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Abstract: The effective discrimination of aquiclude mining stability is one of the important indexes
for the feasibility judgement of water-conserved mining. Based on the mining-induced deformation
characteristics of weakly cemented aquiclude and the water level change of weakly cemented
aquifer in northwest China, a mechanical model of mining stability of weakly cemented aquiclude is
established, and the mining instability criterion of weakly cemented aquiclude and its influencing
factors are analyzed. The results show that the weakly cemented aquiclude has strong plastic
deformation ability and mainly undergoes bending deformation during coal mining. Considering the
mining-induced bending deformation of weakly cemented aquiclude and the groundwater pressure
variation of the weakly cemented aquifer, the expressions of the deflection, stress components, and
strain components of weakly cemented aquiclude are derived. Furthermore, the stress instability and
strain instability criteria of the weakly cemented aquiclude are proposed. The influences of aquiclude
thickness, elastic modulus, Poisson’s ratio, groundwater level, coalface length, and longwall panel
length on the mining stability of weakly cemented aquiclude are analyzed. The research results are

applied to the feasibility judgment of water-conserved mining in Xinjiang Ehuobulake Coal Mine,
check for

updates and the validity of the mining stability criterion of weakly cemented aquiclude is verified.
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doi.org/10.3390/min13010083 1. Introduction

Academic Editor: Abbas Taheri Jurassic and Cretaceous weakly cemented strata are widespread in coal-rich areas of
Northwest China, such as Xinjiang, Inner Mongolia, Gansu, etc. This kind of rock mass is
characterized by late diagenetic time, low strength, poor cementation, easy expansion, and
argillization in water [1]. The mining stability of weakly cemented strata is more sensitive
to the disturbance of underground coal mining [2,3]. Furthermore, northwest China is
a mostly arid and semi-arid climate with scarce water resources and a fragile ecological

environment. The weakly cemented aquiclude is an important barrier to the protection of
shallow water resources, which is essential to the ecological stability of the mining area [4,5].
The contradiction between underground coal mining and water resources protection has
been one of the main issues restricting coal mine production in northwest China [6]. Due
This article is an open access article  tO the influence of mining disturbances, the weakly cemented aquiclude will move and
distributed under the terms and  deform inevitably, which affects its own water-resistance properties and overlying water
conditions of the Creative Commons ~ resources [3,7,8]. How to realize the effective judgement of mining stability of weakly
Attribution (CC BY) license (https://  cemented aquiclude is of great significance to the determination of water-conserved mining.
creativecommons.org/licenses /by / For the study of aquiclude mining stability, the previous focus was mainly on the
40/). roof clay aquiclude or floor non-weakly cemented aquiclude [9-11]. Huang and Fan
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et al. discovered that the loess and clay layers had good water-resistance properties and
considered that their water swelling characteristics were the main factors for the crack
closure of the aquiclude [12,13]. Yu and Ma believed that the roadway backfill mining
method could effectively control the deformation and subsidence of the loess aquiclude
so that the aquiclude maintained good water-resistance stability [14]. Zhang and Sun
et al. analyzed the mechanism of clay aquiclude instability and groundwater leakage
induced by backfill mining; they also noted that reconstructing the key aquiclude would
protect regional water resources and analyzed the physical, mechanical, and permeability
characteristics of the key aquiclude [15,16]. Feng, Fu, and Wang et al. believed that
structural stability and permeability stability were the main factors affecting the water-
resistance property of non-weakly cemented floor aquiclude and analyzed the influence
of rock properties, aquiclude thickness, and groundwater pressure on the mining stability
of the floor aquiclude [17-19]. Liu et al. found that the water-conducting collapse column
could reduce the effective water-resistance thickness of the non-weakly cemented floor
aquiclude directly, thereby increasing the risk of floor water inrush [20]. Previous studies
have obtained the general law of mining stability change of roof clay aquiclude and floor
non-weakly cemented aquiclude, and some scholars have established mechanical models
for the mining stability of clay aquiclude [21,22]. However, there are few studies on the
evolution law of mining stability and instability criterion of weakly cemented aquiclude.

In this paper, on the basis of previous studies, the weakly cemented aquiclude in
northwest China is taken as the research object. Based on the mining-induced deformation
characteristics of weakly cemented aquiclude and the water level variation characteristics
of the aquifer, a mechanical model of mining stability of weakly cemented aquiclude is
established, and the mining instability criterion of weakly cemented aquiclude is proposed.
Furthermore, the influence of different geological factors and coalface mining factors on
the mining stability of weakly cemented aquiclude is analyzed. Finally, according to the
obtained mining stability criterion of aquiclude, the water-conserved mining under the
condition of weakly cemented strata is guided, and the validity of the instability criterion
is tested.

2. Characteristics of Aquiclude Deformation and Water Level Change

A similar physical simulation shows that the weakly cemented aquiclude mainly
undergoes bending deformation during the retreat process and exhibits good plastic de-
formation ability by taking Xinjiang’s weakly cemented mudstone as an example. The
physically similar model is 290 cm in length, 150 cm in width, and 115 cm in height, which
is geometrically 1:100. A 30 cm wide section unmined is leaved on each lateral to eliminate
potential impacts of boundaries. Based on the results of the three-dimensional physical
simulation results of solid-liquid coupling in weakly cemented strata, the weakly cemented
aquiclude has good overall continuity and forms concave subsidence above the goaf after
the retreat process, as shown in Figure 1 [23]. Furthermore, during the retreat process, the
aquifer water level in the middle of the model shows a trend of first decreasing and then
increasing. After the end of the retreat, the aquifer water level in the middle of the model
increased by 0.2 m compared with the original water level, as shown in Figure 2. This
indicates that the aquifer water flows to the middle of the subsidence basin after mining,
causing the water level to rise.

X-ray diffraction result shows that the weakly cemented aquiclude is rich in clay
minerals such as montmorillonite, illite, and kaolinite. The content of clay minerals even
accounts for more than 60% of the total content of rock minerals. In particular, montmoril-
lonite and kaolinite have significant water swelling and argillization, which may be one of
the reasons for the good plastic deformation ability of the weakly cemented aquiclude. The
X-ray diffraction pattern of weakly cemented aquiclude mudstone is shown in Figure 3.
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(b)

Figure 1. Physical similarity simulation of solid-liquid coupling: (a) three-dimensional physical
similarity model; (b) mining-induced deformation characteristics of weakly cemented aquiclude.
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Figure 2. Variation characteristics of aquifer water level.
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Figure 3. X-ray diffraction pattern of weakly cemented mudstone.
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3. Instability Criterion of Weakly Cemented Aquiclude
3.1. Mechanics Modeling

Although the weakly cemented aquiclude has plastic deformation characteristics, it
also has elastic characteristics as a natural rock mass according to previous studies [24-27].
In order to obtain the general law of mining stability variation and the quantitative criterion
for the mining instability of the weakly cemented aquiclude accurately, the aquiclude is
assumed as elastomer before coalface mining. According to the elastic thin plate theory,
the thickness of the overlying aquiclude is generally much smaller than the other two
dimensions; thus, the aquiclude can be regarded as an elastic thin plate. In addition, the
strata below the aquiclude can be regarded as the elastic foundation, and the aquiclude
can be regarded as the elastic thin plate located on the elastic foundation. Before coalface
mining, the aquiclude is balanced under the overburden pressure, groundwater pressure,
self-gravity, and foundation reaction force. Under the influence of coalface mining, the
aquiclude bends and deforms, and the water in the upper aquifer flows to the middle of the
subsidence basin, which changes the groundwater pressure on the aquiclude. Regarding
the aquiclude as an elastic thin plate with four sides fixed, a mechanical model of hori-
zontal or near-horizontal aquiclude is established based on the Winkler elastic foundation
assumption. Considering the groundwater fluidity and the change of water pressure after
aquiclude bending deformation under sufficient recharge conditions, the mechanical model
of horizontal or near-horizontal aquiclude is established as shown in Figure 4.
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Figure 4. Mechanical model of aquiclude: (a) aquiclude plate; (b) stress conditions.

Taking the aquiclude above the coalface as the study object, the simplified model of
aquiclude is shown in Figure 4a, in which the coalface length is Ly, the longwall panel
length is L, and aquiclude thickness is hp. A vertical section is made along the retreat
direction, and the stress distribution of aquiclude before coalface mining is shown as a state
I'in Figure 4b. Affected by coalface mining, the aquiclude undergoes bending deformation,
and its stress distribution is shown as state II in Figure 4b. After the bending deformation
of the aquiclude, the force at its upper boundary is expressed as follows:

q(x,y) = po+ 12h2 + pg(ho + w(x,y)) (1)

where py is the overburden pressure of aquiclude, MPa; -y is the bulk density of aquiclude,
N/m?3; hy and hy are the aquiclude thickness and the groundwater level, respectively, m; p
is the groundwater density, kg/m?3; g is the gravity coefficient; N/kg; w is the aquiclude
deflection, m.

The force at the lower boundary of the aquiclude is expressed as follows:

p(x,y) = kew(x,y) )

where k. is the coefficient of elastic foundation.
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Based on the double trigonometric series solution method, the deflection function can
be expressed as follows:

Z ZA SN2 L—nx)smz(nLny) ©)]

m'=1n'=1 f

where m’ and n’ is any positive integer; A, is the coefficient of the deflection function.
For the convenience of calculation, only one coefficient Ay; is taken in Equation (3), so
there is m’ = n’ = 1[28]. Equation (3) can be simplified as follows:

i x) sin( dd

w(x,y) = Ay Sinz(Lr Lf]/)

(4)

According to the principle of minimum potential energy, while ignoring the aquiclude
deformation components ¢, 7y, and 7xz, the total potential energy I generated after
aquiclude bending deformation is equal to the sum of the aquiclude strain energy V and
the external force potential energy W, as expressed in Equation (5).

where I11is the total potential energy of the aquiclude; V is the strain energy of the aquiclude;
W is the external potential energy of the aquiclude under external load.
According to the mechanics model, it follows that:

{ V=gl { (G B a0 [Beg - () e

We = —[[ (po + 12h2 + pg(ho + w) — kw)-wdxdy

where y is the Poisson’s ratio of aquiclude; D, is the flexural stiffness of aquiclude, and

D. = %, where E is the elastic modulus of aquiclude.

Combining Equations (5) and (6):

- 442 | O=6pL, | 8L OLrLy 42
1= DAy 8L§ +8LJ3(+4LLf — 5 A%y (0g — k)

L (7)
— =L Avi(po + 12h2 + pgho)

Calculate the first derivative of the coefficient A of the deflection function in Equation
(7) and let dI1/0A = 0, Equation (8) is obtained:
12(po + y2h2 + pgho)

mER | (9—6p) 27(pg—k)
(1—1422){ Ty +L2L}]_( )

An =

®)

Substituting Equation (8) into Equation (4), the deflection expression at any point of
aquiclude can be obtained as follows:

12(}70 + ’)/2]12 + pgho)
m4ER | (9— 6],1)
(1-p2)

n2 7T 2,70
L2L2 2

Based on the deflection equation of any point of the aquiclude and Hooke’s law, the
stress components ¢ and ¢y, of aquiclude in the x and y directions can be expressed:

w(x,y) =

+35+
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oy = — L2 (a v | ]/t ) _ 2472%2(po+y2ha+pgho)
1—p2? X 9-6 2 27(1—12) (pg—k
Ms{( fu>+ g ( 0-42)(os >)
1 2
1z sin (Lﬂy) cos(3~ Tx) + LVZ sin®({-x) cos(L )
o, = — EZ (a— + Py 2) - = 247%z(po+v2h2+pgho) (10)
y —u2 \ oy? ox 7'(4h3|:<9 6,¢)+L4+L }_<27(1—y22£(pg—k)>
Ly 4 f
2 2 1 g2
(Z‘% sin (%y) cos(7rx) + i sin(7- )cos(L )

Similarly, the strain components ¢, and ¢, of aquiclude in the x direction and y direction
can be expressed as:

_ P _ 2472(po-+72h2 +pgho) .2 2
ey = —298 = ——— £ £2 sin (%y) cos(Fx)
mERy | (9- 6#) r+ + (27(pg—k))
- | 4 2 (11)
2 .
e = _Zaaizg = 247 Z(Po+72h2+Pgho) SIHZ(LQ ) cos(2Ly)
Y EnS | (96w f+274 <27<98ka> f
) L% L7 :

3.2. Instability Conditions of Aquiclude

The internal stress state of aquiclude changes and bending deformation occurs af-
fected by mining disturbance. The mining stability of aquiclude is directly related to its
stress state and deformation variables. When the internal stress of the aquiclude exceeds
the ultimate stress it can withstand, or when the deformation of the aquiclude exceeds
its allowable ultimate deformation, the aquiclude will become unstable. Therefore, the
instability conditions of the aquiclude should be analyzed in terms of stress instability and
strain instability, respectively.

3.2.1. Stress Instability Criterion of Aquiclude

According to the physical similar simulation, the upper boundary of aquiclude above
the set-up and stopping line and the bottom boundary of aquiclude in the middle of goaf
are mainly subjected to tensile action; the stress state is mainly tensile stress. The bottom
boundary of the aquiclude above the set-up and stopping line and the upper boundary of
the aquiclude in the middle of goaf are squeezed. The stress state is mainly compressive
stress. As the tensile strength of aquiclude is generally much smaller than its compressive
strength, the ultimate tensile strength of aquiclude is used as the measurement index, and
the stress condition for the aquiclude instability is obtained. That is the maximum tensile
stress of aquiclude of"®* is greater than or equal to its ultimate tensile strength [o].

o7 > [at] (12)

where " is the maximum tensile stress of aquiclude, MPa; [c¢] is the ultimate tensile
strength of aquiclude, MPa.

According to Equation (10), when x = L, /2 and y = L;/2, the maximum tensile stresses
and 0, appear at the bottom boundary of aquiclude along the retreat direction

(direction x) and the coalface layout direction (direction y), which can be expressed as:

max
O.a

gmax — _ 1272ha(po+r2ha+pgho) (12 + yz)
L L
9-6, 2, 27 k r
L ( L4;l>+ +L2122 ( a =ta )(pg )) f
L (13)
max _ 127k (po+72h2+p8Mho) 1, n
oy = I 2 B T L2
g | =0 3 +L2L% ( (1-42) (g~ >> f
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The longwall panel length L, is generally longer than the coalface length Ly, and
the Poisson’s ratio of weakly cemented aquiclude is 0 < # < 0.5. It can be seen from
Equation (13) that the maximum tensile stress at the bottom boundary of aquiclude o <
0" Therefore, the maximum tensile stress of weakly cemented aquiclude is:

2
7T4h3[ Ot | 3 +L2L2}_< ) os ) ¥

Then the stress instability criterion of weakly cemented aquiclude is:

. 1272h; (po + Y2k + pgh 1
o — — 2(po + 12h2 F;f 10) - <L2 + Z;) > o] (15)
ﬁmﬁfm+ +B@] (Zamageei) \ Ly 17

3.2.2. Strain Instability Criterion of Aquiclude

The upper boundary of aquiclude above the set-up and stopping line and the bottom
boundary of the aquiclude in the middle of mining area are mainly subject to tensile strain
during coalface mining. The bottom boundary of the aquiclude above the set-up and
stopping line and the upper boundary of the aquiclude in the middle of the mining area
are subjected to compression. Under the action of tensile strain, the aquiclude is easy
to produce tension cracks. When the tension cracks develop gradually and penetrate
the aquiclude, the water-resistance capacity of aquiclude is lost. On the contrary, the
compressive strain is conducive to the closure of internal fractures of aquiclude, which is
not easy to cause mining instability of aquiclude. Therefore, taking the ultimate tensile
strain of aquiclude as a measurement index, the strain condition for the aquiclude instability
is the maximum tensile strain of aquiclude £{"®* must be greater than or equal to its ultimate
tensile strain [&].

& > [ed (16)

where " i

aquiclude.

According to Equation (10), when x = L, /2 and y = 0, the maximum tensile strain &7
occurs at the lower boundary of aquiclude along the retreat direction (direction x); When
x =0and y = Ly/2, the maximum tensile strain ¢} occurs at the lower boundary of the

is the maximum tensile strain of aquiclude; [&{] is the ultimate tensile strain of

max

coalface layout direction (direction y). €' and ;' can be expressed as Equation (17):
gmax — 127T2h2(P0+2"rzh2+P8h0)
X

e | o-en 37 o MELS)

(1-p2) LJZ[ k17 2 17
emax _ 127°hy (po+72h2+pgho ) (17)
y 4 ER3 - -

2 |O=6mlF | 3 2| _(27(ogh)
(1—p2) le( 7+L2+L} ( 2 )

Similarly, the longwall panel length L, is generally longer than the coalface length L,
e < ery“ax in Equation (17). The maximum tensile strain of aquiclude is:

£rt‘nax — gmax _ 127T2h2(P0 + ’)/2}12 + pghO) (18)

Y mER | (9— 6#) ? 27(pg—k)
(1;423[ g+ |- (T

Then the strain instability criterion of aquiclude is:

2
Srtnax _ 127 h2(PO + 'YZhZ + PghO) > [St] (19)

4 ER | (9—-6p)[2 | 3, 2u 27(pg—k)\
<1%{1¢+2+ﬂ‘{2)
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4. Influencing Factors Analysis of Aquiclude Stability

In addition to its own thickness, elastic modulus, Poisson’s ratio, etc., the mining
stability of the aquiclude is also related to the groundwater level, coalface length, longwall
panel length, etc. In order to study the influence of different factors on the mining stability
of weakly cemented aquiclude, the maximum tensile stress of aquiclude is used as the
measurement index. Based on the weakly cemented geological conditions in Xinjiang
and the control variable method, hydrogeological factors, such as the aquiclude thickness,
groundwater level, and elastic modulus and mining factors, such as the coalface length and
longwall panel length, influence the mining stability of aquiclude. According to indoor
testing and consulting the actual geology and mining data, the initial calculation parameters
affecting the mining stability of aquiclude are determined as shown in Table 1.

Table 1. Initial calculation parameters of aquiclude.

Aquiclude Thickness h; (m) 5 Water Density p (kg/m3) 1 x 103
Groundwater level iy (m) 25 Coalface length Ly (m) 250
Overburden pressure pg (Pa) 5.4 x 10° Longwall panel length L, (m) 800
Poisson’s ratio 0.27 Bulk de““&?i;‘;‘“"h‘de Y2 202 10t
Elastic modulus E (GPa) 1.0 Gravity coefficient g (N/kg) 9.8

4.1. Elastic Modulus and Poisson’s Ratio

Elastic modulus is a basic physical quantity to describe rock properties [29-32], which
has an important influence on the mining stability of aquiclude. The research shows that
the elastic modulus of weakly cemented aquiclude is low, generally within 0-2 GPa, and
Poisson’s ratio of aquiclude is generally between 0.1 and 0.3 [33]. Combining the initial
calculation parameters of the weakly cemented strata in Table 1, keeping other parameters
constant and changing the elastic modulus E and Poisson’s ratio y of weakly cemented
aquiclude only, the influence of elastic modulus and Poisson’s ratio on the mining stability
of aquiclude is obtained in Figure 5.

Unit: MPa

04

Maximum tensile stress (MPa)

=
W

o ‘
() )
wn

0fgg  0.15 5
“sopy -~ 0.1 0.001 2
abo E\asnc

Figure 5. Influence of elastic modulus and Poisson’s ratio on the mining stability of aquiclude.

As shown in Figure 5, the maximum tensile stress of weakly cemented aquiclude
increases rapidly with the increase in the elastic modulus in the range of 0-2 GPa. This
indicates that the larger the elastic modulus, the more prone to stress instability is the
aquiclude. When the elastic modulus of aquiclude is low (<1.5 GPa), the influence of
Poisson’s ratio on the maximum tensile stress of aquiclude is small. While when the elastic
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modulus of aquiclude is high (>1.5 GPa), the maximum tensile stress of the aquiclude
increases significantly with the increase in Poisson’s ratio.

4.2. Aquiclude Thickness and Groundwater Level

Keeping other parameters constant and changing the aquiclude thickness h; and
groundwater level /iy only, the influence of aquiclude thickness and groundwater level on
the mining stability of aquiclude are obtained in Figure 6.

Unit: MPa
~20 - 16
£
= 14
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% 12
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o 1 10
% 54 8
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hlckness( «%\
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Figure 6. Influence of aquiclude thickness and groundwater level on the mining stability of aquiclude.

As shown in Figure 6, the maximum tensile stress of aquiclude changes in a parabola
with the increase in the aquiclude thickness in the range of 0-50 m, showing a trend of
increasing first and then decreasing. When the aquiclude thickness is about 20 m, the
maximum tensile stress of the aquiclude reaches the maximum. In the range of 0-100 m,
the maximum tensile stress of aquiclude increases continuously with the increase in ground-
water level. It shows that the higher the groundwater pressure in the aquifer, the lower the
mining stability of the aquiclude.

4.3. Coalface Length and Longwall Panel Length

Keeping other parameters constant and changing the working face length Ly and
longwall panel length L, only, the influence of coalface length and longwall panel length
on the mining stability of aquiclude is obtained in Figure 7.

Unit: MPa
16

— 3%
W (=]
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Figure 7. Influence of coalface length and longwall panel length on the mining stability of aquiclude.



Minerals 2023, 13, 83

10 0f 13

As shown in Figure 7, the maximum tensile stress of aquiclude exhibits a trend of
sharp increase followed by a slow decrease with the increase in the coalface length in the
range of 0-300 m. When the coalface length is 50-100 m, it has the largest influence on the
maximum tensile stress of aquiclude. When the coalface length is longer than 200 m, its
influence on the maximum tensile stress of aquiclude is smaller and remains unchanged.
When the longwall panel length is longer than 500 m, its influence on the maximum tensile
stress of aquiclude is not obvious. However, when the longwall panel length is less than
500 m, its influence on the maximum tensile stress of aquiclude is more significant, and the
smaller the coalface length, the larger the maximum tensile stress of aquiclude.

5. Engineering Applications

In order to verify the effectiveness of the instability criterion of weakly cemented
aquiclude, the actual geology and mining conditions of the 1404 coalface in Xinjiang
Ehuobulake Coal Mine are used as the case to determine the feasibility of water-conserved
mining, and the water-inflow of the coalface is monitored during the mining process.

5.1. Determination of Aquiclude Mining Stability

The 1404 coalface of the Ehuobulake coal mine in Xinjiang adopts longwall mining.
The coalface length is 278 m, the longwall panel length is 3980 m, and the coal seam
thickness is 3.3 m. According to the actual hydrogeological data of the Ehuobulake coal
mine, the main shallow aquifers in the mining area are the Quaternary loose aquifer and
the lower Jurassic pore fissure aquifer. The relative aquiclude is argillaceous sandstone
with a thickness of 17.8 m, buried depth of 98.4 m, and tensile strength of 1.2 MPa. The
comprehensive column of the 1404 coalface is shown in Figure 8.

Column| Lithology |Thickness (m)| Remark
aa Glutenite 32.0 Aquifer
o Sandstone 66.4 Aquifer
7| /| Arsillaceous 17.8 Aquiclude
[ Sandstone ' d
Silty fine 6.5
sandstone
Coarse 26.0
sandstone
i - - ] Mudstone 0.4
1# coal 33
seam

Note: # is the meaning of coal seam number

Figure 8. The comprehensive column of the 1404 coalface.

According to Equation (14), the maximum tensile stress of aquiclude in 1404 coalface
under current mining conditions is:

o7 = g"™ = 0.85 MPa < [0] = 1.2 MPa (20)

Therefore, it can be predicted that the retreat mining of the 1404 coalface will not cause
the instability failure of the overlying argillaceous sandstone aquiclude, which means that
the 1404 coalface can achieve water-conserved mining.
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5.2. Variation of Coalface Water Inflow

In order to verify the accuracy of the feasibility determination of water-conserved
mining in 1404 coalface, the water inflow of the coalface is monitored, and the changes of
water inflow during the mining process of 1404 coalface are recorded as shown in Figure 9.
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Figure 9. Water inflow variation of 1404 coalface.

As shown in Figure 9, the water-inflow of the 1404 coalface is small during the retreat
mining. The maximum water inflow is 38 m3/h, the minimum water inflow is 25 m®/h and
the average water inflow is 31.9 m3/h. Tt is considered that the source of water-inflow of
the coalface is the sandstone water in the main roof. The retreat process does not cause the
loss of water resources in shallow aquifers. The water-resistance ability of the aquiclude
is good, and there is no mining instability damage in the aquiclude. It indicates that the
mining instability criterion of the weakly cemented aquiclude proposed in this paper can
effectively determine the feasibility of water-conserved mining in weakly cemented strata.

6. Discussion

In the previous research, more attention is paid to the stress state of the rock stratum
and less to the change of the water pressure on the aquiclude caused by coalface mining. In
this paper, a mechanical model of the weakly cemented aquiclude is established considering
the stress and hydraulic pressure according to the concave subsidence characteristic and the
water pressure change of the weakly cemented aquiclude. Furthermore, the quantitative
criteria for the mining instability of the weakly cemented aquiclude are obtained. This is
the originality of this work.

Based on the previous studies and elastic thin plate theory [34-37], the general law of
mining stability variation and the quantitative solution of instability criterion of weakly
cemented aquiclude is obtained. However, it is obviously insufficient to assume the
weakly cemented aquiclude is an elastomer according to the similarity simulation. In
future research, the elastoplastic or plastic model should be further studied to express the
deformation characteristics of the weakly cemented aquiclude accurately.

As this work focuses on the mining stability criterion of the weakly cemented aquiclude,
the degree of influence of different factors (such as aquiclude thickness, groundwater level,
elastic modulus, Poisson’s ratio, et al.) on the aquiclude stability has not been analyzed.
The influence of different factors on the mining stability of the weakly cemented aquiclude
should be different. At the same time, it is of positive significance to master the most
critical factors of the aquiclude instability. This will be one of our future works. In addition,
humidity is an important factor affecting rock properties. More attention should be paid to
the change of rock properties with the increase in humidity in future research.
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7. Conclusions

Due to the clay minerals such as kaolinite and montmorillonite, the weakly cemented
aquiclude mainly produces bending deformation during underground coal mining, show-
ing a good plastic deformation ability. The water above the aquiclude flows to the middle
of the subsidence basin, causing the aquifer water level in the middle of the goaf to decrease
first and then increase after the end of mining.

Considering the bending deformation of the weakly cemented aquiclude and the
change of groundwater pressure in the aquifer, the stress instability and strain instability
criteria of the weakly cemented aquiclude are derived based on the elastic thin plate theory.
The influence of the aquiclude thickness, elastic modulus, Poisson’s ratio, groundwater
level, coalface length, and longwall panel length on the mining stability of the weakly
cemented aquiclude is analyzed.

The aquiclude mining-induced instability criterion is applied to the feasibility deter-
mination of water-conserved mining in the weakly cemented strata of the Ehuobulake Coal
Mine in Xinjiang. The maximum tensile stress of the aquiclude is less than its ultimate
tensile strength. It is considered that water-conserved mining can be realized in the coal-
face. The on-site monitoring of water inflow in the coalface verifies the effectiveness of the
mining stability criterion of the weakly cemented aquiclude.
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