Ma, respectively,
and were identical within error to the age of diorite porphyry from the Xiaohongshilazi
deposit (225.3 ± 5.1 Ma) (Yang et al., 2020). This would suggest that the intermediate-silicic
magmatic hydrothermal event in the area occurred during late Triassic time. In addition,
one zircon grain from the andesite furnished a 206Pb/238U age of 279 ± 6 Ma comparable
to that of the dacite samples, indicating that the magmatic zircon from the early Permian
was inherited or captured. The ages of the dacite samples (~278.3 Ma) were obviously
older than the andesite and rhyolite samples (~225 Ma). These data combined with the
distribution of strata in different epoch and their rock types in central Jilin Province [13,51]
meant that the dacite samples (~278.3 Ma) could be classified as Daheshen Formation, and
the andesite and rhyolite samples (~225 Ma) could be confirmed as Sihetun Formation. The
volcanic rocks from the Sihetun Formation were first reported in this area, which provided
new geological information for regional geological mapping of central Jilin Province.

As mentioned above, the layered Pb–Zn orebodies were mainly hosted within and
controlled by Daheshen Formation and Sihetun Formation volcanic rocks. Nevertheless,
the volcanic rocks from the Daheshen Formation were spatially, temporally, and genetically
related to the layered Pb–Zn mineralization, which is evidenced by the following: (1) Dacite
samples of the Daheshen Formation from Dongfeng and Xifeng mine in the Xiaohongshilazi
ore district were all interbedded with the layered orebodies (Figures 2B and 4A). (2) The
volcanic rocks from the Daheshen Formation and the layered orebodies were overlain
by the volcanic rocks from the Sihetun Formation (~225Ma), and both of them were
cut by the vein-type Pb–Zn–(Ag) orebodies and the granodiorite porphyry (~200Ma)
(Figure 2A) [20]. (3) No Pb–Zn mineralization was found in the rhyolite and andesite
from the Sihetun Formation (Figure 3A–F). (4) In addition to the Xiaohongshalazi deposit,
several newly discovered VMS-type polymetallic deposits in this region all occurred in the
marine volcanic rocks from the early Permian, such as the Hongtaiping Pb–Zn–Cu deposit,
the Dongfengnanshan Pb–Zn–Cu deposit, etc. The zircon U-Pb ages of dacite samples from
the Daheshen Formation in the Xiaohongshilazi deposit was consistent with the sphalerite
Rb–Sr isochron age of the layered ore from Hongtaiping deposit [52]. In summary, the
volcanic rocks from the Daheshen Formation have a closely genetic relationship with the
layered Pb–Zn mineralization, suggesting that the layered Pb–Zn mineralization of the
Xiaohongshilazi deposit occurred during the early Permian (~278 Ma).
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In light of the research of the vein-type Pb–Zn–(Ag) mineralization in the Xiaohong-
shilazi deposit (~200 Ma) [20], it can be concluded that there were three stages of tectono-
magmatic–hydrothermal events that occurred in the Xiaohongshilazi area from the early
Permian to the early Jurassic: (1) the early Permian (~278 Ma) forming of the Daheshen
Formation marine volcanic rocks related to the layered Pb–Zn mineralization; (2) the late
Triassic (~225 Ma) forming of the Sihetun Formation volcanic rocks and the diorite porphyry
dikes; (3) the early Jurassic (~200 Ma) forming of the granodiorite porphyry associated
with the vein-type Pb–Zn–(Ag) mineralization.

5.2. Tectonic Setting and Associated Mineralization

The dacite from the Daheshen Formation genetically related to the layered Pb–Zn
mineralization was geochemically distinguished by high SiO2, high K, and high Al2O3
composition, and was identified as a peraluminous high-K calc-alkaline rock (σ < 3.3 wt.%,
Figure 8B,C). The dacite was characterized by an enrichment in LREEs and LILEs (e.g., Rb,
Ba, and K), and a depletion in HFSEs (e.g., P and Ti), suggesting that this dacite was formed
in a subduction-related tectonic environment as island arc rocks. The Th/Nb (1.12–1.21)
and La/Nb (2.8–4.7) ratios (Supplementary Table S2) presented arc magmas that could have
been contributed by crustal source contents [53–55]. Meanwhile, the dacite had obviously
negative Nb anomalies and slightly negative Eu anomalies (δEu = 0.60–0.65), differing
markedly from mantle-derived rocks with strong negative Eu anomalies, indicating that the
magma was derived from the crust [56]. The Mg# values (14.88–16.12) of the dacite were
lower than those of mantle-derived rocks (Mg# > 40), further implying that it was formed
by the partial melting of basaltic lower crust [57]. Moreover, the zircon εHf(t) values of the
volcanic rocks from the Daheshen Formation were all positive (εHf(t) = + 0.23~ + 10.60),
and Hf two-stage model ages (TDM2) ranged from 1384 Ma to 662 Ma [49,50], suggesting
that the original magma was derived from the partial melting of the depleted basaltic lower
crust newly accreted during the Meso-Neoproterozoic, which is generally consistent with
the Proterozoic accretionary event in this region [58]. In summary, we conclude that the
volcanic rocks from the Daheshen Formation most likely originated from the partial melting
of depleted lower crust.

The rhyolite from the Sihetun Formation was classified as a peraluminous shoshonitic
volcanic rock (Figure 8B,C) with high SiO2 and high-K (Na2O/K2O = 0.28–0.34), and was
characterized by an intense enrichment in LREEs and LILEs and a depletion in HFSEs,
as well as obviously negative Eu anomalies (δEu = 0.04–0.13) and negative Nb, Sr, P, and
Ti anomalies. These geochemical features were similar to A-type rhyolites, and implied
that the rhyolitic magma was likely derived from the partial melting of the lower crust,
accompanied by the crystallization differentiation of minerals, such as plagioclase, apatite,
sphene, etc. [59–61].

The dacite samples are plotted within the field of the volcanic arc granites on the Yb
vs. Ta and Y + Nb vs. Rb diagrams (Figure 9A,B), mainly near the region of the active
continental margin (continental arc) on the Ta/Yb vs. Th/Yb diagram (Figure 9C). The
dacite samples displayed LILE-enrichment and HFSE-depletion, as well as obvious Ta–Nb–
Sr–P–Ti troughs, which provide a scenario for a subduction setting similar to the active
continental margin. Meanwhile, the tectonic setting of Hongtaiping and Dongfengnanshan
VMS-type Pb–Zn–Cu deposits, which had the same ore genesis as the layered Pb–Zn min-
eralization of the Xiaohongshilazi deposit, indicated an active continental margin [15,50].
Furthermore, a large amount of geochronology data, geochemistry characteristics, and re-
gional tectonic evolution indicated that this region was under an active continental margin
arc setting in the early Permian, which related to the southward subduction of the Paleo-
Asian oceanic plate beneath the North China Craton [16,17,27–32,49,50,62]. We propose,
therefore, the dacite and associated layered Pb–Zn mineralization formed in the subduction
setting of the Paleo-Asian oceanic plate in the early Permian (~278 Ma; Figure 10A). The rhy-
olite samples were plotted close to the field of the within-plate granites and post-orogenic
setting in the discrimination diagrams of Yb vs. Ta diagram (Figure 9A), Y + Nb vs. Rb
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diagram (Figure 9B) and R1 vs. R2 diagram (Figure 9D), respectively. Moreover, the rhyolite
displayed an affinity to A-type rhyolites in its geochemical composition, proving that it was
formed in the post-collisional extensional setting after the final closure of the Paleo-Asian
Ocean. In addition, the existence of bimodal volcanic rocks and A-type rhyolites in the
eastern Heilongjiang–Jilin provinces during the late Triassic [5], as well as Hongqiling
magmatic Cu–Ni sulfide deposit in the XMOB (~223 Ma) [8,63], further indicate that this
region evolved into a period of post-collisional extensional setting involving lithosphere
delamination in the late Triassic (Figure 10C). The granodiorite porphyry associated with
the vein-type Pb–Zn–(Ag) mineralization was emplaced in the initial subduction stage of
the Paleo-Pacific plate in the early Jurassic (~200 Ma; Figure 10D) [20].
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MORB: mid-ocean ridge basalts; ALK: alkalic series; TR: transitional series; TH: tholeiitic series.
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5.3. Implication for the Late Paleozoic Pb–Zn Polymetallic Mineralization

Located on the intersection between the Central Asian Orogenic Belt and the east-
ern segments of NCC, the central Jilin Province successively experienced the evolution
and transition of the Paleo-Asian Ocean and the Paleo-Pacific Ocean metallogenic do-
mains [1–5,30–35]. In the Permian, the sustained subduction of the Paleo-Asian oceanic
plate beneath the North China Craton formed the marine volcanic rocks and associated
VMS-type polymetallic mineralization (Figure 10A). This area experienced the transition
from the collision and closure of the Paleo-Asian Ocean to post-collision extension during
the Triassic (Figure 10B,C). Large numbers of Mesozoic polymetallic deposits have been
found, including porphyry Cu–Mo deposits (e.g., Guokuidingzi) and magmatic Cu–Ni
sulfide deposits (e.g., Hongqiling) [8,58,63]. In the early–middle Jurassic, the regional
tectonic setting transformed into the subduction of the Paleo-Pacific oceanic plate beneath
the Eurasian continent (Figure 10D), forming mesothermal hydrothermal lode gold de-
posits (e.g., Cuyu), skarn-type gold deposits (e.g., Guanma), and hydrothermal vein-type
Pb–Zn–(Ag) deposits (e.g., Xiaohongshilazi). Nevertheless, few Paleozoic deposits have
been discovered. The newly discovered late Paleozoic Pb–Zn polymetallic deposits in
Northeast China, including the layered polymetallic mineralization of the Xiaohongshilazi,
Hongtaiping, and Dongfengnanshan, are along the Solonker–Xra Moron–Changchun–Yanji
suture zone (Figure 1B) and were formed in the active continental margin setting induced
by the subduction of the Paleo-Asian Ocean (Figure 10A). The discovery of these deposits is
not only helpful to the study of Paleozoic mineralization in this area, but also provides the-
oretical support for the exploration of the same-type polymetallic deposits and the study of
the evolution and associated metallogenesis of the Paleo-Asian Ocean in Northeast China.

At present, the discovered VMS-type mineralization generally occurred in the marine
volcanic rocks during the Permian, and no Mesozoic VMS-type deposits have been found
in the eastern Heilongjiang–Jilin Provinces, which may be related to the local extension
or rifting tectonics under the subduction of the Paleo-Asian oceanic plate in this region
during the Paleozoic. Early Permian marine volcanic rocks are the main ore-bearing
strata of VMS-type layered mineralization in this area, and they have extremely high zinc
background anomaly values [13]. Therefore, the early Permian marine volcanic rocks have
large prospecting potential and could be important prospecting indicators for VMS-type
polymetallic deposits in this region. In particular, several lead–zinc polymetallic deposits
have been found in the marine volcanic rocks of the early Permian Miaoling Formation and
Daheshen Formation (Figure 1B). These include the layered Pb–Zn–Cu mineralization of
the Hongtaiping and Dongfengnanshan VMS-type deposits in the Yanbian area, eastern
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Jilin Province, and the layered Pb–Zn mineralization of the Xiaohongshilazi deposit in
Panshi City, central Jilin Province [15,52]. All of these occurred in the early Permian marine
volcanic rocks, as seen in Figure 1B. These early Permian marine volcanic rocks related to the
Paleo-Asian Ocean evolution are mainly distributed in central (Panshi, Yongji) and eastern
(Wangqing, Longjing, Kaishantun) Jilin Province. They represent important lead–zinc
polymetallic mineralization areas and are prospecting indicators for VMS-type deposits.

6. Conclusions

(1) The layered Pb–Zn mineralization was interbedded with the volcanic rocks from
the Daheshen Formation. It manifested mainly as a banded structure and had more
sphalerite than the vein-type mineralization. The dacite samples from the Daheshen
Formation yielded concordia ages of 278.1 ± 1.8 Ma and 278.3 ± 1.8 Ma, respec-
tively, and were spatially, temporally, and genetically related to the layered Pb–Zn
mineralization, indicating that they were formed during the early Permian.

(2) The andesite and rhyolite from the Sihetun Formation yielded ages of 225.0 ± 1.1 Ma,
225.3 ± 1.5 Ma, and 224.7 ± 1.2 Ma, respectively, and were unrelated to the layered
Pb–Zn mineralization and first reported in this region.

(3) The Daheshen Formation and Sihetun Formation volcanic rocks were formed in the
active continental margin arc setting induced by the subduction of the Paleo-Asian
oceanic plate during the early Permian and the post-collisional extensional setting
after the final closure of the Paleo-Asian Ocean during the late Triassic, respectively.

(4) Three tectono-magmatic events occurred in the Xiaohongshilazi area during the early
Permian (278 Ma), the late Triassic (225 Ma), and the early Jurassic (200 Ma). The
layered Pb–Zn mineralization was formed during the early Permian (278 Ma), and the
vein-type Pb–Zn–(Ag) mineralization was formed during the early Jurassic (200 Ma).

(5) Early Permian marine volcanic rocks, closely related to the layered Pb–Zn mineral-
ization of VMS-type polymetallic deposits, are important prospecting indicators for
similar polymetallic deposits in this region.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13111371/s1, Table S1: LA–ICP–MS zircon U–Pb dating data of
the volcanic rocks in the Xiaohongshilazi deposit; Table S2: Whole-rock major and trace element data
of the rhyolite and dacite in the Xiaohongsilazi deposit.
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