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Abstract: The scientific controversy among archaeologists about the existence of paleochannels under
the Abydos archaeological site, Sohag, Egypt connecting the Osirion (cenotaph of Seti I) with the Nile
River has been explained in this study. This study is an attempt to address this issue using integrating
a near-surface geophysical approach with stable isotopic geochemistry on this site. Particularly,
the stable oxygen and hydrogen isotopes on the water samples collected from the surface and the
groundwater in the study area were analyzed and interpreted. The isotopes result showed that
the Osirion water is a mixture of three different types of water: Old Nile Water (ONW) before the
construction of the High Dam, Recent Nile Water (RNW) after the construction of the High Dam, and
Paleowater (PW) from deeper aquifers. Field observations of the Osirion and nearby water cannot
explain the presence and direction of this water. Therefore, the next step in this study is determining
the location and the direction of the paleochannel connecting the Osirion with the Nile River which
was proven using the electric resistivity tomography (ERT) technique. By using the results of the
isotope of all types of water near the Osirion and its surrounding wells and the water of the Nile River,
in addition to the near-surface geophysical measurements, the results indicated that the 3D view of
the ERT data revealed a prospective paleochannel in the direction of the northeast and its location,
where this channel is in charge of providing groundwater from the Nile River to the Osirion location.

Keywords: geochemical investigations; isotope; ERT; paleochannel; archeological site; Osirion;
Abydos; Egypt

1. Introduction

The ancient Egyptian city of Abydos represents one of the most cherished and well-
known sites of worship. This place gained attention as the sacred place of the Osiris cult
because the First Dynasty pharaohs were honored by being buried there. Additionally,
Abydos was mentioned in numerous ancient pharaonic writings, including the book of the
dead and the pyramid texts [1].

The presence of groundwater close to the Osirion site is the key problem in this study
since it negatively affects the erosion of the old stones that formed the temple. As a result,
the current study is attempting to find practical solutions to determine the source of this
groundwater and its trends in order to develop critical solutions to prevent it from having
these significant effects. The geochemical analysis using the isotope was used to determine
the origin of this water. Near-surface geophysical tool, namely ERT, was also employed to
determine the location and direction of these waters.

Abydos is situated in the El-Balyana district, 70 km southwest of Sohag town, about
450 km south of Cairo, 150 km north of Luxor, and about 13 km west of the Nile River. The
study area surrounding the Osirion at Abydos is represented between latitudes 26◦10′54.17′′

N and 26o11′9.92′′ N and longitudes 31◦55′3.48′′ E and 31◦55′4.07′′ E (Figure 1).
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Figure 1. Location map of the Abydos archaeological site, El-Balyana city, Sohag, Egypt, where (a) 

the global map of Egypt, (b) a location of El-Balyana town, Sohag Governorate, Egypt which con-

tains Abydos archeological site, and (c) a map of the Abydos site, which displays the nearby bore-

holes and the Osirion site. 

This paper aims to prove the effectiveness of the integration between geochemical 

and geophysical investigations in detecting the hidden paleochannel linking the cenotaph 

of Seti I and the Nile River. 

 

Figure 2. Elevation contour map of the study area. 

Figure 1. Location map of the Abydos archaeological site, El-Balyana city, Sohag, Egypt, where
(a) the global map of Egypt, (b) a location of El-Balyana town, Sohag Governorate, Egypt which
contains Abydos archeological site, and (c) a map of the Abydos site, which displays the nearby
boreholes and the Osirion site.

The Osirion is located to the west of the Nile River, close to the Eocene Plateau,
between the cultivated land and the borders of limestone plateau cliffs that are inhabited
by sediment terraces of variable levels. The earliest sediments are 150 m high above the
mean sea level (amsl). The youngest one rises up to 5–10 m above the nearby cultivated
plains and is located at a height of roughly 70 m amsl (Figure 2).
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The use of geochemistry as a tool for recognizing and locating archaeological sites, as
well as discovering the locations of hidden buried cavities, is dependent on the extent to
which the relationship between geochemistry of earth materials (i.e., soil, rocks, water, etc.)
and the presence of archaeological remains [2–4]. Stable isotope geochemistry, on the other
hand, is a powerful scientific tool in archaeological research. The study of stable oxygen
(δ18O) and hydrogen (δ2H) isotopes in water resources may have significantly advanced
the field of archaeological exploration [5–8].

One of the most advanced and most popular geophysical investigation approaches
is the electrical resistivity approach [9,10]. Electrical resistivity tomography (ERT) is
a non-invasive procedure that allows for the rapid collection of a large quantity of resistiv-
ity measurements. One of the key strategies that is extensively used in hydro-geophysical
research and groundwater management is ERT. A change in the resistivity values both ver-
tically and horizontally implies a change in the lithology of the subsurface and the amount
of groundwater present. This method has demonstrated its dependability in locating and
identifying groundwater aquifers. Electrical resistivity tomography has been extensively
utilized in environmental and engineering assessments [11–19], hydrological [12,20–23],
visualizing the structures at scales ranging from millimeter to kilometer [3,24], and defining
the saline-freshwater interface [25–28], mineral prospecting [29–31], and the discoveries of
groundwater in limestone aquifers that are karstified and fractured [32–34]. Additionally,
this approach is chosen for employment in heritage excavations due to the difficulties of
drilling, which harms both known and unknown artifacts. ERT has been used extensively
over the past few decades for archaeological purposes to find and identify ancient struc-
tures, as well as to distinguish the local geological features and provide useful information
about the building’s hidden foundations [35–43]. This comparatively recent geophysical
method has also been applied to stone exposures [44–46].

This paper aims to prove the effectiveness of the integration between geochemical and
geophysical investigations in detecting the hidden paleochannel linking the cenotaph of
Seti I and the Nile River.

2. Historical Background of the Old Channel

Over the past century, a lot of expeditions made trips to Abydos and carried out
excavations there. The first was made by Mariette in 1859, who dug up Seti I Temple at
the Khedive’s cost [47]. According to Wallis Budge’s writing, a waterway formed of single
stones that are outstanding for its size and craftsmanship connects the Nile River to the
Memnon Palace [48]. During the time of Strabo, this channel was also mentioned on the
Stele of Menthuhetep (Xlth Dynasty). When Edouard Naville, the field leader of the Abydos
investigations from 1911 to 1914, dug up the cenotaph of Seti I, he verified what Budge had
found in 1911 [49].

The Seti I temple was partially built on a backfill filling a deep trench hewn in the
rock, for a mystery cause, which runs along the central axis of the central portion of the
second court, according to Rostem [50], who included this in his report. Rostem adds that
Abdel Salam M. Husein, an architect and the director of works for the Egyptian Antiquities
Department, took core samples along the main axis of the Seti I temple in the first court in
order to test the Barazie hypothesis. From these samples, Husein concluded that a channel
carried water from the Nile to the cenotaph of Seti I. The filled pit was mentioned by Rosalie
David in his memoirs as well [51].

Using GPR profiles, Abdel Hafez [52] found slight ground subsidence in the first and
second Courts of the Temple. The depression, which was noticed both inside and outside
of the Abydos Temple on the side nearest to the Nile, was interpreted by him as a channel
under the temple (Figure 3). The groundwater levels in the Seti I cenotaph may have
increased as a result of increased hydraulic conductivity brought on by this channel.
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Figure 3. The identified subsurface discontinuities under Abydos Temple, modified [52]. Figure 3. The identified subsurface discontinuities under Abydos Temple, modified [52].

Figure 4 provides a full translation of the Osirion’s ancient scenes and inscriptions,
which claim that the king built a channel to transport the boats of the Abydene gods [53].



Minerals 2023, 13, 64 5 of 20
Minerals 2022, 12, x FOR PEER REVIEW 6 of 23 
 

 

 

Figure 4. (a) A picture of the wall after excavation, showing Menit, often regarded as “the mooring 

post,” on the left and Neshmet, on the right; (b) The building’s dedication text, which is written on 

the west wall. This picture was created in collaboration between Kevin Cahail and Jennifer Wegner; 

and (c) a comprehensive description of the hieroglyphic text that claims the monarch excavated a 

channel to transport the boats of the Abydene gods [53]. 

3. Geology, Hydrology, and Water Level Measurements 

The study area is a section of the Nile Valley that has been geologically examined by 

several authors [54–56]. The different rock units that are visible in the Abydos area (Figure 

5) are entirely made up of sedimentary succession and are arranged from base to top as 

follows: a) Pliocene Clay; b) Qena Sands (Upper Pliocene to Lower Pleistocene); c) Kom 

Ombo Gravel; d) Ghawanim Formation; and e) the Dandara Formation, which spans from 

Pliocene to Recent [57]. At Abydos, the region is divided by deeply incised drainage chan-

nels and is bounded to the west by a limestone plateau. Many straight wadies oriented 

Figure 4. (a) A picture of the wall after excavation, showing Menit, often regarded as “the mooring
post,” on the left and Neshmet, on the right; (b) The building’s dedication text, which is written on the
west wall. This picture was created in collaboration between Kevin Cahail and Jennifer Wegner; and
(c) a comprehensive description of the hieroglyphic text that claims the monarch excavated a channel
to transport the boats of the Abydene gods [53].

3. Geology, Hydrology, and Water Level Measurements

The study area is a section of the Nile Valley that has been geologically examined
by several authors [54–56]. The different rock units that are visible in the Abydos area
(Figure 5) are entirely made up of sedimentary succession and are arranged from base to
top as follows: (a) Pliocene Clay; (b) Qena Sands (Upper Pliocene to Lower Pleistocene);
(c) Kom Ombo Gravel; (d) Ghawanim Formation; and (e) the Dandara Formation, which
spans from Pliocene to Recent [57]. At Abydos, the region is divided by deeply incised
drainage channels and is bounded to the west by a limestone plateau. Many straight wadies
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oriented frequently either NW-SE or NE-SW imply an underlying tectonic influence of
regional drainage patterns [58].
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In the Abydos region, several scientists have conducted geophysical and groundwater
investigations and prosecutions [52,58,60–63]. Qena Sands are the main deposit that holds
water in the researched area. They become sparser in the direction of the west, where they
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meet the Paleocene to Lower Eocene Limestone Plateau. Due to the absence of Nile silt,
this aquifer is present in semi-confined circumstances in old agricultural lands and also
in unconfined conditions at the boundaries of the desert. Surface water (the Nile River
and irrigation channels) is the primary source of this aquifer’s recharge, while its outflow
occurs through evaporation, well drilling, and leaking to older, deeper aquifers.

According to Brooks and Issawi [60], it appears to be untrue that the groundwater in
the Abydos region is obtained by infiltration from the Nile south of the Nag Hammadi
Barrage. According to his relevant data, the water level south of the Barrage is 65 m, while
the water level in the Osirion varies between 65.7 and 66 m at the same time. As a result,
the hydrology associated with the water table topography in the Abydos area renders the
Nile water seepage from the south an impossibility source.

Abdel Moneim [58] noted that in his research there is no hydraulic connection between
the groundwater near the Seti I Temple and the waters of the Nile River in Balyana city
(Figure 6). This theory was supported by Abu El-Magd [7] investigation of the Osirion
region, and Figure 7 shows that the Nile water levels at Nag Hammadi Barrages are different
from those at Osirion. The measurements made during this work are consistent with those
made previously, where the Nile River’s water level at El-Balyana was 61 m (sample
number 12), and at the same time (June 2021), the average water level measurements of the
six dewatering wells surrounding the Osirion were about 62.75 m.
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4. Materials and Methods

The authors have gathered a lot of information about the region, including maps of the
geomorphology, geology, and geophysics as well as the history of the area’s archaeology
and all the data from the Egyptian Antiquities Authority. Two approaches were employed
in this study: isotope geochemistry and ERT. Below are details of the two methods.

4.1. Isotope Geochemistry
Sampling of Stable Isotopes and Data Used

The data used in this study depends mainly on twelve water samples collected from
surface and groundwater samples and consisting of Nile water (one sample), groundwater
from the semiconfined aquifer (one sample, W11), groundwater from the unconfined
aquifer (8 samples, W1, W2, W3, W4, W5, W6, W9, and W10), as well as two samples from
the Osirion lake water (OL1 and OL2, see Figure 8). In addition, the results of this study
are combined with the data from previous investigations to help the interpretation of the
obtained results from the current study and to perform modeling calculations. Traditional
hydrochemical data (not presented here) are used in the statistical analysis along with the
isotopic data as variables.
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Stable isotopes of oxygen-18 (18O) and deuterium (2H) were examined in collected
samples from the study area and stored in a refrigerator in sealed bottles according to the
International Atomic Energy Agency [64] guidelines. The analysis was performed at the
National Center for Nuclear Safety and Radiation Control (NCNSRC), the Egyptian Atomic
Energy Authority (EAEA) in Cairo.

Stable isotopes of 18O and 2H were measured in water samples by Isotope Ratio Mass
Spectrometry (IRMS) (Thermo Finnigan Quest Deltaplus XL mass spectrometer) following
the conventional equilibration method [65–67]. The obtained results of both δ18O and
δ2H values are expressed in delta notation (δ) which is relative to the international Vienna
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Standard Mean Ocean Water (VSMOW) [68]. The measurement precision is about 0.33‰
and 2‰ for δ18O and δ2H, respectively.

Two multivariate statistical methods, Hierarchical cluster analysis (HCA) and Factor
analysis (FA) are used to examine the acquired data and identify Osirion water sources.
The similarity of isotopic data along with the conventional hydrochemical data (data
not represented here) between the different water sources was qualitatively analyzed by
Q-mode HCA and Q-mode FA techniques.

4.2. Electrical Resistivity Tomography (ERT)

The near-surface geophysical tool used is the ERT, which is an appropriate site investi-
gation of the subsurface structures and lithology with lateral and vertical resistivity varia-
tions. Additionally, it is used to look for the level of the groundwater table, find out exactly
the pattern of groundwater flow, and recognize water-bearing formations [14,15,18,69,70].
During the resistivity assessments, the ground is injected with direct current using a pair
of current electrodes, and a pair of potential electrodes are utilized to detect the potential
difference between them. These measurements enable the determination of the true sub-
surface resistivity. The main benefits of the ERT are that it is simple to use, less expensive,
quick, and time-consuming when looking into engineering difficulties and groundwater
investigation, as well as its capacity to be visualized as 2-D and 3-D subsurface models.

ERT Data Acquisition and Processing

To offer detailed information about the subsurface, the gathered data contains Fourteen
2D resistivity imaging profiles (Figure 9) using the pole–dipole arrangement with 2.5 m
electrode interval and multi-Electrodes system (ARES- GF Instrument) [71]. These data
were collected during project work including miscellaneous geophysical methods in the
study site.
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Around the Osirion, eleven profiles covering 360 m in length were surveyed; six (P1–P6)
of them were carried out in the direction of NW-SE, whereas the remaining five (P7–P11)
profiles are in the direction of NE-SW, forming a shape approximating a grid. The three
next profiles (P12–P14) show a NW–SE trend. Based on the reachability of profile locations,
P12, P13, and P14 are 360 m, 140 m, and 73 m long, consecutively (Figure 9).

RES2DINV Software was used for processing these data. Before inverting the data,
the entire set of apparent resistivity measurements was once more verified for out-of-
the-ordinary data points using the robust-inversion and smoothness-constrained least
squares techniques.

5. Results and Discussion
5.1. Isotopic Geochemical Interpretation
5.1.1. Isotopic Composition of Water

The results of δ18O and δ2H analysis for the selected samples and that from the
previous studies are compiled by origin to facilitate discussion in Table 1 and graphically
given in Figure 10 together with the Global Meteoric Water Line (GMWL) by Craig [72].
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Figure 10. Deuterium and Oxygen-18 of different local groundwater and surface water samples
collected from the study area. The long solid line indicates global meteoric water line (GMWL), [72],
while the broken line suggests the local meteoric water line (δD = 7.111*δ18O + 5.479). Data by
previous researchers of groundwater and surface water in the EI-Balyana drain (15), Nag-Hammadi
EI-Garbia Channel (16), and Nile River (18 and 19) [73,74], and the old Nile water (20 and 21) [75,76]
are also shown.
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Table 1. Overview of data used for isotope study in the investigated area. Both δ18O and δ2H values
are expressed in part per mil (‰).

Location and ID δ18O δ2H Reference

Quaternary (semiconfined) aquifer under cultivated lands

11 W11 3.30 36.32 This study

13 * 3.14 29.90 [73]

Plio-Pliestocene (unconfined) aquifer under desert fringes

9 W9 −2.49 −11.10 This study

10 W10 −2.71 −14.02 This study

1 W1 −0.45 2.49 This study

2 W2 −0.60 3.40 This study

3 W3 −0.50 3.12 This study

4 W4 −0.95 −0.80 This study

5 W5 −1.09 −1.80 This study

6 W6 −1.23 −1.50 This study

14 * −1.05 −0.80 [73]

Surface water samples (irrigation channels and drains)

15 * EI-Baliana Drain 2.04 16.40 [73]

16 * Nag-Hammadi EI-Gharbia Channel 2.90 22.95 [73]

Osirion lake samples

7 OL1 −0.31 2.69 This study

8 OL2 −0.42 5.06 This study

Nile River Water as reference samples

12 1 Recent Nile Water (RNW) 3.07 32.44 This study

18 * 1 Recent Nile Water (RNW) 2.84 26.50 [73]

19 * 1 Recent Nile Water (RNW) 2.19 19.00 [74]

20 * 2 Old Nile Water (ONW) −0.60 4.30 [75]

21 * 2 Old Nile Water (ONW) −0.48 1.81 [76]

22 * 3 Paleowater (PW) −7.14 −50.00 [77]

Asterisk (*) denotes data from previous studies. 1 Recent Nile Water (RNW) = Nile River water after construction
of Aswan Dam 1967. 2 Old Nile Water (ONW) = Nile River water before construction of Aswan Dam 1967.
3 PW = Paleowater groundwater at Qusier-Safaga area, Eastern desert

Figure 10 provides information on the groundwaters origin which shows a wide
range of variation from −4.95 to +3.3‰ and from −29.8 to +36.3‰ for δ18O and δ2H,
respectively [78]. The stable isotope compositions of most of the water samples within the
study area fit a line comparable and depart, somewhat, from the global meteoric water
line (GMWL) defined by Craig [72] (with R2 = 95.4%) in accordance with the least-square
regression Equation (1):

δD = 7.111 × δ18O + 5.479 (1)

As illustrated in Figure 10, all values of δ2H and δ18O are plotted fall below and close
to the GMWL and the trend line converge near δ2H of -54 with slope less than the slope of
the GMWL (7.111). In terms of correlation, δ2H and δ18O have a high-positive relationship
(r = 0.98). These results indicated that the samples are enriched in the heavy isotope forms
relative to precipitation indicating the meteoric origin of groundwater of the study area.

Isotopic compositions were observed to vary spatially. Mean isotope compositions
became depleted by moving away from the Nile River water (32.44‰ δ2H and 3.07‰ δ18O,
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sample No. 12), towards groundwater wells in desert fringes (−29.8‰ δ2H and −4.95‰
δ18O, sample No. 10).

5.1.2. Isotopic Differences between Water Types

Two distinct groups of water samples were identified based on the δ18O and δ2H
isotopic data as shown in Figure 10. The first group (Gl) has higher isotopic compositions
that resembles today’s Nile water which were characterized by a δ18O value between +2.05
and +3.60 and a δ2H value varying between 19.00 and +36.32. The second group (G2)
shows lower δ18O and δ2H values lie on the mixed straight line. It is characterized by
a δ18O value between −2.71 and −0.31 and a δ2H value between −1.8 and −14.02 versus
standard mean ocean water.

The first group G1 displays the surface water samples represented by the modern Nile
River water and its main irrigation channels and drains. The isotope analyses indicated that
the surface waters in the study area are enriched in heavy isotopes in comparison with the
old pre-High Dam Nile water. This is mainly due to the storage of the Nile water in Nasser
Lake behind the High Dam, and consequently exposed to more evaporation processes. The
irrigation channel sample is depleted with respect to recent water Nile suggesting that the
channel water mixes with portions of water Nile from periods before the construction of
the Aswan High Dam and/or is recharged from groundwater [73,79,80]. This group also
includes groundwater wells installed within the agricultural lands under semiconfined
aquifer conditions (samples No. 11) scattering around the surface water values (Figure 10).
This behavior suggests that the main recharge to the aquifer is the recent water Nile (last
few decades) and its irrigation water network (permanent irrigation system). These waters
are located along this network and can reach the Western Desert fringe, recently irrigated
after land reclamation. The much higher values of the heavy isotopes in the water of this
group reflect the evaporation effects during irrigation and before infiltration to the aquifer.

The isotope data of the second group (G2) comprises groundwater samples (samples
No. 1–6, and 9–10) situated in the western desert fringes under the confined aquifer
conditions. This water is attributed to the old Nile water inundation before the construction
of the Aswan High Dam [75]. It is less affected by evaporation due to the high discharges
of the water Nile and the near absence of a reservoir upstream. Some contributions from
paleowater cannot be excluded from this water, especially in those wells, which show more
depletion in the stable isotopes. Samples No. 9 and 10 have the most depleted isotopic
composition, suggesting a possible recharging from the paleowater sources during the
pluvial period with colder climatic conditions many thousands of years ago as explained
by Zephyrus et al., [81]. Palaeowater was presumed to have seeped from adjacent aquifers
through the fault systems and upwards leakage due to excessive pumping in the newly
reclaimed lands in the study area. Generally, the recharge source for this group represents
a mixing case between old Nile water prior to the construction of the Aswan High Dam
(AHD) with δ18O = −0.6 3‰ and δ2H = +4.3‰, [75] and recent Nile water with isotopic
content of δ18O = −3.07 3‰ and δ2H = 32.44 3‰ (the current study). However, the mixing
cases between paleowater with isotopic content of δ18O = −7.14‰ and δ2H = −50.00‰
must not be overlooked [77] and old Nile water prior to the construction of the Aswan
High Dam (AHD), which may appear clearly in the groundwater wells located in the desert
fringes which should be studied separately.

The water lake of the present study at the Osirion site (samples no.7 and 8) belongs to
the second group isotopic signature. The δ18O values in these samples range between−0.31
and −0.42 and were plotted between Global Meteoric Water Line (GMWL), and the trend
line of the studied water samples close to groundwater samples tapping the unconfined
aquifer. Samples from Osirion lake are slightly isotopically enriched than the adjacent
groundwater wells (ONW) and have more depleted values when compared with the
isotopic fingerprint of the surface water samples (RNW) which makes the recent Nile water
a very possible source. This depletion in the isotopic composition reflects; (1) the mixing
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with old Nile water recharged to the quaternary aquifer before the construction of Aswan
High Dam in 1969, and (2) the recharge from the paleowater from the deeper aquifers.

5.1.3. Multivariate Statistical Analysis
Q-Mode Hierarchical Cluster Analysis (Q-HCA)

The Q-HCA was carried out using the complete linkage method as the amalgamation
rule and the Manhattan distance as the similarity measure on the standardized surface
and Quaternary groundwater dataset (12 samples). Based on the dendrogram (Figure 11),
four major clusters were identified. Table 2 summarizes the main hydrochemical and
isotopic properties of four specific clusters of water samples examined in the study area
(groundwater samples from the Quaternary aquifer, ONW and PW samples). Table 2 makes
it clear that clusters 1 and 2, are hydrochemically and isotopically comparable with the
ONW. The same could be said for clusters 3 and 4, which have similar hydrochemical
properties and isotopic composition to paleowater.
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Figure 11. The four identified basic clusters’ primary physical, hydrochemical, and isotopic features
for the water samples under investigation.

Q-Mode Factor Analysis (Q-FA)

In order to identify the variables that best represent the differences among the four clusters
that were detected using HCA and to investigate the connections between the clusters in the
groundwater of the Quaternary aquifer, Q-mode FA of the 12 water samples was employed.
The first factor (F1) characterizes the largest proportion, i.e., 55.2% of the total variance within
the dataset and is described as “salinity factor”. The second factor (F2) (i.e., “alkalinity factor”
explains 32.7% of the total variance within the dataset. The loadings of these parameters for
F1 and F2 plot extremely closely, indicating that the processes influencing these variables’
concentrations and variability in groundwater are similar [82].
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Table 2. An overview table showing the TDS, hydrochemical, isotopic, and geographic locations of
the several clusters identified in the confined or semiconfined Quaternary aquifer groundwater in the
study region.

Water Groups Sample ID Cluster
TDS
ppm

Water Type
(Hydrochemical
Characteristics)

Stable Isotope Characteristics Spatial
Locationδ18O ‰ δD ‰

Groundwater from
semiconfined

aquifer
W11 I <1000 Na-HCO3 3.07 to 3.30 32.44 to 36.32 Enriched Cultivated

lands

Groundwater from
unconfined aquifer

W1, W2,
II

<1000 Na-HCO3 −1.23 to −0.45 1.8 to 3.04 Depleted Western
Desert
Fringes

W3, W4, W5, W6
>1000 Na-ClW9, W10 III −2.71 to −2.49 −14.02 to −11.10 More depleted

Osirion lake water OL1, OL2 IV >1000 Na-HCO3 −0.42 to −0.31 2.69 to 5.06 Depleted
Reference water samples

The Old Nile Water ONW
I <1000 Ca-HCO3

−0.6 4.30 Depleted Nile River
The Recent Nile

Water RNW 3.07 32.44 Enriched Nile River

Paleowater PW III >1000 −7.14 −50.00 Highly
Depleted

Western
Desert

Figure 12 shows reasonable statistical discrimination among four major clusters as
well-defined by Q-HCA. These clusters occupy different zones in FA space. Samples of
cluster 1 are plotted in quadrant 4, which represents the groundwater of the Quaternary
aquifer beneath the old cultivated lands, as well as the surface waters of the Nile River and
its channels branching from it. Groundwater samples represent the Western Desert fringes
form clusters 2 and 3 along with reference values of the ONW and PW are distributed
between quadrants 2 and 3. Osirion lake samples, which are assigned to cluster 4, are
plotted in quadrant 1 and have high positive scores on both F1 and F2.
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Figure 12 shows that, despite their close spatial distribution (Figure 8), water samples
from the Western Desert fringes are distributed among three clusters (clusters 2, 3, and 4),
reflecting chemical and isotopic differences. This indicates that there are different sources
recharging the water type for each cluster in the study area with different mixing ratios. The
second cluster consists of six dewatering wells drilled around the Osirion Lake which are
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located in quadrants 2 and 3. This cluster is plotted close to the ONW of Awad et al., [75]
and accordingly, shows the significant contribution of ONW based on their stable isotope
content. On the other hand, the proximity of clusters 3 and 4 to the highly depleted value of
the PW makes it the most effective recharge source of both clusters coming from the deep
Nubian Sandstone aquifer through the upward leakage from the deep faults. In addition,
the proximity of cluster 3 to cluster 4 reinforces the idea that there is a contribution of ONW
to the Osirion water (the fourth cluster).

The location of the plotted water clusters relative to the ONW and PW are shown
in Figures 11 and 12, giving information on the possible mixing and recharge sources
of the water samples. This implied that the Quaternary aquifer’s groundwater in the
western portion of the research region, i.e., clusters 2 and 3, and cluster 4 (Osirion lake),
are hydraulically connected in different degrees with the PW according to the subsurface
structure conditions of the aquifer, where the location of each sample reflects its relative
degree of mixing.

Samples assigned to clusters 1 and 2 have lower TDS, and therefore, low F1 Scores
(quadrants 3 and 4) in FA space together with the ONW. With respect to the F2 axis, most
of cluster 2’s samples, and the ONW were plotted in quadrant 3, whereas cluster 1 was
plotted in quadrant 4.

Samples from clusters 3 and some of cluster 2 are characterized by relatively higher
EC values, reflecting their high positive F1 scores (quadrant 2). In addition, their highly
depleted δ18O and δ2H values make them close to PW (quadrant 2) and in the δ18O-δ2H
diagram. Accordingly, the groundwater from PW is an end-member for the groundwater
of the Quaternary aquifer in the western desert fringes of the study region.

The expected over-exploitation of the groundwater in wells No. 9 and 10 might be the
reason for the contribution of the paleowater from the Nubian Sandston (NSS) aquifer to
cluster 3 samples and portend from the possible negative consequences of future uses of
groundwater at these well fields.

Despite showing a chemical composition that is very comparable to that of clus-
ter 3 samples, cluster 4 samples (Osirion water) are plotted to higher positive F2 scores
(quadrant 1) in FA space and to the heavier δ18O in the δ18O-δ2H diagram, suggesting ad-
ditional influence from distinct component (end-member) Salinization effects, particularly
in cluster 4, are thought to be caused by mixing with PW.

5.2. Electric Resistivity Tomography Interpretation

The lithology and the thickness of the subsurface sequence were estimated using 2D
resistivity measurements, and the findings were validated utilizing data from accessible
wells nearby the investigated profiles. The interpretation includes all the 2D ERT sections,
for illustration, only one profile No. 1 includes a well location is used (Figure 13). Based on
the predominant variations in resistivities, the results indicated that the subsurface lithology
was divided into four geoelectric zones: very low (less than 50 ohm.m) resistivity zone,
low (between 50 and 200 ohm.m) resistivity zone, moderate (between 200 and 2000 ohm.m)
resistivity zone, and high (more than ohm.m) resistivity zone. The underlying lithology
can be categorized into four different units attributable to these zones: (1) wadi deposits,
which are predominantly composed of gravel, sand, and silt; (2) medium sand deposits;
(3) muddy sand deposits; and (4) clay deposits. The third unit of muddy sands’ identity
as a groundwater aquifer has been confirmed by surrounding wells. The study area’s
water table level ranges from 5 m to 14 m, which is supported by all ERT profiles and the
accessible borehole information [35].

The results of the inverted 2D ERT profiles, namely profiles 1 to 11 west of the Osirion
site, were used to build a 3D VOXEL model using Geosoft Oasis Montaj software version
8.3, excluding the other profiles (P12–P14). Figure 14 exhibits a three-dimensional repre-
sentation of the water-bearing muddy sand formation in the survey area. It highlights
the position of a conduit channel, particularly in profiles 12, 13, and 14. These profiles
comprise an expected paleochannel that could be construed as a water conduit pathway to
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the Osirion building flowing from the northeastern side of the Nile River. This paleochannel
is the main reason which is responsible for connecting the groundwater to the Osirion site.
Additionally, these findings are consistent with the opinion of some authors [50,52]. Previ-
ous archaeological studies conducted at the Osirion site, such as those by Damarant [53],
where there are ancient archaeological depictions and writings on the walls of the temple,
refer to this discovery. The direction of this channel has been found by our findings in the
current investigation.
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6. Summary and Conclusions

Unfortunately, many of the previous works did not include a comprehensive un-
derstanding of the water-flow process in Osirion floors. However, the integration of
near-surface geophysical techniques and isotopic geochemistry addressed this issue and
helped the identification of the groundwater recharge sites. The purpose of the isotopic
study in this work is to identify groundwater sources in Osirion. For this reason, water
samples including Osirion water, groundwater, and surface water were analyzed for stable
hydrogen and oxygen isotope compositions (i.e., δ18O and δ2H). Isotopic values of Osirion
waters which are between −0.31 and −0.42‰, and 5.06 and 2.69‰ for δ18O and δ2H, re-
spectively, alongside multivariate data analysis, support previous opinions that Recent Nile
Water is one of the major recharge sources of Osirion water. The purpose of the geophysical
approach is to identify the location and the direction of the paleochannel which connects
the groundwater from its source to the Osirion site. The authors concluded that the natural
flow or seepage from the Nile River to the floor of the temple is not possible nowadays,
and that there must be an unnatural waterway linking the Nile River and the Osirion. The
findings deduced from conducting fourteen ERT profiles in the study site have proven that
there is an artificial paleochannel connecting the Nile River and the Osirion site. It is very
probable that this artificial paleochannel and its sediments are isolated from the prevailing
hydrological conditions in the Quaternary aquifer by impermeable flood sediments of clay
and/or silt.

This study is expected to help stakeholders develop a new conceptual model defining
water management policies for the area of interest. In order to establish a sound con-
ceptual model, future research should include an analysis of radioactive isotopes and
hydrogeochemical data.
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