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Abstract: Horizontal boundary identification of causative sources is an essential tool in potential
field data interpretation due to the feasibility of automatically retrieving the boundary information
of subsurface gravity or geomagnetic structures. Although many approaches have been proposed
to address these issues, it is still a hot research topic for many researchers to derive novel methods
or enhance existing techniques. We present two high-resolution edge detectors based on the Guder-
mannian function and the modifications of the second-order derivative of the field. The effectiveness
of the newly proposed filters was initially tested on synthetic gravity anomalies and geomagnetic
responses with different assumptions (2-D and 3-D; imposed and superimposed; noise-free and
noise-contaminated). The obtained results verified that the two novel methods yield the capability of
producing high-resolution, balanced amplitudes and accurate results for better imaging causative
sources with different geometrical and geophysical properties, compared with the other nine repre-
sentative edge enhancement techniques. Furthermore, the yielded results from the application of
the two strategies to a real-world aeromagnetic data set measured from the Central Puget Lowland
(C.P.L) of the United States and a gravity data set surveyed from the Jalal Abad area of Kerman
province, Iran, with detailed comparative studies validated that the edges identified via the two
methods are in good agreement with the major geological structures within the study areas and the
determined lateral information using the tilt-depth, top-depth estimation method. These features
make them valuable tools for solving edge detection problems.

Keywords: edge detection; Gudermannian function; GDT and GDH filters; potential field data

1. Introduction

Imaging the horizontal boundaries of anomalous structures provides impressive
visibility to determine lateral changes in gravity and magnetic data [1–10]. Acquired
horizontal boundary information from buried causative sources has an essential role in
modeling and interpreting gravity and magnetic data. Edge detection filters are constantly
applied to delineate geologic structures in the form of faults, contacts, dykes, mineral
deposits, and other tectonic features [5,6,10]. In the geophysical literature, many different
filters have been presented to locate the geologic structures from measured data based on
the horizontal and vertical derivatives of the gravity anomalies, the reduced-to-the-pole
magnetic anomalies, or the ratios of these directional derivatives [9,11–20]. For comparison
purposes, some conventional and standard edge detectors have been selected.

The total horizontal gradient (THG) filter of the potential field is given by Equation (1) [16].
THG is stable and popular for enhancing the edges of causative sources. The lateral
boundaries of causative structures are determined by the peaks of the THG amplitude.
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THG =

√(
∂M
∂x

)2
+

(
∂M
∂y

)2
(1)

where M is the gravity or the reduced-to-the-pole magnetic field, ∂M
∂x is the field gradient in

the x direction, and ∂M
∂y is the field gradient in the y direction.

The analytical signal (AS) technique is another edge delineation filter proposed by [17].
The amplitude maxima are directed over the edge center; however, AS cannot balance the
edges of various sources at different depths and would be dominated by larger amplitudes
caused by shallow bodies [18]. The AS method is constructed as follows:

AS =

√(
∂M
∂x

)2
+

(
∂M
∂y

)2
+

(
∂M
∂z

)2
(2)

where ∂M
∂Z is the measured field gradient in the z direction [17].

The tilt angle (TA) phase-based filter was proposed by [19], which is a normalized
function of the THG filter. The TA edge detection method equation is given by

TA = atan

(
∂M
∂z

THG

)
(3)

The lateral boundaries of subsurface sources are delineated by the zero crossing [19].
However, tilt angle edge detector usually generates blurry results, namely, TA suffers from
the deficiency of yielding low-resolution outputs, especially in the case of thin and deep
causative structures [7,9].

The total horizontal gradient of the tilt angle (TA-THG) filter was proposed by [20],
which is calculated using Equation (4):

TA-THG =

√(
∂TA
∂x

)2
+

(
∂TA
∂y

)2
(4)

The edges of buried structures are recognized by the peaks of the TA-THG ampli-
tude [20–23]. The TA-THG estimates diffuse results that are wider than true edges [5].

The TA of the THG (TAHG) method was introduced by [24]. This technique is popular
for detecting the horizontal boundaries of buried structures, but TAHG is not suitable for
discrimination between closely spaced bodies [13,14,23], which is defined as follows:

TAHG = atan

 ∂THG
∂z√(

∂THG
∂x

)2
+
(

∂THG
∂y

)2

 (5)

The TAHG filter has the feature of simultaneously maintaining both smaller and larger
amplitudes. The edges of buried structures are retrieved by the maximum values of the
processed results via TAHG [7,10,13,14,21–24].

The improved local phase (ILF) method was introduced by [25], which is constructed
by calculating different order gradients of potential field data. The ILF is given by

ILF = asin

 THG√(
∂M
∂x

)2
+
(

∂M
∂y

)2
+
(

∂2M
∂x2 + ∂2M

∂y2

)2

 (6)

where ∂2M
∂x2 and ∂2M

∂y2 are the second-order horizontal gradients of field. The ILF maximum
values correspond to the horizontal boundaries of gravity and magnetic causative sources.
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Moreover, the tilt angle of the first-order vertical gradient of the total horizontal
gradient defines the THVH method [26]. The THVH filter is estimated using Equation (7):

THVH = atan

 −
(

∂2THG
∂x2 + ∂2THG

∂y2

)
√(

∂THV
∂x

)2
+
(

∂THV
∂y

)2

 (7)

where THV is the derivative of the THG filter in the z direction [26]. The THVH maximum
amplitudes indicate the edges of buried sources. The THVH is capable of extracting more
information from the potential field data, especially for superimposed bodies [26].

The TA of the balanced total horizontal gradient (TBHG) filter was proposed by [27].
The TBHG filter is expressed as follows:

TBHG = atan

 ∂BTHG
∂z√(

∂BTHG
∂x

)2
+
(

∂BTHG
∂y

)2

 (8)

where
BTHG =

THG

P +
√
(HX(THG))2 + (HY(THG))2 + (THG)2

(9)

In Equation (9), HX and HY are the directional Hilbert transforms of THG, and the
p value is a parameter that controls the balance effect of different amplitudes induced
by different sources with different properties [27,28]. Following the suggestion of [27],
p = 1 within this study. Similar to previously introduced representative edge detectors, the
maximal amplitude values are located over the source edges, which can be utilized as an
indicator describing the geometric distribution features of various causative sources.

The introduced TA [19], TA-THG [20], TAHG [24], ILF [25], THVH [26], and TBHG [27]
filters are equalizing methods; in other words, the basic motivation for constructing these
filters is to balance the amplitudes derived from shallow and deep buried structures
with various characteristics. However, the adaptiveness of these filters is guaranteed by
the premise that the processed potential field anomalies contain independently situated
causative sources only, or they will produce false artifacts (erroneous edge information)
with low resolutions when dealing with spatially superimposed and imposed sources
(more common in field applications).

In order to address these issues further, ref. [18] proposed a fast sigmoid high-
resolution filter (FS) and verified its effectiveness in producing clear and precise edge
information related to causative sources regardless of the source spatial correlations from
potential field data [18]. The FS filter is calculated using Equation (10):

FS =

 ∂THG
∂z√

( ∂THG
∂x )

2
+
(

∂THG
∂y

)2

− 1

1 +

∣∣∣∣∣∣ ∂THG
∂z√

( ∂THG
∂x )

2
+
(

∂THG
∂y

)2

∣∣∣∣∣∣
(10)

The FS strategy provides maximum amplitudes over the horizontal boundaries of the
causative sources. The peaks of the FS filter can be implemented to balance the horizontal
boundaries of buried sources with different geometric features [18].

2. Hyperbolic Domain (Gudermannian Function) Filters

This work proposes two novel filters based on the hyperbolic domain (also termed
the Gudermannian function) to extract high-resolution horizontal boundaries of different
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anomalous sources located at different depths. Mathematically, the Gudermannian function
is an odd function [29–31] which obtains an almost identical shape to the arctangent
function commonly used for edge enhancement of buried structures in the literature [9].
The first filter is a combination of the hyperbolic domain (Gudermannian function), the
second-order derivative of the field, and the corresponding directional derivatives. The
second approach is comprised of the hyperbolic domain (Gudermannian function) and the
improved total horizontal derivative obtained by the directional Hilbert transforms. This
hyperbolic domain edge detection (GDT) filter is given by

GDT = 2atan

tanh

2 ×

−λ+
∂T
∂z√(

∂T
∂x

)2
+
(

∂T
∂y

)2



 (11)

where

T =

∣∣∣∣∣
(

∂2M
∂x∂z

)2

+

(
∂2M
∂y∂z

)2
∣∣∣∣∣ (12)

In Equation (12), ∂2M
∂x∂z and ∂2M

∂y∂z are the field horizontal gradients in the z direction.
Here, in order to improve the effectiveness of the TBHG filter in increasing the resolu-

tion of edge detection and removing spurious edges, we introduce the second filter built
on the Gudermannian function. This hyperbolic domain filter (GDH) is given by

GDH = 2atan

tanh

2 ×

−λ+
∂HD

∂z√(
∂HD

∂x

)2
+
(

∂HD
∂y

)2



 (13)

where

HD =
ITH2

2 +
√
(HX(ITH))2 + (HY(ITH))2 + (ITH)2

(14)

where
(
Hx[·],Hy[·]

)
are the 2-D directional Hilbert transforms [28] and ITH =

√(
∂2M
∂x∂z

)2
+
(

∂2M
∂y∂z

)2
.

λ is a positive number that should be specified by the interpreter before the imple-
mentation of GDT and GDH regarding the measured potential field anomalies. It is worth
stating that the distinction between the two filters is essentially that the GDT filter uses
the second-order derivative of the field; however, the GDH filter combines the directional
Hilbert transforms and the second-order derivative of the field instead. The amplitude
maxima of the two Gudermannian-function-based filters can be utilized to identify the
edges of the buried sources.

To validate the effectiveness of balancing amplitudes from sources at different depths
and mitigating superimposed or imposed source effects of the proposed new filters
(GDT and GDH), we perform the Gudermannian-function-based filters on four synthetic
data sets, including two profile anomalies and two plane gravity and magnetic responses
derived from extremely imposed and superimposed sources with and without noise corrup-
tion, a real-world aeromagnetic data set acquired from the Central Puget Lowland (C.P.L)
of the United States, and a real-world gravity data set acquired from the Jalal Abad mine,
Iran. Moreover, detailed comparative studies are presented with previously described
traditional and popular edge detectors (e.g., THG, AS, TA, TA-THG, TAHG, ILF, THVH,
TBHG, and FS). The obtained results verified that the proposed filters can address the
aforementioned issues with the best performance in terms of producing output images
with good resolution, balanced amplitudes, and avoiding drawing false edges.
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3. Evaluation of Parameter λ

A 2-D geomagnetic fault model is considered to investigate the influence of λ of the
newly presented GDT and GDH filters and its contribution to enhancing the edges and
controlling the resolution. The basic characteristic parameters of the buried fault structure
are the strength of the geomagnetic field (47,000 nT), the fault dip = 90

◦
, the strike = 0

◦
, the

inclination = 90
◦
, and the susceptibility contrast = 0.02 SI. The profile anomaly has a data

interval of 50 m along the x direction. The geomagnetic anomaly is shown in Figure 1a.
Subsequently, the GDT and GDH edge enhancement filters are applied to the calculated
geomagnetic data with increasing values of λ from 0 to 9 (Figure 1b–k). The filtered results
show that the maximum amplitudes of the GDT and GDH filters in all cases are equal and
perfectly match the lateral boundary of the fault plane. Furthermore, both of the novel
filters produce sharp edges when the λ = 0.5 and maintain its sharpness until the λ reaches
8. The extracted edges are unreliable if λ is larger than 8. Therefore, the value of λ can
be selected from 0.5 to 8 in order to maintain the efficiency of GDT and GDH and obtain
reliable edge information. The GDT and GDH methods’ maximum amplitudes indicate the
edges of buried sources in radians. The amplitude changes between −π/2 and π/2.
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Figure 1. Evaluating the performance of the filters with the parameter varying from 0 to 9 using
a simulated geomagnetic anomaly (a) the geomagnetic response (nT) over the fault model. The
processed results of the GDTandGDH filters at (b) λ = 0, (c) λ = 0.5, (d) λ = 1, (e) λ = 1.5, (f) λ = 2,
(g) λ = 3, (h) λ = 5, (i) λ = 6.5, (j) λ = 8, and (k) λ = 9. Notably, the schematic representation of the 2-D
synthetic fault model is placed at the bottom left of this figure.

4. Application to Simulated Profile Data

A 2-D synthetic gravity model consisting of a vertical dyke-like model situated
at a depth of 300 m with a density contrast of 1000 kg/m3 is created. The gravity
anomaly generated over this two-dimensional model with a data interval of 50 m along the
x direction is shown in Figure 2a. Figure 2b–l shows the application of different filters,
including THG, AS, TA, TA-THG, TAHG, ILF, THVH, TBHG, FS, GDT, and GDH. The
maximum values of the processed results of THG (Figure 2b) and AS (Figure 2c) indicate
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the edges and the center of the buried gravity model, respectively. Hence, both THG and
AS can be utilized as indicators for describing the geometric features of the buried structure
in terms of the boundaries and geometric center, even though the provided information
suffers from low resolution. Figure 2d shows that TA is able to generate a sharp response
over the geometric center of the gravity source, making TA a more useful tool than the
described THG and AS methods. However, if the source shifts, the edges are visible [13].
Figure 2e–i gives the results of the TA-THG, TAHG, ILF, THVH, and TBHG filters. These
techniques are generally effective in outlining the edge information of the vertical dyke-like
structure, but the extracted boundaries are diffusive and lack simplicity. Comparatively, FS
obtains a relative high-resolution result (Figure 2j). The processed result is sharper, which
makes the subsequent interpretation process easier. Moreover, as the results presented in
Figure 2k–l show, the newly proposed GDT and GDH filters yield the merit of delineat-
ing the horizontal boundaries of the subsurface gravity anomalous body with maximal
clarity without compromising the effectiveness of avoiding the generation of annoying
artifacts or erroneous edges simply by finding the maximal amplitude values within the
responses calculated.
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Figure 2. Produced results of various edge detection techniques over the synthetically constructed
2-D gravity dyke model: (a) the calculated gravity anomaly response over the dyke body, (b) THG,
(c) AS, (d) TA, (e) TA-THG, (f) TAHG, (g) ILF, (h) THVH, (i) TBHG, (j) FS, (k) GDT, and (l) GDH.
Likewise, the cross section of the synthetic dyke-like model is illustrated at the bottom of this figure.

5. Application to Synthetic Data

This section utilizes several 3-D synthetic gravity and magnetic models with and with-
out the consideration of noise corruption to examine the effectiveness of the GDT and GDH
edge determination filters further. It should be noted that, in this study, λ = 0.5 in the
mathematical equations of the GDT and GDH filters assigned for the rest of the experi-
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ments, including processing simulated 3-D potential field anomalies and the real-world
aeromagnetic and gravity data application.

5.1. The Gravity Model

Figure 3a,b shows the side and bird’s-eye views of the designed gravity model, which
contains five buried dyke-like prismatic sources (G1, G2, G3, G4, and G5) with different
properties, including different geometric parameters and positive and negative density
contrasts. Amongst the causative sources, three prisms share the same size but different
density contrasts and depths (G1, G2, and G3), and the remaining two prisms yield different
sizes, depths, and density contrasts (G4 and G5). The characteristic parameters of the
synthetic 3-D gravity model are given in Table 1. The 2-D gravity anomaly of the synthetic
model was produced on 12 km × 12 km grid nodes with a node interval of 0.05 km along
the x and y directions.
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five buried sources.

Table 1. Density contrasts and geometric parameters of the constructed gravity model displayed
in Figure 3.

Source/Label G1 G2 G3 G4 G5

x-Coordinate of the Geometric Center (m) 3000 6000 9000 6000 6000
y-Coordinate of the Geometric Center (m) 3000 3000 3000 8000 8000

Prism Width (m) 1000 1000 1000 8000 5000
Prism Length (m) 3000 3000 3000 4000 2000

Depth of the Top (m) 450 350 250 400 200
Depth of the Bottom (m) 950 850 750 700 300

Density Contrast (kg/m3) 3000 −2000 2000 −2500 2000

Figure 4a shows the calculated gravity anomaly from the constructed 3-D model
in Figure 3. As shown in Figure 4b,c, the THG and AS maps are dominated by the
strong amplitudes generated by the buried shallow sources, while the signal intensities
from sources at deeper positions are degraded much more intensively, so that the edge
information of deeper sources simply cannot be recognized satisfactorily from the processed
results of THG and AS due to the deficiency of the two filters to balance the amplitudes
produced by structures at different depths. The TA extracts the edges of bodies G1, G3,
and G4 successfully; however, it is less effective for the interpretation of bodies G2 and
G5 (Figure 4d). Although the horizontal boundaries can be outlined by the zero contours
of TA, it produces false edges between sources, obtaining positive and negative density
contrasts [5]. Additionally, Figure 4e displays the result of TA-THG, indicating that TA-
THG is capable of reflecting all the boundaries; however, the displayed edges are very
blurry. The TAHG approach can equalize the low and high amplitudes derived from
different sources simultaneously and can also avoid generating erroneous edges in the
produced results. Nevertheless, the TAHG method provides the boundary information
in a low-resolution manner. Figure 4g depicts the processed result of ILF with respect to
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the gravity anomaly in Figure 4a. It can be observed that the maximum amplitudes of ILF
cannot reflect the boundaries of G1, G2, G3, and G4, and ILF also creates a false contour
inside the source G5. Figure 4h–i displays the filtered results of the THVH and TBHG
methods, respectively. Unlike the filters described above, THVH and TBHG are suitable
for balancing the weak and strong amplitudes produced by these sources at different
depths, but both of the THVH and TBHG filters produce low-resolution outputs, and
further, THVH also produces unwanted artifacts. Finally, Figure 4j–l stores the results
of the FS, GDT, and GDH strategies. The last three methods can perfectly mitigate the
amplitude effect without generating annoying false edges, that is, they can enhance the
boundaries of all sources with different properties and only reflect the true boundaries.
Furthermore, compared with the FS filter, the recommended GDTandGDH filters based
on the Gudermannian function obtain superior resolution, namely, the produced maps
containing the boundary information of the subsurface gravity structures are clearer.
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Figure 4. Detailed comparison of the effectiveness of the aforementioned edge enhancement strategies
via the synthetic complex 3-D gravity model displayed in Figure 3 (dashed white lines represent the
true boundaries of the sources buried): (a) synthetically produced 2-D gravity anomaly with respect
to the five-prism model with positive and negative density contrasts, correspondingly processed
results of (b) THG, (c) AS, (d) TA, (e) TA-THG, (f) TAHG, (g) ILF, (h) THVH, (i) TBHG, (j) FS,
(k) GDT, and (l) GDH.

5.2. The Gravity Model with Noise Contamination

In order to test the robustness of the involved filtering strategies for resisting noise
corruption, 3% of the amplitude of the anomaly displayed in Figure 4a was considered
to generate the noisy gravity anomaly (Figure 5a). Before applying the aforementioned
edge enhancement filters (THG, AS, TA, TA-THG, TAHG, ILF, THVH, TBHG, FS, GDT,
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and GDH), the constantly utilized upward continuation technique regarding the noise-
contaminated gravity data was performed to relieve the noise effect (the upward continued
height is 0.15 km).
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plitudes due to the shallow sources situated; however, the small amplitudes controlled by 
deeply buried sources are also ambiguously represented. The TA method still yields the 
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Figure 5. Performing the filtering strategies within this study on the noise-corrupted gravity data
(likewise, dashed white lines represent the true boundaries of the sources buried): (a) the gener-
ated noisy gravity anomaly (the noise degree = 3%), processed results of (b) THG, (c) AS, (d) TA,
(e) TA-THG, (f) TAHG, (g) ILF, (h) THVH, (i) TBHG, (j) FS, (k) GDT, and (l) GDH.

Figure 5b,c displays the processed results of the THG and AS techniques under
consideration of the noise effect, respectively. The outcomes are still dominated by large
amplitudes due to the shallow sources situated; however, the small amplitudes controlled
by deeply buried sources are also ambiguously represented. The TA method still yields the
ability to balance the weak and strong signals caused by different sources, but it sacrifices
resolution in terms of detecting the edges of the G1, G2, G3, and G4 sources much wider
than the true ones (Figure 5d). Figure 5e illustrates the filtered result of TA-THG associated
with the noisy gravity response. It can be clearly seen that, in this situation, the maximum
amplitudes of TA-THG cannot coherently correlate with the lateral boundaries of the
imposed gravity model. In Figure 5f, the TAHG filtering method is able to detect the edges
of all the buried sources regardless of the depth at which they are located, but this edge
information is diffusively exhibited and easily affected by the noise component remaining.
Figure 5g displays the result of the ILF filter. The ILF produces an unsatisfactory result
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considering the imposed gravity structure [26]. The filtered maps of THVH and TBHG
are displayed in Figure 5h–i, respectively. Both of the two methods are able to detect all
the edges. Nevertheless, THVH obtains lower anti-noise ability compared with the TBHG
technique, and TBHG encounters the same problem as TAHG, that is, the retrieved edge
information has a low-resolution. The yielded maps at the bottom row of Figure 5 keep
the filtered results of the FS, GDT, and GDH methods, which demonstrate that not only
can the three strategies delineate the edges of all structures buried at different depths
with comparatively high resolution, but their performances can be mildly eroded by the
noise perturbation. Therefore, the recommended GDT and GDH filters share the same
capability as the FS method to robustly attenuate the noise influence so that the boundaries
are more visible and clearer. Hitherto, we can conclude that the proposed GDT and GDH
methods are useful tools for producing high-resolution and balanced amplitude edge
detection results.

5.3. The Geomagnetic Model

To further investigate the capability of the GDT and GDH filters, a superimposed
synthetic geomagnetic model (the inclination and declination angles are set to 90

◦
and 0

◦
,

respectively), consisting of ten dyke-like prisms named M1-M10 at different depths and
extents, is simulated (Figure 6). The detailed model parameters of the established complex
model are listed in Table 2. The total magnetic intensity (TMI) is estimated on a 12 km × 12
km grid with a grid spacing of 0.05 km along the x and y directions. Figure 7a shows the
simulated RTP geomagnetic anomaly.
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Figure 6. (a) 3-D view of the theoretical geomagnetic model; (b) top view of the second model with
ten buried dyke-like geomagnetic structures.

Table 2. Geomagnetic susceptibilities and geometric parameters of the superimposed geomagnetic model.

Source/Label M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

x-Coordinate of the Center (m) 3000 5000 6500 6500 6500 4500 6500 8500 6500 10,000
y-Coordinate of the Center (m) 5000 8500 4000 4000 4000 1000 1000 1000 7000 5000

Prism Width (m) 1000 1000 4000 2500 1000 1000 1000 1000 500 500
Prism Length (m) 20,000 20,000 4000 2500 1000 1000 1000 1000 4000 4000

Depth of the Top (m) 450 450 600 300 200 200 300 400 400 500
Depth of the Bottom (m) 950 950 1100 500 220 220 350 450 450 550

Strike Azimuth (◦) 0 90 0 0 0 0 0 0 90 0
Magnetic Susceptibility (SI) 0.021 0.023 0.019 0.025 0.027 0.03 0.032 −0.024 0.025 −0.026
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ing coherent conclusions generated in the 3-D gravity data experiment containing an im-
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Figure 7. Detailed comparison of the effectiveness of the aforementioned edge detectors via the
synthetic complex 3-D geomagnetic model displayed in Figure 6 (dashed white lines represent the
true boundaries of the sources buried): (a) synthetic RTP geomagnetic response derived from the
superimposed model with positive and negative magnetic susceptibilities, performed results of
(b) THG, (c) AS, (d) TA, (e) TA-THG, (f) TAHG, (g) ILF, (h) THVH, (i) TBHG, (j) FS, (k) GDT, and
(l) GDH.

Following the same processing procedure, we performed the 11 edge detectors on the
RTP geomagnetic anomaly generated. Correspondingly filtered results are presented in
Figure 7b–l, with the white dashed lines representing the true boundaries of all the causative
bodies buried. Figure 7b–c displays the results of the THG and AS filters, showing coherent
conclusions generated in the 3-D gravity data experiment containing an imposed effect.
The THG and AS filters cannot balance the amplitudes caused by sources buried at different
depths; this feature makes them inapplicable for dealing with superimposed structures.
Figure 7d shows the extracted edges using the TA method. Although the edges of some
sources can be distinguished successfully by reading the zero contours from the processed
map of TA, there are chances to generate false contours between buried sources, which
make the subsequent interpretation process inconvenient to continue. Also, the edges of M5
and M9 are faintly detected. Figure 7e shows the result created by applying the TA-THG
method. It can be seen that, in this case, the maximum amplitudes of TA-THG cannot
delineate the horizontal boundaries of M1-M10. Figure 7f presents the result of the TAHG
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method. Obviously, TAHG detects all the edge information via the maximal amplitudes in
the filtered map in a more effective way without causing false edges than the TA method.
The only problem with TAHG is that the coherent edges obtain low resolutions. Figure 7g
shows the recuperated edges of the synthetic 3-D complex geomagnetic model in Figure 6
using the ILF method. The edges are faint and drawn very diffusely, making this filter not
suitable for outlining the edges of the imposed and superimposed structures. Figure 7h–i
displays the edges detected from the THVH and TBHG methods, respectively. As depicted
in the two maps, the THVH and TBHG methods provide low-resolution edge information
related to the causative sources. Although the THVH method can locate all the true
boundaries, it inevitably produces fake positive contours around the sources M6, M7, M8,
and M10. The amplitude result of the FS filter is shown in Figure 7j. Compared to the results
mentioned above, the FS clearly outlines the horizontal boundaries of the ten superimposed
sources and simultaneously enhances the visibility and sharpness of the buried structures.
The final edge detection results of the GDT and GDH filters are displayed in Figure 7k–l,
validating that the newly designed GDT and GDH methods are distinguished in producing
balanced and coherent horizontal boundaries of the superimposed geomagnetic sources
without generating disturbing artifacts compared with the other methods discussed. The
FS, GDT, and GDH filters’ maximum values lie directly over the source edge and enhance
the horizontal boundaries to be more visible and sharper, compared to the THG, AS, TA,
TA-THG, TAHG, ILF, THVH, and TBHG methods.

5.4. The Geomagnetic Anomaly with Noise Corruption

This section discusses the performance of the involved filters in dealing with the noise-
corrupted RTP geomagnetic anomaly presented in Figure 8a. The random noise component
has an amplitude of 3% of the noise-free data. For the purpose of maintaining the coherence
of testing, the GDT and GDH filters are implemented on the noisy geomagnetic data with
the comparison of the selected nine filters (THG, AS, TA, TA-THG, TAHG, ILF, THVH,
TBHG, and FS).

Notably, the upward continuation method is utilized again regarding the noisy 2-D
geomagnetic anomaly at a height of 0.15 km prior to the filtering process of the involved
edge detectors in order to better simulate real applications.

Retrieved edge information with the noise effect using the THG and AS methods is
displayed in Figure 8b,c, which are still incapable of balancing the amplitudes induced
by sources situated at different depths. Instead, both of the filters are robust enough to
resist noise contamination. Figure 8d depicts the result of the TA technique, creating many
spurious edges that cannot reflect the true ones and showing less robustness in suppress-
ing the noise effect. Moreover, the TA-THG method is still unable to draw horizontal
borders via the maximum amplitudes in the noisy case. Relatively, Figure 8f depicts the
edges (maximal amplitudes) that can be extracted coherently but are partially affected
by the noise effect and low resolution by applying the TAHG filter. Especially, the ge-
omagnetic body M9 failed to be recovered. According to the filtered output shown in
Figure 8g, as expected, the ILF filter fails to delineate all the edges regardless of the thin,
deep, and shallow structures. Figure 8h–j shows the final results of implementing the
THVH, TBHG, and FS filters. All three filters yield corresponding results describing the
true edges in Figure 6. However, FS yields the most clear and compact signals, namely, FS
generates the highest resolution result with the most effective anti-noise ability amongst the
three filters, due to its unique mathematical structure. Finally, results from the imple-
mentation of the GDT and GDH filters are displayed in Figure 8k,l, respectively, showing
that the GDT and GDH filters provide successful estimations of all the boundaries of the
buried sources with different characteristics, even with the involvement of 3% degrees
of noise content. In other words, the GDT and GDH approaches are very useful for gen-
erating high-resolution, balanced amplitude results and are less sensitive to noise edge
detection results.
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Figure 8. Performing the filtering strategies within this study on the noise-corrupted geomagnetic
data (dashed white lines display the true edges of the buried sources): (a) the geomagnetic data of the
synthetic model with random noise with an amplitude of 3% of the anomaly amplitude, produced
results using (b) THG, (c) AS, (d) TA, (e) TA-THG, (f) TAHG, (g) ILF, (h) THVH, (i) TBHG, (j) FS,
(k) GDT, and (l) GDH.

6. Application to Field Aeromagnetic Data

This section emphasizes the test of the practicability of the aforementioned traditional
nine filters (THG, AS, TA, TA-THG, TAHG, ILF, THVH, TBHG, and FS) and the proposed
GDT and GDH filters via a high-resolution field geomagnetic response belonging to the
Central Puget Lowland (C.P.L), in the northwestern United States, published in 1997 by the
U.S. Geological Survey (USGS). Figure 9 displays the geological map of the C.P.L study area
and the adjacent area at a scale of 1 : 250, 000 (adapted from [32]). The study area is located
within the geological complex above the Juan de Fuca plate that is actively subducting
beneath the western margin of North America [5,33,34]. The high-resolution aeromagnetic
data of the study area are displayed in Figure 10a. The flight height was 300 m, and the
flight lines were in the E–W direction with a grid interval of 400 m [35,36]. The acquired
aeromagnetic data were reduced to the pole (RTP) using an inclination angle of 69.4◦

and a declination angle of 19◦, to reposition the anomalies from their casual sources, as
depicted in Figure 10b [5]. To attenuate the short-wavelength noise effects, the filter using
a 0.3 km upward continuation distance of the RTP aeromagnetic data was implemented
to stabilize the latter filtering process (Figure 11a). Figure 11b–l displays the results of the
THG, AS, TA, TA-THG, TAHG, ILF, THVH, TBHG, FS, GDT, and GDH edge determination
filters, respectively.
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Figure 9. The location and the simplified geologic map of the Central Puget Lowland area (adjacent
regions are shown; adapted from [5,32]). EB Everett basin, SB Seattle basin, TB Tacoma basin, SU
Seattle uplift, PT Port Townsend, S Seattle, T Tacoma, WI Whidbey Island, CRBF Coast Range
boundary fault, OF Olympia fault, RMF Rattlesnake Mountain fault, SWIF Southern Whidbey Island
fault, SF Seattle fault, TF Tacoma fault, UPF Utsalady Point fault.
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Figure 10. (a) The acquired field aeromagnetic anomaly (nT); (b) the corresponding RTP result.

Figure 11b,c exhibits the edge information delineated by performing the THG and AS
filters on the upward continued RTP aeromagnetic data, respectively. As can be observed,
the THG and AS methods are dominated by the large amplitudes produced by shallow
structures buried, so the generated signals are not balanced effectively [5]. Figure 11d
illustrates the map obtained by the TA method. Although this technique can balance the
shallow and deep anomalies simultaneously, it cannot clearly determine the geological
edges within the study area. Figure 11e shows the filtered result of the TA-THG filter. TA-
THG fails to effectively delineate the horizontal boundaries via the maximum amplitudes;
this phenomenon shows high consistency with the synthetic tests. The filtered signals
using the TAHG filter are presented in Figure 11f, confirming that TAHG is an effective
method for highlighting the geometric distribution of the buried geological structures
within the study area. Figure 11g displays the output of the ILF filter. Considering the test
results generated synthetically and practically, ILF is not suitable for edge determination
and should not be considered as an edge detection tool in this study. Figure 11h–i keeps
the lateral boundaries estimated by the THVH and TBHG methods. Although the lateral
boundaries can be recognized clearly by the maximum contours of THVH and TBHG, the
THVH filter produces additional spurious contours, degrading the efficiency of subsequent
interpretations. Finally, Figure 11j–l shows the edges delineated by the FS, GDT, and GDH
edge determination filters. The FS filter is validated again to be a prominent filter that
is capable of equalizing the amplitudes caused by geological structures with different



Minerals 2023, 13, 1312 15 of 21

properties. Comparatively, the recommended Gudermannian-based GDT, GDH, and FS
approaches provide even better results than the other filters and display more details than
the filters of THG, AS, TA, TA-THG, TAHG, ILF, THVH, and TBHG in terms of balanced
amplitude results and high-resolution edges without suspicious artifacts. These features
make the GDT, GDH, and FS methods valuable tools for quantitatively extracting edge
information from potential field data.
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In addition to the detection of horizontal boundaries, the depth estimation of causative
bodies is also important for the interpretation of magnetic data [37]. In this work, to
estimate the top depth of the structures retrieved, we used the popular tilt-depth (TD)
technique [38]. The significant advantages of the tilt-depth method are that it does not
depend on the structural index (SI) or the window size (WS) and can automatically yield
depth information. Figure 12 shows the result of applying the tilt-depth method to the study
area. The histogram of the estimated depths is shown in Figure 12c, which describes that
50% of these structures obtained exist at 0.3–1.5 km depth. The depth of the majority of the
lateral boundaries varies between 0.2–5 km, being disturbed randomly all over the Central
Puget Lowland area. For detailed comparisons, the lateral boundaries in Figure 11k,l are
superimposed on the tilt-depth map. Clearly, the positions of the buried source points are
mostly correlated with the lateral boundaries determined by the GDT and GDH filters. Also,
we can see that many edges match the geological features. The determined boundaries
illustrate a good correlation with the trending faults and other anomalies in the western
and southeastern parts of the area. Therefore, with the help of the superimposed map from
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the processed results of the Gudermannian function filters and the tilt-depth method, it is
possible to make reliable interpretations of the study area qualitatively and quantitatively.
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7. Application to Field Gravity Data

This section emphasizes the test of the practicability of the aforementioned traditional
nine filters (THG, AS, TA, TA-THG, TAHG, ILF, THVH, TBHG, and FS) and the proposed
GDT and GDH filters via a real gravity anomaly belonging to the hematite ore body in the
Jalal Abad area, Iran. The study area is located in the southeast of Iran, Zarand city, Kerman
province, to the north of the Jalal Abad iron mine. Figure 13 shows the geological map of
the study area [39]. The host rock of this area is the Rizzo series of alluvial and volcanic
rocks [39]. Small masses of igneous rocks such as microgabbro and some dikes and sills,
together with diorite and diabase outcrops, can be seen in the area. The younger dikes and
sills intruded into alluvial and volcanoclastic rocks. It was found that dikes and sills are
older or occur simultaneously with iron mineralization in the area [40]. Iron mineralization
is deep in the Jalal Abad ore deposit, and very few outcrops of iron can be seen in the
entire area of the site. The general form of deposits around the mine site is similar to
the stretched lens along the northwest–southeast, which is located in a folded structure.
Hematite has been created mainly from magnetite through the secondary oxidation process
and is obvious in areas where abundant fractures are present. Pyrite and chalcopyrite
are sulfide minerals found in the Jalal Abad deposit [39]. Figure 14a shows the gravity
anomaly map of the area after the corrections and the required pre-processing tasks. The
gravity survey was conducted at a spacing of 20 × 40 m. In this map, a low-intensity
gravity anomaly can be seen, but due to the presence of iron outcrops, it is more likely
to be attributed to iron anomalies. This area was selected to show the efficiency of the
proposed methods for the edge detection of iron and hematite deposits. To attenuate the
short-wavelength noise effects, the filter using a 50 m upward continuation distance of the
gravity data was implemented to stabilize the latter filtering process (Figure 14b).

Figure 15a–k displays the results of the THG, AS, TA, TA-THG, TAHG, ILF, THVH,
TBHG, FS, GDT, and GDH edge determination filters, respectively.

As can be seen, THG and AS are dominated by anomalies in the Jalal Abad area,
possibly caused by the shallow structures. The maps of AS and THG are blurred and
unreliable for finding clear boundaries for subsurface sources. Figure 15c shows the
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images produced with the TA method. The TA is relatively insensitive to the depth of
a buried source and resolves shallow and deep source anomalies equally well, allowing
the anomalies to be identified in the study area. The TA method was used to determine
the horizontal location of shallow and deep sources in the Jalal Abad mine. Again, TA-
THG cannot delineate the boundaries of the buried sources (Figure 15d). In Figure 15e,
the maximum amplitude of the TAHG filter works well for shallow and deep sources.
TAHG can define the horizontal boundaries of the buried sources. However, one of the
disadvantages of this method is the generation of low-resolution boundaries. Again, ILF
cannot delineate the boundaries of the buried sources (Figure 15f). Figure 15g shows the
results of applying the THVH filter. This filter produces some false boundaries that are
inconsistent with the lateral boundaries. Figure 15h,i shows the results created with the
TBHG and FS techniques, respectively. The results obtained with these two filters are
of low resolution. Figure 15j,k shows the results obtained with the GDT and GDH edge
determination filters. It is clear that the proposed filters were much more successful than
the others in improving the source boundaries.
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In addition to the detection of horizontal boundaries, the depth estimation of causative
bodies is also important for the interpretation of gravity data [37]. In this paper, to es-
timate the top depth of the structures retrieved, we applied the popular tilt-depth (TD)
technique [21,41]. Figure 16 shows the result of applying the tilt-depth method to the study
area. The histogram of the estimated depths is shown in Figure 16c, which shows that
50% of these structures obtained exist at 10–40 m depth. The top depth of the majority
of the lateral boundaries varies between 5 and 120 m, being disturbed randomly all over
the Jalal Abad area. For detailed comparisons, the lateral boundaries in Figure 15i,k are
superimposed on the tilt-depth map. Clearly, the positions of the buried source points are
mostly correlated with the lateral boundaries determined by the GDT and GDH filters. Also,
we can see that many edges match the geological features. The determined boundaries
illustrate a good correlation with the trending structures and other anomalies within the
study area. Therefore, with the help of the superimposed map from the processed results of
the Gudermannian function filters and the tilt-depth method, it is possible to make reliable
interpretations of the study area both qualitatively and quantitatively. TD results are in
good agreement with the available drilling data and other works [39].
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(retrieved geological edges from Figure 15k are superimposed on the TD map); (c) histogram of the
top depth estimated from the TD depth estimation method regarding the second field application.
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8. Conclusions

We presented two effective edge enhancement methods, termed GDT and GDH, based
on the Gudermannian function and the second-order derivative of the field. The efficiency
of the two newly presented methods was testified using both synthetic potential data sets
with various assumptions and two field anomalies including a real aeromagnetic response
from the United States and ground-based gravity data from Iran. The processed results
from the application of the two filters were compared further with those of other existing
representative strategies. Synthetic experiments designed for different scenarios (2-D and
3-D; imposed and superimposed; noise-free and noise-contaminated) have verified that the
proposed filters can effectively balance the large and small amplitudes due to causative
sources situated at different depths, without compromising the resolution and accuracy
of subtle details. Furthermore, both GDT and GDH yield the merit of avoiding erroneous
artifacts when the anomalous bodies were assigned opposite-sign geophysical properties.
The retrieved results from the application of the two filters to the acquired aeromagnetic
and gravity data are in good agreement with the main geological structures within the
study areas and the determined lateral information via the popular tilt-depth method.
Hitherto, combining the conclusions generated from the theoretical experiments and field
applications, the GDT and GDH filters are valuable tools for producing reliable, accurate,
and robust edge detection results from processing potential field data sets. Both filters are
recommended for locating potential ore and mineral deposits.
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