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Abstract: The Qinling Shan is located between the North China Craton and the South China Block.
Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the
tectonic collision history of mainland China but also for enhancing our understanding of the development
of the Yellow and Yangtze Rivers. Previous studies have predominantly focused on bedrock analysis in
the Qinling Shan. However, modern fluvial detrital samples offer a more extensive range of thermal
history information. Therefore, we gathered modern fluvial debris samples from the Hanjiang River,
which is the largest river in the South Qinling Shan. Subsequently, we conducted apatite fission-track
analysis using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method.
A total of 214 valid track ages were obtained, with an age distribution ranging from 9.5 to 334.0 Ma.
The Density Plotter software was employed to decompose the data and generate four prominent age
peaks: 185, 103, 69, 35, and 12 Ma. The exhumation events of the Early Jurassic (185 Ma) and Cretaceous
(103–69 Ma) in the Southern Qinling Shan were strongly influenced by the collision between the South
China Block and the North China Craton, as well as the subduction of the West Pacific Plate, respectively.
The far-field effect of the collision between the Indian Plate and the southern Asian continent influenced
the exhumation of the South Qinling Shan during the Late Eocene (35 Ma) and Middle Miocene (12 Ma),
respectively. In conjunction with the reported findings, we comprehensively analyzed the geological
implications of the Mesozoic and Cenozoic exhumations of the Qinling Shan. The Qinling Shan emerged
as a watershed between the Ordos and Sichuan Basins in the early Mesozoic and Cenozoic, respectively.
However, the exhumation and expansion of the Tibetan Plateau has forced the Yangtze River to flow
eastward, resulting in its encounter with the South Qinling Shan in the late Cenozoic. The exhumation
of the Qinling Shan has resulted in fault depression in the southern Ordos Basin. This geological process
has also contributed to the widespread arid climatic conditions in the basin. During the Miocene, the
Yellow River experienced limited connectivity due to a combination of structural and climatic factors.
As a result, the Qinling Shan served as an obstacle, dividing the connected southern Yangtze River from
the northern segment of the Yellow River during the late Cenozoic era.
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1. Introduction

Linear orogenic belts are geological regions where mountain ranges are formed as a
result of tectonic plate collisions [1]. The immense forces generated by the collision cause
the lithosphere, the rigid outer layer of the Earth, to fold, fault, and exhume, leading to
the formation of linear orogenic belts [2]. Examples of linear orogenic belts include the
Alps in Europe, the Appalachians in North America, the Andes in South America, and
the Tian Shan and Qinling Shan (“Shan” is Chinese for “mountain”) in Asia (Figure 1).
These belts provide crucial information about the tectonic history and processes of the
Earth [2,3]. Geologically, the Qinling Shan act as a major boundary between the North
China Craton and the South China Block (Figure 1). Geographically, the Qinling Shan acts
as a natural barrier, separating the humid southern regions of China from the drier areas
in the northwest [4]. Additionally, the Qinling Shan serves as a geomorphic barrier by
acting as a watershed, thus playing a significant role in the development of the Yangtze
and Yellow Rivers, which are the two largest rivers in China [5]. Therefore, studying the
process of exhumation in the Qinling orogenic belt is of the utmost importance in order to
obtain a thorough understanding of the tectonic, landform, and large river evolution of
Central China.
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Figure 1. A map illustrating the major linear orogenic belts of the world [1]. The Qinling orogenic belt
serves as the watershed between the Yellow and the Yangtze Rivers, two major large rivers in China.

Low-temperature thermochronology, such as apatite fission track (closer temperature
60–120 ◦C), has emerged as a popular method for investigating the exhumation of the Qin-
ling orogenic belt [6–8]. However, most research in this field has primarily focused on the
inner bedrock of the orogenic belt. The response of the bedrock in different parts of the same
orogenic belt to tectonic exhumation during the same period is not synchronized [9–11].
This has led to notable differences in the timing of tectonic exhumation in the Qinling Shan,
including the Mesozoic [12], early Cenozoic [13], and late Cenozoic [14]. Moreover, some
studies have suggested that the formation of the Qinling Shan as the watershed between the
Yellow and the Yangtze Rivers may have begun during the Late Cretaceous (80–70 Ma) [15].
However, other studies propose that this geological event occurred during the Early Eocene
(50–40 Ma) [16] and Late Miocene (12–10 Ma) [17]. The exact timing of when the Qinling
Shan became the watershed between the Yangtze and Yellow Rivers is still controversial
(Figure 2a). Therefore, the fundamental solution to the above dispute lies in determining
the exhumation time of the Qinling Shan. The low-temperature thermochronological age
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of clastic sediments from rivers that flow in linear orogenic belts can provide more detailed
information about the exhumation history of the orogenic belt [18–21]. This method has
been extensively employed in the investigation of exhumation processes in linear orogenic
belts, particularly the Alps in Europe [22–24], the Andes in South America [25], and the
Tian Shan in Asia [26,27]. While conducting a modern fluvial apatite fission-track analysis
on the tributaries of the Hanjiang River, You et al. [28] primarily focused their study on the
exhumation history of the Daba Shan, which is a branch of the Qinling Shan (Figure 2b).
Therefore, a comprehensive analysis of the exhumation history of the Qinling Shan has not
been provided. In this study, we performed an analysis on the apatite fission-track age of
fluvial clastic sediments in the Hanjiang River as it flows from west to east through the
South Qinling Shan. By integrating these findings with existing bedrock low-temperature
thermochronology and sedimentology results, it was possible to systematically determine
the timing of exhumation for the entire Qinling Shan. Not only does this contribute to our
understanding of the formation mechanism of linear orogenic belts, but it also provides
valuable insight into the formation times of large rivers in China.

2. Geological Setting
2.1. Qinling Shan

The Qinling Shan, spanning approximately 1500 km, is a prominent mountain range
running in Central China from east to west (Figure 2a). The Luonan–Luanchuan fault de-
marcates the boundary between the North Qinling Shan and the North China Craton [29,30]
(Figure 2b). The Shangdan suture zone acts as the dividing line between the North and
South Qinling Shan. The Mianlue suture zone distinguishes the South Qinling Shan from
the South China Block.

Minerals 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 2. (a) The location map of the Qinling Shan; (b) The tectonic division map of the Qinling Shan 

(modified from Li et al. [30]). The Shangdan suture (SDS) zone is the boundary between the North 

and South Qinling Shan [29]. The Luonan–Luanchuan fault (LLF) delineates the boundary between 

the North Qinling Shan and the North China Craton. The South Qinling Shan and the South China 

Block are separated by the Mianlue suture (MLS) zone. 

The geological history of the Qinling Shan is quite complex and spans several geo-

logical eras [31,32]. During the Mesozoic era, the Qinling orogenic belt underwent signif-

icant tectonic activity, characterized by the subduction of the Paleo-Tethys Ocean under-

neath the North China Craton [33] (Figure 3a). Eventually, the collision between the North 

China Craton and the South China Block during the Late Triassic to Early Jurassic period 

resulted in the closure of the Paleo-Tethys Ocean and the formation of the basic framework 

of the Qinling orogenic belt [31]. The mantle upwelling beneath the Qinling orogenic belt 

may have caused the crustal thickening and subsequent exhumation during the Late Cre-

taceous [34] (Figure 3b). The far-field effect of the collision between the Indian and the 

Asian Plates played a crucial role in shaping the early Cenozoic exhumation of the Qinling 

Shan [35] (Figure 3c). The late Cenozoic exhumation of the Qinling Shan is a significant 

geological event that shaped the topography of the region [36] (Figure 3d). 

Figure 2. (a) The location map of the Qinling Shan; (b) The tectonic division map of the Qinling Shan
(modified from Li et al. [30]). The Shangdan suture (SDS) zone is the boundary between the North
and South Qinling Shan [29]. The Luonan–Luanchuan fault (LLF) delineates the boundary between
the North Qinling Shan and the North China Craton. The South Qinling Shan and the South China
Block are separated by the Mianlue suture (MLS) zone.
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The geological history of the Qinling Shan is quite complex and spans several geologi-
cal eras [31,32]. During the Mesozoic era, the Qinling orogenic belt underwent significant
tectonic activity, characterized by the subduction of the Paleo-Tethys Ocean underneath the
North China Craton [33] (Figure 3a). Eventually, the collision between the North China
Craton and the South China Block during the Late Triassic to Early Jurassic period resulted
in the closure of the Paleo-Tethys Ocean and the formation of the basic framework of
the Qinling orogenic belt [31]. The mantle upwelling beneath the Qinling orogenic belt
may have caused the crustal thickening and subsequent exhumation during the Late Cre-
taceous [34] (Figure 3b). The far-field effect of the collision between the Indian and the
Asian Plates played a crucial role in shaping the early Cenozoic exhumation of the Qinling
Shan [35] (Figure 3c). The late Cenozoic exhumation of the Qinling Shan is a significant
geological event that shaped the topography of the region [36] (Figure 3d).
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Figure 3. Maps depicting the Mesozoic and Cenozoic evolution of the Qinling Shan (http://www.
earthbyte.org/paleomap{-}{-}-paleoatlas{-}{-}-for{-}{-}-gplates/, accessed on 10 August 2023): (a) the
initial geological framework of the Qinling Shan was established during the early Mesozoic period
when the South China Block collided with the North China Craton [31]; (b) in the Late Cretaceous,
the Pacific Plate subducted beneath the Asian continent, resulting in the reactivation of the Qinling
Shan [34]; (c) the far-field effects of the Eocene collision between the Indian Plate and the Asian
continent influenced the Qinling Shan [35]; (d) in the late Cenozoic era, the Qinling Shan experienced
further exhumation and became the watershed between the Yellow and the Yangtze Rivers [36]. The
red arrows indicate the plate movement direction.

2.2. Sedimentary Basins

The sedimentary basins adjacent to the orogenic belt play a crucial role as repositories
for the deposition and accumulation of sediments [37]. These sediments serve as valuable
records, documenting the geological processes and changes taking place in the surrounding
mountain range [38]. The sedimentary basins surrounding the Qinling Shan primarily
consist of the Sichuan and Jianghan Basins in the northern region of the South China Block,
as well as the Ordos Basin in the western regions of the North China Craton (Figure 2b). The

http://www.earthbyte.org/paleomap{-}{-}-paleoatlas{-}{-}-for{-}{-}-gplates/
http://www.earthbyte.org/paleomap{-}{-}-paleoatlas{-}{-}-for{-}{-}-gplates/
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sediments deposited within these basins hold crucial information about the exhumation
history of the Qinling Shan and the tectonic processes that have shaped the region over
millions of years [35]. The Lower and Middle Triassic strata in the Sichuan (Figure 4a) and
Jianghan Basins (Figure 4b) consist mainly of shallow marine deposits, whereas the Ordos
Basin is dominated by continental strata [39–41] (Figure 4c). The Lower Jurassic strata in
the Sichuan Basin are composed of sandy conglomerates and exhibit angular unconformity
with the Upper Triassic strata [39]. In the Jianghan Basin, the Lower Jurassic strata directly
contact the underlying strata and also contain conglomerate [40]. There is a parallel
unconformity contact observed between the Lower Jurassic and the underlying Upper
Triassic strata within the Ordos Basin [41]. However, there is a significant contrast in the
Upper Cretaceous strata, particularly in the Sichuan and Ordos Basins, where these layers
are noticeably lacking (Figure 4a,c). In contrast, the Upper Cretaceous strata in the Jianghan
Basin are mainly composed of thick layers of conglomerate deposits. Additionally, an
angular unconformity contact between the Paleogene and Neogene strata can be observed
in both the Sichuan and Jianghan Basins. Moreover, the conglomerate layers are present in
the late Neogene strata of the Ordos Basin [42].
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Figure 4. The main sedimentary basins surrounding the Qinling Shan include the (a) Sichuan
Basin [39], (b) Jianghan Basin [40], and (c) Ordos Basin [41]. There is an angular unconformity
observed between the Lower Jurassic and Upper Triassic formations in the Sichuan Basin [39]. The
conglomerate layers have been identified in the Lower Jurassic strata of the Jianghan Basin [40]. A
parallel unconformity between the Lower Jurassic and the underlying strata has been observed in the
Ordos Basin [41]. The Upper Cretaceous strata are absent in the Sichuan and Ordos Basins, whereas
thick conglomerates are present in the Jianghan Basin. In the Sichuan and Jianghan Basins, there is an
angular unconformity between the Neogene and Paleogene strata. In the late Neogene strata of the
Ordos Basin, conglomerates and angular unconformities can be observed [41,42].
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2.3. Rivers

The emergence of large orogen belts can have a profound impact on the evolution of
nearby large rivers, including significant changes in their course and even the occurrence of
river capture [43–45]. Rivers play a vital role as channels for transporting material within
orogenic belts and sedimentary basins. By analyzing the source of sediment in these basins
and correlating it with the age of sedimentary layers, it is possible to reconstruct the river
development sequence [5,37,43]. Consequently, the timing of the river formation can be
used to constrain the tectonic evolution timeline of the associated orogenic belt.

As the largest tributary of the Yangtze River, the Hanjiang flows from west to east along
the Late Cretaceous–Eocene fault basins of the South Qinling Shan [46]. It eventually merges
with the Yangtze River in the Jianghan Basin, covering a total length of approximately
1577 km (Figure 5). The Yangtze River, stretching approximately 6300 km, is the largest
river in China (Figure 2a). It originates in the southeastern edge of the Tibetan Plateau, goes
through the northern region of the South China Plate, and eventually enters the East China
Sea. In the past, the upper reaches of the Yangtze River used to flow into the South China
Sea prior to the Early Eocene era [47–49]. However, its course has shifted to an eastern
direction since the Miocene [50–53]. The Yellow River, with a length of 5464 km, is the
second longest river in China. It originates in the northeastern part of the Tibetan Plateau
and flows through the North China Craton before eventually emptying into the Bohai Sea
(Figure 2a). The formation and development of the Yellow River took place over several
stages during the Miocene and Pliocene periods [5,54–56]. By the Early Pleistocene, the
entire basin of the Yellow River had become connected [57,58].
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the sampled areas of Daba Shan (South Qinling) from the study conducted by You et al. [28].
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3. Methods

We collected fluvial sand samples from different locations along the main stream and
tributaries of the Hanjiang River (refer to Figure 5). Multiple sites were sampled for each
sample to ensure that the collected sample provided the most representative information
on low-temperature thermochronology in the basin. Sample MX was collected from a
tributary of the Micang Shan, while sample ML was collected from the main stream of
the Hanjiang River. Sample XYH came from a tributary at the southern piedmont of the
South Qinling Shan, and sample XY was collected from the main stream of the Hanjiang
River. Lastly, sample DY came from a tributary of Daba Shan. The selected sampling
sites provide comprehensive coverage across the South Qinling Shan. The apatite mineral
separation was performed using routine separation methods. This involved initial stages
of jaw crushing and milling, which were followed by subsequent processes of sieving,
washing, magnetic separation, and heavy liquid separation. These procedures were carried
out at Hebei Langfang Chengxin Geology Co., Ltd. (Langfang, China), in China. Each
sample was carefully handpicked under a microscope to ensure the selection of pure apatite
grains suitable for fission-track analysis. The chosen grains were then mounted on Teflon
and polished to expose their internal surfaces. The dating of all samples was conducted
at the ChronusCamp Research-Thermochronology Laboratory facilities (Itapira, Brazil) in
Brazil using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

The apatite grains were etched in 5.5 M HNO3 for 20 s at a temperature of 21 ◦C in order
to enhance the visibility of the fission tracks [59]. An ultrathermostatic water batch was
utilized to regulate the temperature during the etching procedure. The apatite fission tracks
were calibrated using the Durango standard as the age sample [60]. The concentration of
238U was determined using uranium standards (Dur-2 and MT-7) with a U variation of less
than 1.5% [61]. The isotope concentration was determined using an Agilent 7800 ICP-MS
(Santa Clara, CA, USA) coupled to a 193 Analyte Excite laser ablation system. A gas mixer
(Squid) was connected to the laser ablation system for better homogenization of the isotope
mixture. Isotope data were acquired with spot size for the laser ablation chosen to cover
the largest area of apatite grains possible where the fission tracks were analyzed [60], a
laser energy of approximately 5 J/cm2 with a repetition rate of 5 Hz, and shutter delay
of 30 s. Finally, NIST SRM 610 was analyzed along with the age and uranium standards
to assess the performance of LA-ICP-MS during the analysis [61]. Spontaneous fission
tracks were counted using a fully automated Leica DM6M microscope(Wetzlar, Germany)
at a nominal magnification of 1000×, dry. Fission-track ages were determined using the
calibration method described in the study by Hurford and Green [62]. The value of the Zeta
calibration was determined by taking into account the age of Durango (31.44 ± 0.18 Ma)
using 40Ar/39Ar dating as reported by McDowell et al. [63]. We used the Density Plotter
software developed by Vermeesch [64] to form radial plots and kernel–density estimate
curves for the apatite fission-track ages.

4. Results

A total of 214 detrital apatite grains (see Supplementary Materials Table S1) collected
from the main stream and tributaries of the Hanjiang River were analyzed (Figure 6; Table 1).
The sample MX exhibited three distinct fission-track age peaks, which were found to be
32.6 ± 2.9, 73.7 ± 3.0, and 204.0 ± 31.0 Ma (Figure 6a). The age peaks of the sample ML
were 17.0 ± 12.0, 82.8 ± 4.5, and 193.0 ± 39.0 Ma (Figure 6b). The sample XYH included
three peak ages: 17.6 ± 2.3, 65.4 ± 3.0, and 157.0 ± 17.0 Ma (Figure 6c). The sample XY
presented two distinct peaks: 44.1 ± 7.8 and 104.9 ± 87.8 Ma (Figure 6d). The sample
DY exhibited two distinct age peaks: 19.0 ± 15.0 and 109.0 ± 24.0 Ma (Figure 6e). Finally,
we assembled all the fluvial detrital samples for age estimation and identified four age
peaks: 11.8 ± 1.8, 34.6 ± 3.4, 69.3 ± 4.1, 103.0 ± 14.0, and 185.0 ± 19.0 Ma (Figure 6f).
You et al. [28] conducted a fission-track age analysis of detrital apatite collected from rivers
in the Daba Shan (Figure 5). One notable finding from their study is the absence of Miocene
and Early Jurassic age peaks in the analyzed samples. This could be attributed to the fact
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that their samples were predominantly collected from small rivers, which provided more
localized low-temperature thermochronological information. However, the remaining
age peak components are concentrated in the Late Eocene (34.8 ± 7.6 Ma), Cretaceous
(116.0 ± 12.0–69.0 ± 8.9 Ma), and Late Jurassic (152.0 ± 34.0 Ma), which are in line with
the findings of our analysis. Please consult Table 1 for more specific details.
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Figure 6. Detrital apatite fission-track results were obtained for modern samples collected from the
Hanjiang River: (a–f) depict the single-grain age data in radial plots on the left and the grain-age
distribution in terms of probability plots and kernel density estimates on the right (a′–f′). Both plots
were generated using Density Plotter (Vermeesch [64]). As shown in (f,f′), the ages of individual
grains from various rivers were combined.

Table 1. The detrital apatite fission-track results obtained from samples collected from the Hanjiang
River drainage in this study are compared with previously published data.

Sample GPS N P1
Ma

P2
Ma

P3
Ma

P4
Ma

P5
Ma Data Source

MX 106◦43′18′′
33◦08′51” 49 32.6 ± 2.9

(18.6%)
73.7 ± 3.0

(75.3%)
204.0 ± 31.0

(6.1%)

This study

ML 106◦44′29′′
33◦08′49′′ 48 17.0 ± 12.0

(3.6%)
82.8 ± 4.5

(85.0%)
193.0 ± 39.0

(11.5%)

XYH 109◦20′07′′
32◦49′18′′ 50 17.6 ± 2.3

(12%)
65.4 ± 3.0

(75.9%)
157.0 ± 17.0

(12.1%)

XY 109◦24′00′′
32◦50′8′′ 50 44.1 ± 7.8

(12.2%)
104.9 ± 87.8

(87.8%)

DY 110◦33′43′′
32◦41′10′′ 17 19.0 ± 15.0

(12%)
109.0 ± 24.0

(88%)
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Table 1. Cont.

Sample GPS N P1
Ma

P2
Ma

P3
Ma

P4
Ma

P5
Ma Data Source

DBS06 32◦25.13′
108◦39.71′ 19 116.0 ± 12.0

(100%)
You et al. [28]DBS08 32◦25.55′

108◦52.25′ 67 36.8 ± 7.6
(6.3%)

85.9 ± 6.1
(73%)

152.0 ± 34.0
(21%)

DBS14 31◦57.65′
109◦31.45′ 53 69.0 ± 8.9

(72%)
140.0 ± 29.0

(28%)

DBS18 32◦30.36′
109◦09.47′ 22 102.6 ± 7.1

(100%)

DBS30 32◦1.46′
108◦35.87′ 43 101.8 ± 6.7

(100%)

5. Discussion

To improve the statistical reliability of the fission-track ages derived from identical
fluvial apatite grains, researchers typically aggregate all of the samples that have been
analyzed for age decomposition. Therefore, we focused on five age peaks decomposed
together in all of the samples from the Hanjiang River Basin: 185, 103, 69, 35, and 12 Ma.
The peak age of these decomposed apatite fission tracks is younger than the ages of the
Precambrian and Paleoproterozoic basement rocks in the basin (Figure 2b). Therefore,
these age peaks may indicate exhumation events in the South Qinling Shan since the early
Mesozoic era.

5.1. The Mesozoic Exhumation

Our detrital apatite fission-track data indicate that the exhumation of the South Qinling
Shan commenced around 185 Ma (Figure 7(1)). This age corresponds to the convergence of
the North China Craton and the South China Block during the Late Triassic–Early Juras-
sic [29,31,65–67]. According to Li et al. [30] and Yang et al. [68], the ages determined using
the 40Ar-39Ar and zircon fission-track dating methods demonstrate that the rapid exhuma-
tion of the Southern Qinling Shan occurred simultaneously around 180 Ma (Figure 7(2,3)).
There is an angular unconformity observed between the Lower Jurassic and the under-
lying Upper Triassic strata in the northern Sichuan Basin [39] (Figure 4a), suggesting the
occurrence of regional tectonic events (Figure 7(4)). The gravel and sandstone found in the
northern Jianghan Basin document the unroofing history of the South Qinling Shan during
the Early Jurassic [40,69] (Figure 4b; Figure 7(5)). At the same time, previous studies have
demonstrated the U-Pb provenance tracing results of detrital zircon, which indicate that the
South Qinling Shan served as a stable provenance area in the northern Sichuan Basin during
the Early Jurassic [39,70,71] (Figure 7(6)). The unannealed zircon fission-track and zircon
(U-Th)/He ages obtained from these formations in the northern Sichuan Basin indicate
that the exhumation of the South Qinling Shan occurred between 196 and 180 Ma [66,72]
(Figure 7(7,8)). The denuded North Qinling Shan emerged as a crucial source area in the
southern Ordos Basin [41,73] (Figure 7(9)). The apatite fission-track and (U-Th)/He analy-
ses of the sedimentary layers from the southern Ordos Basin indicate that rapid exhumation
occurred in the North Qinling Shan at 180–165 Ma [74,75] (Figure 7(10,11)). Therefore, the
Qinling orogenic belt underwent extensive exhumation during the Early Jurassic period,
leading to the accumulation of a significant amount of clastic sediment in the adjacent
sedimentary basins.

Our sample data indicate that there was another significant period of intense exhuma-
tion in the South Qinling Shan during the Late Cretaceous period around
103–69 Ma (Figure 7(12)). This event shows similarities to the process of exhumation of
fluvial detrital apatite fission tracks in the Daba Shan (86–69 Ma), as documented by
You et al. [28] (Figure 7(13)). It is also extensively observed in the bedrock of the South Qin-
ling Shan. For instance, previous studies have utilized apatite and zircon fission-track ages
to document the fast exhumation of the South Qinling Shan during 90–60 Ma [7,8,68,76–78]
(Figure 7(14,15)). Detrital apatite fission-track and (U-Th)/He ages of zircon in the Mesozoic
strata in the northern Sichuan Basin provide evidence for exhumation in the South Qinling
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Shan occurring between 80 and 70 Ma [79,80] (Figure 7(16,17)). The analysis of detrital
apatite fission-track ages on the Mesozoic strata in the northern Jianghan Basin, conducted
by Peng et al. [81], indicates that the South Qinling Shan underwent exhumation between
100 and 82 Ma (Figure 7(18)). Similarly, the detrital apatite fission-track and (U-Th)/He age
data collected from the Mesozoic sandstones in the southern Ordos Basin suggest that the
North Qinling Shan experienced exhumation around 110 Ma [74] (Figure 7(19)). Integrated
apatite fission-track and apatite (U-Th)/He dating suggest that a phase of exhumation oc-
curred in the North Qinling Shan during the Late Cretaceous (100–73 Ma [82]; Figure 7(20)).
The detrital zircon U-Pb age provenance tracing and paleo-flow recovery results suggest
that the Qinling Shan served as the source region of sedimentation for the Late Cretaceous
in the Sichuan Basin [70] (Figure 7(21)), Jianghan Basin [83] (Figure 7(22)), and Ordos
Basin [84] (Figure 7(23)). The presence of thick conglomerate within the Upper Cretaceous
strata in the northern Jianghan Basin and the southern Ordos Basin suggests a period of
an unroofing event within the South Qinling Shan during this time [40,41] (Figure 7(24)).
The Qinling orogenic belt experienced a NE–NW extrusion during the Late Cretaceous, as
reported by Enkelmann et al. [7]. This suggests a possible correlation between this tectonic
exhumation event and the subduction of the Pacific plate beneath Eurasia [8,85–87].

5.2. Cenozoic Exhumation

Our fluvial detrital apatite fission-track age suggests that the exhumation of the
South Qinling Shan occurred in 35 Ma during the early Cenozoic period (Figure 7(25)).
You et al. [28] reported that the concentration of peak age fluoclastic apatite fission tracks in
the Daba Shan during the early Cenozoic occurred predominantly at 37 Ma (Figure 7(26)).
The zircon and apatite fission-track ages near the source of the Hanjiang River constrain the
timing of exhumation to 40 Ma [17] (Figure 7(27)). The bedrock apatite fission-track and (U-
Th)/He age confirm the exhumation of the western South Qinling Shan at 38–35 Ma [88–90]
(Figure 7(28)). This result is consistent with the findings from clastic apatite fission-tracks
and provenance tracing in nearby sedimentary basins, which indicate exhumation occurred
between 34 and 30 Ma [91,92] (Figure 7(29,30)). The eastern parts of the South Qinling
Shan also underwent rapid exhumation during the Late Eocene (35–30 Ma; Figure 7(31)),
as described by Richardson et al. [16] and Ge et al. [93]. During the Eocene period, the
relationship between the South Qinling Shan and Jianghan Basin was further strengthened
through basin–mountain coupling [94,95] (Figure 7(32)). The bedrock apatite fission-track
age in the vertical section is predominantly focused on 35 Ma, suggesting that rapid ex-
humation occurred in the North Qinling Shan during the Late Eocene [13,96] (Figure 7(33)).
A notable fault depression occurred in the southern Ordos Basin during the Eocene, as
documented by Meng and Zhang [31]. Lu et al. [97] further highlighted that this depression
received detrital sediments from the North Qinling Shan (Figure 7(34)). Therefore, Late
Eocene exhumation events were widespread in the Qinling Shan. The Indian plate was
undergoing subduction beneath southern Asia during the Eocene [98,99]. Consequently,
we can infer that the Qinling Shan region experienced rapid exhumation, which can be
attributed to the northward expansion of the Tibetan Plateau during this period.

Another exhumation event occurred in the South Qinling during the Middle Miocene
(12 Ma; Figure 7(35)). The findings from the low-temperature thermochronology analysis
on the bedrock suggest that exhumation rates in the South Qinling region experienced a
substantial rise around 12–8 Ma [7,14,17,76,91] (Figure 7(36)). The sedimentary strata in
the northern Sichuan Basin underwent significant exhumation [79,100] (Figure 7(37)), with
an angular unconformity observed at 15–10 Ma [39] (Figure 7(38)). Rapid exhumation in
the North Qinling Shan occurred around 10 Ma, as documented by several studies [7,13]
(Figure 7(39)). This exhumation led to the development of an angular unconformity and
the deposition of conglomerate in the southern Ordos Basin [42] (Figure 7(40)). Dur-
ing the late Cenozoic, the Tibetan Plateau underwent notable exhumation as a single
entity [97,101–104]. As a consequence, its eastern side experienced displacement towards
the north and south, leading to intensive exhumation in the peripheral regions adjoining
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the plateau around 12–10 Ma. Therefore, the outward expansion of the Tibetan Plateau
during the Cenozoic era played a crucial part in the exhumation process of the Qinling
orogenic belt.

Minerals 2023, 13, x FOR PEER REVIEW 12 of 20 
 

 

[97,101–104]. As a consequence, its eastern side experienced displacement towards the 

north and south, leading to intensive exhumation in the peripheral regions adjoining the 

plateau around 12-10 Ma. Therefore, the outward expansion of the Tibetan Plateau during 

the Cenozoic era played a crucial part in the exhumation process of the Qinling orogenic 

belt. 

 

Figure 7. A summary map of Mesozoic and Cenozoic thermal events, sedimentary records, tectonic 

settings, and geological significance in the Qinling Orogenic Belt: (1) this study; (2) [30]; (3) [68]; (4) 

[39]; (5) [40,67]; (6) [39,70,71]; (7) [65]; (8) [72]; (9) [41,73]; (10) [74]; (11) [75]; (12) This study; (13) [28]; 

(14) [7,8,76–78]; (15) [67]; (16) [79]; (17) [80]; (18) [81]; (19) [74]; (20) [82]; (21) [70]; (22) [83]; (23) [84]; 

(24) [40,41]; (25) This study; (26) [28]; (27) [17]; (28) [88–90]; (29) [91]; (30) [92]; (31) [16,93]; (32) [94,95]; 

(33) [13,96]; (34) [97]; (35) This study; (36) [7,14,17,76,91]; (37) [81,100]; (38) [39]; (39) [7,13]; (40) [42]. 

5.3. Implications 

The Mesozoic and Cenozoic exhumation of the Qinling orogenic belt holds great ge-

ological significance. This exhumation has played a crucial role in the tectonic evolution 

and geodynamic processes of the region. 

During the Late Triassic and Early Jurassic, the collision between the South China 

Block and the North China Craton resulted in significant exhumation of the Qinling Shan 

[29,30,105–107]. Materials generated from the denudation of the Qinling Shan are carried 

by rivers and deposited into the Ordos Basin to the north and the Sichuan Basin to the 

south [70,105] (Figure 8a). Therefore, the Qinling Shan developed as a watershed between 

the northern Sichuan Basin and the southern Ordos Basin during the early Mesozoic pe-

riod. The emergence of the Qinling Shan marked the completion of the main framework 

of mainland China in the early Mesozoic era. 

Entering the Late Cretaceous, the eastern parts of East Asia experienced profound 

geological changes due to the subduction of the Western Pacific Plate [33,35,69,85]. At that 

time, a series of large-scale fault basins were formed in the South China Block, such as the 

Jianghan Basin [108]. The eastern parts of the South Qinling Shan served as the primary 

source area for the northern Jianghan Basin [40,83]. The Huangling anticline, situated in 

the South Qinling Shan, experienced a rapid process of exhumation during the Late Cre-

taceous, leading to the development of a regional watershed [83,109]. This exhumation led 

to the formation of large rivers that flowed into the Jianghan Basin and Sichuan Basin on 

the east and west sides of the Huangling anticline, respectively [110,111]. The western 

Figure 7. A summary map of Mesozoic and Cenozoic thermal events, sedimentary records, tectonic
settings, and geological significance in the Qinling Orogenic Belt: (1) this study; (2) [30]; (3) [68];
(4) [39]; (5) [40,67]; (6) [39,70,71]; (7) [65]; (8) [72]; (9) [41,73]; (10) [74]; (11) [75]; (12) This study;
(13) [28]; (14) [7,8,76–78]; (15) [67]; (16) [79]; (17) [80]; (18) [81]; (19) [74]; (20) [82]; (21) [70]; (22) [83];
(23) [84]; (24) [40,41]; (25) This study; (26) [28]; (27) [17]; (28) [88–90]; (29) [91]; (30) [92]; (31) [16,93];
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(40) [42].

5.3. Implications

The Mesozoic and Cenozoic exhumation of the Qinling orogenic belt holds great
geological significance. This exhumation has played a crucial role in the tectonic evolution
and geodynamic processes of the region.

During the Late Triassic and Early Jurassic, the collision between the South China
Block and the North China Craton resulted in significant exhumation of the Qinling
Shan [29,30,105–107]. Materials generated from the denudation of the Qinling Shan are
carried by rivers and deposited into the Ordos Basin to the north and the Sichuan Basin to
the south [70,105] (Figure 8a). Therefore, the Qinling Shan developed as a watershed be-
tween the northern Sichuan Basin and the southern Ordos Basin during the early Mesozoic
period. The emergence of the Qinling Shan marked the completion of the main framework
of mainland China in the early Mesozoic era.

Entering the Late Cretaceous, the eastern parts of East Asia experienced profound
geological changes due to the subduction of the Western Pacific Plate [33,35,69,85]. At that
time, a series of large-scale fault basins were formed in the South China Block, such as the
Jianghan Basin [108]. The eastern parts of the South Qinling Shan served as the primary
source area for the northern Jianghan Basin [40,83]. The Huangling anticline, situated in the
South Qinling Shan, experienced a rapid process of exhumation during the Late Cretaceous,
leading to the development of a regional watershed [83,109]. This exhumation led to the
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formation of large rivers that flowed into the Jianghan Basin and Sichuan Basin on the east
and west sides of the Huangling anticline, respectively [110,111]. The western parts of East
Asia, however, were greatly influenced by the collision between the Lhasa Plate and the
Asian continent, which led to the emergence of plateau landforms [112–117], as well as
the formation of major rivers that flow into the Sichuan Basin [118–121]. Thus, the open
southern Sichuan Basin developed into the primary site of sediment depocenter for a large
river that originated in the eastern Tibetan Plateau and Qinling Shan (Figure 8b).
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Figure 8. Geomorphic pattern around the Qinling orogenic belt in the Mesozoic and Cenozoic.
(a) In the early Mesozoic era, the Qinling orogenic belt experienced exhumation due to the collision
between the North China Craton and the South China Block [29,30]. This exhumation led to the
development of the Qinling Shan, which served as the watershed between the Ordos Basin and
the Sichuan Basin [105–107]. (b) In the late Mesozoic period, the subduction of the Western Pacific
plate beneath the Asian continent led to the exhumation of the Qinling orogenic belt [7,8]. (c) The
exhumation of the Qinling Shan during the early Cenozoic era was influenced by the distant effects
of the collision between the Indian Plate and Asian continents [17]. (d) In the late Cenozoic era, the
Tibetan Plateau underwent a northward and easterly expansion, which resulted in the exhumation of
the Qinling Shan [7,17]. The Qinling Shan has acted as a natural boundary, separating the connected
Yangtze River basin from the segmented Yellow River basin.

During the early Cenozoic era, a large river system developed from the southern
piedmont of the Qinling Shan and extended southwards into the Sichuan Basin [44,47,119]
(Figure 8c). This is primarily due to the limited occurrence of lateral extrusion on the
Tibetan Plateau and the absence of significant exhumation in the Yunnan–Guizhou Plateau
within the southern Sichuan Basin [122,123]. However, the formation of fault depression
basins in the southern, northern, and western parts of the Ordos Basin was influenced by
the outward expansion of the northeastern margin of the Tibetan Plateau [124,125]. These
basins subsequently developed into localized sedimentary centers [126], which hindered
the connectivity of the Yellow River [124]. During this period, the Jianghan Basin primarily
experienced the deposition of salt lake sediments [127]. Additionally, the eastern parts of
the South Qinling continued to serve as the main source area in the northern parts of the
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Jianghan Basin [94]. The formation of the large river connecting the Sichuan Basin and the
Jianghan Basin from west to east has not yet occurred during the Late Eocene [111].

The late Cenozoic was a period characterized by significant geological and geomor-
phological changes in the Qinling Shan and its surrounding regions [7]. Firstly, because of
the continuous exhumation in the Qinling Shan and the Lvliang Shan, the two mountain
ranges have become major geographical barriers for the transportation of eolian sediments
in Northwest China [128–130] (Figure 8d). Therefore, extensive deposits of red clay have
developed in the northern and western foothills of the Qinling Shan and the Lvliang Shan,
respectively [131,132]. Secondly, the fault basins around the Ordos Plateau underwent
significant development during the late Cenozoic, resulting in the formation of geomorphic
obstacles that impeded the flow of the Yellow River [124,125]. Thirdly, the Yunnan–Guizhou
Plateau experienced a strong exhumation during the late Cenozoic due to the outward
expansion of the southeastern margin of the Tibetan Plateau [122,123]. This exhumation
event led to the obstruction of the southward flow of a large river system originated in
the Qinling Shan. In addition, it has been reported that during the late Cenozoic, the
Jinshajiang River’s course changed from a southward flow and started flowing eastward
into the Sichuan Basin [133–136]. Detrital material originating from the eastern margin
of the Tibetan Plateau was deposited in the Jianghan Basin during the Middle Miocene
period, as shown by Yang et al. [137]. This finding suggests that the river connecting the
Sichuan Basin and Jianghan Basin had reached a state of maturity during this period [17].
The Qinling orogenic belt underwent a transformation from a north–south division dur-
ing the early Mesozoic to an west–east river divide in the late Cenozoic. However, the
Yellow River flowed out of the Ordos Basin in a west-to-east direction during the early
Pleistocene [5,57,58]. As a result, the emergence of the Yangtze River and the Yellow River
flowing from west to east on the north and south sides of the Qinling Shan was not syn-
chronized. In addition to the deep rift basin formed between the southern Ordos Basin and
the North Qinling Shan [124], the late Miocene exhumation of the Qinling Shan resulted in
climatic effects that contributed to the aridity of the Ordos Basin [130]. This aridity, in turn,
became a significant barrier to the outflow of the Yellow River. Therefore, the exhumation
of the Qinling Shan in the late Cenozoic era ultimately affected the spatial distribution of
landscapes between the North China Craton and South China Block.

6. Conclusions

Based on the analysis of modern fluvial clastic apatite fission-track ages in the Hanjiang
River, in combination with the published results of low-temperature thermochronology
and sedimentology, we present information on the uplift of the South Qinling Shan since
the Early Jurassic.

We identified five major exhumation events, with the Early Jurassic (185 Ma) exhuma-
tion primarily attributed to the collision between the North China Craton and the South
China Block. The exhumation of the South Qinling Shan during the Cretaceous (103–69 Ma)
was primarily driven by the subduction of the Western Pacific Plate beneath the Asian con-
tinent. During the early Cenozoic era, the Indian Plate collided with the southern margin of
the Asian continent. This collision had a far-field effect, resulting in the exhumation of the
South Qinling Shan during the Late Eocene (35 Ma). Furthermore, there was an expansion
along the northeastern margin of the Tibetan Plateau, which led to significant exhumation
of the South Qinling Shan during the Middle Miocene (12 Ma). Spatially, the exhumation
of the South and the North Qinling Shan occurred concurrently during the Mesozoic and
Cenozoic periods. As a result, the Qinling orogenic belt primarily served as the watershed
for north–south flowing rivers in the Mesozoic and early Cenozoic, and as the boundary
between the east–west flowing Yangtze and Yellow Rivers in the late Cenozoic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13101314/s1, Table S1: Fission track results of detrital apatite
in the Hanjiang River.
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