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Abstract: In order to improve the calculation efficiency of a discrete element EDEM (Discrete Element
Method) numerical simulation software for micron particles, the particle model is linearly enlarged.
At the same time, the parameters of the amplified particles were calibrated according to the Hertz-
Mindlin with JKR (Johnson-Kendall-Roberts) contact model to make the amplified particles have
the same particle flow characteristics as the actual particles. Actual tests were utilized to gather the
angle of repose of the microfine iron tailings, which was then used as a reference value for response
surface studies based on the JKR contact model from six factors connected to the fine iron tailings
particles. The Plackett-Burman test was used to identify three parameters that had a significant
effect on the rest angle: static friction factor; rolling friction factor; and JKR surface energy. The
Box-Behnken experiment was used to establish a second-order regression model of the rest angle,
and the significant parameters and the optimized parameters were: surface energy JKR coefficient
0.459; particle-particle static friction coefficient 0.393; and particle-particle dynamic friction coefficient
0.393, with a dynamic friction coefficient between particles of 0.106. By entering the parameters into
the discrete element program, the angle of repose generated from the simulations was compared
with the real test values, and the error was 1.56%. The contact parameters obtained can be used in
the discrete element simulation of the amplified particles of fine-grained iron tailings, providing an
EDEM model reference for the numerical simulation of fine-grained iron tailings particles. There is
no discernible difference between the actual and simulated angles.

Keywords: iron tailings with fine grains; discrete element approach; angle of repose; model for
second-order regression

1. Introduction

With the continual expansion and improvement of human civilization, the tailings
created by the enormous extraction of natural resources have caused significant pollution
and great harm to the environment, as well as various difficulties in terms of land and
resources [1,2]. Tailings storage and tailings filling are the primary methods of managing
tailings. The slurry in the mineral separation stage frequently contains a substantial quantity
of water, and the high water content of tailings can readily lead to a dam failure in tailings
storage. As a result, studying the flow characteristics of tailings particles in thickening
equipment is an essential foundation for assuring tailings storage dependability. It has
considerable guiding value for enhancing tailings usage, as well as reducing tailings storage
mishaps [3,4].

Iron tailings are waste after beneficiation, and are the main component of industrial
solid waste. In addition to containing a small amount of metal components, the chemical
composition of iron tailings mainly contains SiO2, Al2O3, Fe2O3, CaO, MgO, etc., as well as
a small amount of K2O, Na2O and S, P, etc. [5]. The mineral composition of iron tailings
varies greatly due to the different origins and processing processes, except for the main
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mineral composition of quartz, hematite, dolomite and feldspar, and other minerals such
as hornblende and chlorite have unequal contents [6].

In this paper, we focus on the study of fine-grained iron tailings. The particle size of
fine-grained iron tailings is small, and the number of material particles in the mineral pro-
cessing and concentration equipment far exceeds the current level of computer arithmetic.
The particle amplification method is a common discrete element simulation technique, and
the amplified particles are re-calibrated for the coefficients of the contact model, which has
important research significance in improving the computational efficiency while ensuring
the accuracy of the numerical simulation [7,8]. The modeling of very viscous systems is
possible thanks to the Hertz-Mindlin with JKR (Johnon-Kendall-Roberts) contact model, a
cohesive contact model that contains the concept of inter-particle surface energy [9,10]. In
order to demonstrate that the contact parameters obtained from calibration were used for
the discrete element simulation of wheat flour amplified particles to provide a reference
for them, Li Yongxiang et al. [11] used the particle contact scaling principle and gauge
analysis for particle scaling in the discrete element software-based EDEM kind of JKR
contact model. In order to more successfully use EDEM simulations on an industrial scale,
Thomas Rosler et al. [12] investigated the scaling of the rest angle test and its impact on
the calibration of DEM parameters using amplified particles; the accuracy of the calibrated
values of the particle-to-particle contact parameters determines the accuracy of the com-
putational model, according to MICHELE et al. [13], who noted that the biggest challenge
in solving particle problems with EDEM (discrete element) software lies in the calibration
of the model microscopic parameters. According to Ma Guangguo et al. [14], discrete
element simulations were performed using the Hertz-Mindlin with JKR model to obtain
three significant parameters affecting the resting angle, and response surface experiments
were carried out to serve as a benchmark for the calibration of the contact parameters of
shotcrete wet bodies.

In this study, Hertz-Mindlin with JKR was used as the contact model for the parameter
calibration trials on fine-grained iron tailings using the discrete element analysis program
EDEM (2018) [15]. The response value for scaling up the particle size of the fine-grained
iron tailings and performing the parametric calibration tests was the observed resting
angle. Plackett-Burman and Box-Behnken were used to create a second-order regression
model of the contact parameters and rest angle of the fine-grained iron tailings. In order to
show the viability of response surface experiments for calibrating discrete element particle
coefficients, and to provide a reference for the EDEM (discrete element) model for the
numerical simulation of fine-grained iron tailings particles, the simulated rest angle is
compared with the actual rest angle.

2. Experiments to Calibrate Parameters
2.1. JKR Contact Discrete Element Model

When considerable inter-particle bonding and agglomeration takes place as a result of
electrostatic forces, moisture content, etc., in materials containing moisture, such as crops,
ore particles and clay, the Hertz Mindlin contact model with the JKR contact model is rele-
vant [16]. In this research, the surface adhesion of bigger stone particles and agglomeration
of fine-grained iron tailings may both be addressed using the JKR cohesion model.

The fine-grained iron tailings particles are represented by spheres in a simplified
model, as shown in Figure 1a, and the surface adhesion between the particles equals the
equivalent surface energy. In the JKR contact model, when particles are impacted by surface
energy, the contact radius between particles changes, as illustrated in Figure 1b, and the
contact radius expands. The adhesive force between various tiny particles is represented as

W = r1 + r2 − r12 (1)

where FJKR stands for the normal elastic contact force, N; E* for the equivalent Young’s
modulus, Pa; R* for the equivalent radius, m; a2 for the contact radius, m; W for the
equivalent surface energy of the contact particle, J/m2; and u for the normal overlap, m.
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The surface energies of particle 1 and particle 2 are represented in Equation (1) by r1
and r2, respectively. The border energy between particle 1 and particle 2 is represented by
the number r12.

The boundary energy between particles is zero, and the surface energy values of
various particles are the same: currently, r12 = 0 and r1 = r2 = r. As a result, W = 2r is the
equation for the cohesion between similar particle types [17]. In (2) and (3), respectively,
the normal elastic contact force JKR and the normal overlap u of the particles are displayed:

FJKR = −2(2ΠWE∗a3
2)

1
2 +

4E∗a3
2

3R∗ (2)

u =
a2

2
R∗ −

√
2ΠWa2

E∗ (3)

When W = 2r is introduced into Equations (2) and (3) and the particle types are the
same, the normal elastic contact force FJKR normal to the overlap u can be written as follows

FJKR = −4
√

ΠrE∗a3
2 +

4E∗a3
2

3R∗ (4)

u =
a2

2
R∗ − 2

√
ΠWa2

E∗ (5)

where a2 is the radius of the contact surface following the collision of the two particles, r is
the surface energy of the contacting particles, E* is the modulus of elasticity and R* is the
equivalent contact radius.

To increase simulation accuracy when scaling the particle size, the adjusted particle
size’s coefficients must be calibrated so that the scaled particles have the same attributes as
the original particles [18]. To determine the scaling factors between specific physical quanti-
ties between the physical model of the original system and the scaled model, Feng et al. [19]
employed a straightforward method

Q = εq × Q (6)

where Q is any parameter in the physical system; εq is the scale factor; and Q is any
parameter in the scaling system.

According to the pertinent literature [20], as the square of the scaled particle size
increases, so too does the contact force between particles, and as the particle radius increases,
so does the interparticle contact surface area. Since no reference range was stated for
the Hertz-Mindlin with JKR contact model species, it was established using coefficient
calibration studies.
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2.2. Sizing for Discrete Element Models

This research suggests an expansion strategy based on the particle size of fine-grained
iron tailings in an effort to maximize computing efficiency [21]. The larger particles are
meant to serve as a reference EDEM (discrete element) model for the numerical simulation
of fine-grained iron tailings based on the experimental concentrator as a model. The
enlarged particles of various sizes are shown in Figure 2b to demonstrate that the overall
area of the particles is the same as the original particle area in terms of percentage, ensuring
that the enlarged particle calculation results have high accuracy. Figure 2a depicts the
distribution of various particle sizes within a given area, with different colors representing
particles of different sizes.
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Figure 2. Theoretical diagram of original particle size distribution (a) and amplified particle size
distribution (b).

Where: Ra is the particle size, mm; T is the device volume, L; ρ is the original particle
average size, mm; Xn is the enlarged large particle size, mm; and an is the particle radius
with different occupancy ratio, mm.

The average particle size Ra of the amplified particles is first calculated while perform-
ing particle size analysis

Ra =
T
G

(7)

where G is the maximum point at which the equipment can hold the particles.
To determine the particle amplification factor k for various particle sizes t, Ra is

introduced into Equation (8):

k =
Ra

ρ
(8)

The amplified discrete element particles Xn are finally made:

4
3

πX3
n = k

4
3

πa3
n (9)

For trials to calibrate coefficients, the resulting particle distribution was entered into
the discrete element program.

2.3. Determination of the Angle of Repose

The rest angle tester shown in Figure 3 was designed according to the widely used
rest angle determination method, which mainly consists of an iron frame table, a 1 mm
mm funnel, and a rectangular chassis. The resulting resting angle was image processed to
measure the most accurate resting angle possible and to eliminate interfering factors. First,
using the Python language, the resulting (Figure 4a) was grayscale processed to obtain
(Figure 4b); set the threshold to 100, 150, 200 to select the optimal observation image for
binarization, the processing process (Figure 4c) [22]; using Illustratоr software to contour
curve processing of the image after the resulting curve in OriginPro (2018) in the image
digitizing tool for coordinate identification (Figure 4d) [23], the identification data fit well
with the curve and are representative; at the same time, the identification data were linearly
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fitted (Figure 4e), Adjusted R squared = 0.99852, the model fit is good and representative;
finally, the rest angle was judged according to the slope of the curve, and the rest angle was
45.81◦. The response value was determined for the later calibration experiment.
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2.4. Particle Modeling with Discrete Elements

In order to replicate the real working circumstances as closely as feasible, discrete
element simulation was performed in EDEM. The model was reduced to include spherical
particles to increase simulation efficiency by examining the actual iron tailings particles
(Figure 5a), which may be used to acquire particle microscope pictures of the individual
particles [24] (Figure 5b).

Figure 6 displays the actual particle size distribution of iron tailings. The average
particle size of iron tailings is 24.15 µm, according to the real particle size distribution of
the tailings.
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The numerical simulation of the expanded particles was carried out using the con-
centrator as the goal vessel and a limiting value of 500,000 particles [25]. In Figure 7, the
average particle size is 1.959708 mm.
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Figure 7. Enlarged size distribution of particles.

The particle factory was set up in EDEM, the particle production technique was set
to Dynamic factory and the generation rate was set to 5 kg/s. The pile-up model was
created using ANSYS proprietary modelling program Space Claim. By manually shutting
down the particle factory once a predetermined number of particles had been produced
and setting the time step to 30%, the numerical simulation’s accuracy and efficiency were
guaranteed. The computation period of 10S was designed to be significantly longer than
the actual simulation duration in order to create a stable particle state, and a time step
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of 30% was set to assure the effectiveness and accuracy of the numerical simulation. To
clearly illustrate the process of particle accumulation inside the container, as shown in
the simulation flowchart in Figure 8, the different colours of the particles represent the
speed during the motion, with red representing the fastest and blue-green the next fastest.
After a predetermined number of particles are generated from the top, as in Figure 8a, the
particles fall freely, as in Figure 8b, due to the acceleration caused by gravity, the particles
at the bottom fall at the fastest speed as in Figure 8c and finally come into contact with the
stacking surface after forming an angle of repose.
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3. Designing and Analyzing Studies for Parameter Calibration

Plackett-Burman and Box-Behnken experiments are combined in the parameter cal-
ibration experiment. Plackett-Burman analysis [26] reveals that the factor that needs to
be calibrated the most has the greatest impact on the angle of repose; the relationship
model between the angle of repose and the significant parameters is then obtained by
analyzing the significant factors and carrying out the Box-Behnken experiment, and the
best parameters are then examined. Finally, the accuracy is examined by comparison with
the actual particle angle of repose and by confirming the viability [27].

3.1. Plackett-Burman Experimental Design Importance

Table 1 shows the initial determination of the coefficient table and the range of values
based on the particle coefficients of iron tailings, with reference to the literature [28] and the
“GMEE (Generic EDEM material model database)” database that comes with the discrete
element software EDEM, and with reference to the properties of fine-grained iron tailings.
Table 2 displays the Plackett-Burman test findings.

Table 1. Parameter calibration test of discrete element method calibration parameters.

Simulation Parameters
Level

Low Level High Level

Particle Poisson’s ratio A 0.3 0.5
Coefficient of shear elasticity (pa) B 2.40 × 109 2.40 × 1010

JKR surface energy coefficient (J/m2) C 0.3 0.6
Collision recovery factor (particles) D 0.1 0.3

Coefficient of static friction (particles) E 0.3 0.5
Coefficient of dynamic friction (particles) F 0.08 0.12

The results of the significance analysis of the parameters obtained from the Plackett-
Burman test [29] are shown in Table 3. The final regression equation for the real factor
produced the following result, using the resting angle R as the response value: R = 32.59 −
0.2275A − 0.0133B + 3.32C + 0.4650D + 3.10E + 2.73F + 0.5212AC + 0.7162AE, R2 = 0.9922,
demonstrating that the regression equation model suited the data well, and was a represen-
tative regression equation [30]. Where Radj = 0.9829, this indicated that the model applies
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to 98.29% of the effect values. The ANOVA results showed that the results for JKR surface
energy coefficient (C), particle-particle static friction coefficient (E) and particle-particle
dynamic friction coefficient (F) had a significant effect (p < 0.05) on the particle resting angle
(R), while the other factors were not significant.

Table 2. Design and results of Plackett-Burman test.

Serial Number A B (pa) C (J/m3) D E F Repose Angle (◦)

1 0.50 2.40 × 1010 0.3 0.3 0.50 0.12 35.41
2 0.30 2.40 × 1010 0.6 0.1 0.50 0.12 40.29
3 0.50 2.40 × 109 0.6 0.3 0.30 0.12 35.53
4 0.30 2.40 × 1010 0.3 0.3 0.50 0.08 30.12
5 0.30 2.40 × 109 0.6 0.1 0.50 0.12 40.25
6 0.30 2.40 × 109 0.3 0.3 0.30 0.12 30.94
7 0.50 2.40 × 109 0.3 0.1 0.50 0.08 29.18
8 0.50 2.40 × 1010 0.3 0.1 0.30 0.12 27.03
9 0.50 2.40 × 1010 0.6 0.1 0.30 0.08 29.18
10 0.30 2.40 × 1010 0.6 0.3 0.30 0.08 30.96
11 0.50 2.40 × 109 0.6 0.3 0.50 0.08 37.85
12 0.30 2.40 × 109 0.3 0.1 0.30 0.08 24.35

Table 3. Plackett-Burman test parameter significance analysis.

Factors Sum of Squares F-Value p-Value Effect

Models 293.48 106.54 <0.0001
A 0.6211 1.35 0.2973 −0.2275
B 2.18 4.74 0.0814 −0.425833
C 114.27 248.88 <0.0001 3.08583
D 9.24 20.13 0.0065 0.8775
E 102.73 223.74 <0.0001 2.92583
F 64.45 140.37 <0.0001 2.3175

Residual 2.30
Total deviation 295.78

Pareto Figure 9 was produced as a consequence of additional model data analysis.
Figure 9 shows the important variables, and in accordance with the data table, only these
three parameters with substantial impacts were taken into account in the ensuing Box-
Behnken experiments [31]. The picture also shows the impacts of each component, both
favorable and unfavorable, on the response values, serving as a guide for the following
calibration of the coefficient parameters.
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3.2. Box-Behnken Response Surface Analysis

Based on the Plackett-Burman test findings, a Box-Behnken test design with three
degrees of significance was conducted, and three center points were chosen to evaluate the
error [32]. Table 4 displays the results of the Box-Behnken test.

Table 4. Box-Behnken experimental design and results.

Serial Number C (J/m2) E F Repose Angle (◦)

1 0.30 0.40 0.08 34.36
2 0.45 0.40 0.10 45.88
3 0.30 0.40 0.12 34.11
4 0.45 0.30 0.08 33.32
5 0.45 0.40 0.10 44.13
6 0.60 0.40 0.08 29.19
7 0.45 0.40 0.10 44.12
8 0.45 0.40 0.10 45.34
9 0.45 0.30 0.12 39.45
10 0.30 0.30 0.10 28.13
11 0.30 0.50 0.10 30.13
12 0.60 0.40 0.12 35.13
13 0.45 0.40 0.10 46.34
14 0.60 0.30 0.10 29.23
15 0.45 0.50 0.12 34.45
16 0.60 0.50 0.10 25.19
17 0.45 0.50 0.08 33.34

The Box-Behnken test model ANOVA results are shown in Table 5. According to
the results in Table 5, it can be seen that the p < 0.0001 for the fitted model; and the
p-values for the JKR surface energy coefficient (C), static friction coefficient (E), dynamic
friction coefficient (F), JKR surface energy coefficient × static friction coefficient (CE), JKR
surface energy-rolling friction coefficient (CF), static friction coefficient x dynamic friction
coefficient (EF) and the quadratic terms for each parameter are <0.05, indicating that the
individual parameters with a resting angle were significant, as well as the validity of the
regression model. The misfit term p = 0.4458 > 0.05 indicates that the model is good and
no bending misfit occurs. Coefficient of determination R2 = 0.9884; and the corrected
coefficient of determination R2

adj = 0.9736. The predictive coefficient of determination
R2

pre = 0.9064, indicating that the model is a true representation of the actual situation [33].
The test precision Adep Precision = 24.6778, indicating that the model has good accuracy.

Table 5. Box-Behnken experimental model ANOVA.

Source of Variance Sum of Squares Freedom Mean Square F-Value p-Value

Models 637.64 9 70.85 66.47 <0.0001
C 272.84 1 272.84 255.99 <0.0001
E 13.47 1 13.47 12.64 0.0093
F 18.30 1 18.30 17.17 0.0043

C × E 22.09 1 22.09 20.73 0.0026
C × F 7.18 1 7.18 6.74 0.0356
E × F 6.30 1 6.30 5.91 0.0453

C2 29.09 1 29.09 27.29 0.0012
E2 205.64 1 205.64 192.94 <0.0001
F2 38.75 1 38.75 36.35 0.0005

Residual 7.46 7 1.07
Lack of fit 3.38 3 1.13 1.10 0.4458
Pure error 4.09 4 1.02

Sum 645.10 16

R2 = 0.9884 R2
adj = 0.9736 R2

pre = 0.9064 Adep Precision = 24.6778
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The regression equation obtained from the Box-Behnken test:
R = −219.24050 + 162.07333C + 679.35500E + 1642.37500F − 156.66667CE + 446.66667CF − 627.50000EF −

116.82222C2 − 698.85000E2 − 7583.75000F2

3.3. Regression Model Interaction Effect Analysis

Conversely, the further away from a circle the contour plot deviates from a circular
interaction response, and vice versa [34]. The interaction between the two independent
variables impacts the response value to a greater or lesser extent depending on the slope of
the response surface plot; conversely, the flatter the interaction, the less significant the effect.

As seen in Figure 10a, the response surface plot and contour plot of the JKR surface
energy coefficient and static friction coefficient are generated in Figure 10 when the fixed
rolling friction coefficient F is 0.10. The particle resting angle exhibits an increasing trend
as the JKR surface energy coefficient C rises. The particles’ resting angle height rises
from 28.13◦ to 45.66◦ when the static friction coefficient is 0.4, and the JKR surface energy
coefficient increases from 0.30 J/m2 to 0.60 J/m2. According to the JKR contact model, an
increase in the surface energy coefficient causes an increase in the cohesive forces that exist
between particles. These forces can cause particles to adhere to one another and form new
particle clusters, which causes the angle of repose to increase, as the particles at the top of
the angle of repose are adsorbed and difficult to slide off when stacking is done. A strong
interaction between the JKR surface energy coefficient C and the static friction coefficient E
between the particles can be taken into account in the contour plot of Figure 10b.
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Figure 10. Response surface diagram (a) and contour diagram (b) of the influence of JKR surface
energy coefficient and static friction coefficient on repose angle.

The surface plot and contour plot of the influence of surface energy and rolling friction
coefficient on the resting angle of JKR are obtained, as shown in Figure 11a, where the fixed
static friction coefficient E is equal to 0.40. With an increase in the rolling friction coefficient,
the particles’ angle of repose increases. This is because the gap between particles shrinks as
the rolling coefficient between them rises, and the larger the rolling coefficient, the smaller
the repulsion between particles and the higher the particle stacking angle will be, at which
point the particle rolling friction coefficient positively influences the resting angle [35]. This
is because when the rolling friction coefficient reaches a particular level, it will result in a
decrease in the cohesiveness between the particles, which will impact the resting angle of
the particles. The JKR surface energy C and rolling friction coefficient F contours are not
circular in the contour plot in Figure 11b, and the JKR surface energy coefficient and rolling
friction coefficient interact with one another between the particles.
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Figure 11. Influence of JKR surface energy and rolling friction coefficient on angle of repose surface
diagram (a) and contour diagram (b).

The response surface plots of the static friction coefficient E and kinetic friction co-
efficient F obtained in Figure 12a all have blatantly steep surfaces, indicating that the
interaction effect on the response value rest angle is significant in all degrees when the JKR
surface energy coefficient = 0.45. The interaction is significant, which is consistent with the
variance results, as shown by the contours of the static friction coefficient E and dynamic
friction coefficient F in Figure 12b, which all deviate from the circle.
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4. Determination of the Optimal Combination of Parameters and Validation of
the Simulation

Targeting the real resting angle of fine-grained iron tailings using Design-Expert 11
software, the JKR surface energy is 0.459, the static friction coefficient is 0.393 and the
dynamic friction coefficient is 0.106. By minimizing the error in the angle of repose between
the simulation and the experiment, the optimized regression equation may be solved. The
resting angle was 44.81◦, which is 2.18% different from the projected value, and the error is
acceptable. The findings of the response surface parameters were entered into the discrete
element software for comparison tests.
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The optimal set of parameters was used to execute the rest angle simulation test, and
Figure 13 compares the results of the simulation and physical test. In order to verify the
accuracy of the data obtained from the response surface and the actual data, the virtual
simulation of the particle stacking process was performed ten times in EDEM (2018) to
observe the particle angle and record the experiment, while the basic operation of the rest
angle measuring instrument Figure 3 was performed for the stacking experiment under
the same conditions, as shown in Figure 14. The performance of the point line diagram is
basically consistent, and the error exists within the acceptable range. The mean value of
the rest angle obtained from the simulation test was 45.823◦, with an error of 1.56% from
the actual value of 45.119◦, indicating that there was no significant difference between the
simulation results and the real test value.
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5. Conclusions

(1) The computational performance of the numerical simulation was improved by increas-
ing the discrete element of fine-grained iron tailings’ particle size by 1.959708 mm,
with an average particle size of 24.15 um, and using 500,000 particles as the maximum.

(2) The contact characteristics of the amplified particles were calibrated using the JKR
contact model in discrete elements. The Plackett-Burman tests were used to deter-
mine the factors that significantly affect the resting angle of the amplified particles
of microfine-grained iron tailings. These factors included the surface energy JKR
coefficient, particle-particle static friction coefficient and particle-particle dynamic
friction coefficient.
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(3) The Box-Behnken test revealed that, in contrast to the simulated particle rest angle of
44.81◦ for fine-grained iron tailings particles at 0.459, 0.393 and 0.106, respectively, the
relative error of the surface energy JKR coefficient, particle-particle static friction coef-
ficient and particle-particle kinetic friction coefficient in the EDEM discrete element
software was only 2.18%; this proves the viability of response surface experiments for
the discrete element particle system. It was shown that it was possible to calibrate the
particle coefficients for discrete elements.

(4) The best experimentally obtained parameters were entered into discrete element
software, where the mean resting angle was calculated to be 45.823◦. This was
compared to the mean angle from physical experiments, which was 45.119◦, and
the error was calculated to be 1.56%, which was not significantly different. This
proves that the contact parameters obtained from the particle size scaling coefficient
calibration trials satisfy the numerical simulation’s requirements, and serve as a
reference for the discrete element model used to simulate the numerical behavior of
fine-grained iron tailings particles.
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