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Abstract: The discrete element method (DEM) has been widely employed to model processes in
different industries, such as mining, agriculture, pharmaceuticals, and food. One of the main lines of
research, and in which different authors propose several approaches, is the calibration of parameters.
Bulk calibration (BCA) is a common approach used that does not necessarily represent the individual
behavior of each particle. On the other hand, direct measurement (DMA) is another approach em-
ployed in some cases. This work presents a comparison between calibration of DEM model parameters
with non-cohesive spherical and polyhedral particles using a combination of direct measurement
and bulk calibration. BCA is employed to calibrate friction parameters and DMA to characterize
shape of the particles and coefficient of restitution of the contact between particles. Experimental
data from Draw Down Tests are used to calibrate the friction parameters. Numerical optimization of
the parameters is conducted by altering the coefficients of friction regarding the objective variables
of mass flow, final mass, shear angle, and angle of repose. Quartz, granite, and coal are calibrated,
obtaining good agreement with the experimental results. The influence of particle shape is tested,
proving that more complex particles obtain better results for the analyzed case.

Keywords: parameter calibration; discrete element method; polyhedral particles; mineral processing

1. Introduction

The discrete element method (DEM) has progressed as an analytical tool for various
bulk materials in diverse industries, such as mining, pharmaceutical, and food. In the
mining industry, DEM has been widely used to model all types of machines [1], such
as SAG mills [2], vibrating screens [3], cone crushers [4], gyratory crushers [5], and jaw
crushers [6], in order to provide information about the design, optimization, and operation
of these types of equipment. The ore, from run-of-mine, has an irregular shape and a broad
particle size distribution prior to the comminution process. Because of this, it is almost
impossible to model the exact shape and size of each particle. Furthermore, the calibration
of contact parameters of these irregular-shaped particles cannot be accurately measured
through experimental methods [7]. Therefore, a better calibration of parameters is required
to improve the prediction of these numerical models [8].

In total, two general approaches are used in the calibration: direct measurement (DMA)
and bulk calibration (BCA) [9]. Density calibration will be used as an example to differentiate
both approaches. With direct measurement, the material density of a sample of particles
would be measured individually, and a representative value (mean) would be used in the
model without considering the modeled particle shape that will affect the porosity of the
simulated particles. Instead, in bulk calibration, a sample is chosen, and the bulk density
of the entire sample is measured. With these data and with a defined particle shape and
size distribution, the material density is adjusted in the DEM model to achieve the same
bulk density.
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In DEM models, the parameters usually calibrated are particle shape, particle size
distribution, coefficient of restitution, contact stiffness, particle density, friction coefficients
(between particles and particle-boundary), and rolling resistance, among others [10], as
is presented in Table 1. For different calibration parameters, researchers have established
several methods to optimize this process, such as the design of experiment, neural network
method based on Latin hypercube sampling, and artificial neural network method [7]. Rackl
and Hanley [11] presented a methodical calibration approach based on Latin hypercube sam-
pling and Kriging implemented in LIGGGHTS and GNU Octave. Particle density, friction
coefficients, and Young modulus were calibrated in function of repose and bulk density tests.
Zhou et al. [12] established a radial basis function neural network to calibrate particle density,
sliding frictions, coefficients of restitution, and Poisson’s ratio regarding the angle of repose
and bulk density using the EDEM commercial software. Westbrink et al. [13] proposed a
novel approach for DEM calibration with a parameter optimization based on multi-objective
reinforcement learning. Richter et al. [14] showed a new modular algorithm called general-
ized surrogate modeling-based calibration. Using surrogate models and the Draw Down
Test, the friction coefficients of a DEM model with spherical particles are calibrated. Boikov
et al. [15] presented a universal calibration approach by conducting full-scale symmetrical
experiments in a DEM simulation in Rocky DEM. The friction coefficient and restitution
coefficients were calibrated using computer vision and an iterative calculation.

Table 1. List of parameters to be calibrated in a DEM simulation of non-cohesive particles.

Parameter

Particle shape Particle size distribution
Coefficient of restitution, e Contact stiffness

Particle density, ρ Young’s Modulus, E
Coefficient of friction, µ Coefficient of rolling friction µr

Degrassi et al. [16] performed a parameter calibration using Rocky DEM and a pro-
prietary algorithm to optimize. The DEM model of the same test was compared with
experimental data of angles of repose. The simulations were conducted using spherical
particles, and the Hysteretic Linear Spring contact model. Nasato et al. [17] used artificial
neural networks to calibrate static and rolling friction in function of the dynamic angle of
repose and void fraction. Richter and Will [18] described a new method called metamodel-
based Global Calibration. The metamodel was trained with data from several hundred
simulation runs and can predict simulation responses based on a given parameter set with
very high accuracy. In addition, commercial codes such as EDEM and Rocky DEM perform
their calibration procedure with preconfigured simulations and post-processing scripts.

The selection of particle shape is between two main options: spherical and non-
spherical particles. Spheres are used from the beginning of the formulation of DEM, and the
main advantage is the simplicity and low computational cost [19]. In this approach, rolling
resistance is used to numerically provide non-sphericity to the particles [20]. Moreover,
despite the significant simplification in their geometric representation, spherical particles
can achieve results close to the experimental ones [20,21]. An alternative to spheres is to
use multi-spherical particles, which are clustered-spherical-particle that represent more
complex shapes. Although the multi-sphere method represents advancement compared to
the use of simple spherical bodies for approximating complex three-dimensional shapes,
it is a method based on estimations that may introduce new errors itself at least on the
single grain level [22]. Nevertheless, researchers state that it is necessary to simulate with
non-spherical particles and can represent various particle types in granular matters [23–26].
In mining applications, bucket—soil interaction [24], grinding mills [27], bucket filling
for a mining rope shovel [26], hopper [28], cyclone [29], cone crusher [4], and gyratory
crusher [5] were modeled with polyhedral particles. Mathematically, spherical particles
are characterized only by their size (one parameter), and polyhedral particles can be
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represented by their size and four geometrical parameters. Polyhedral particles, therefore,
add more parameters to the calibration.

There are several alternatives available to calibrate the coefficient of friction between
particles (sliding and rolling) [30]. The most common and straightforward is measurement
of the angle of repose. The disadvantage of this test is that it relates a single parameter
(angle of repose) with at least two variables (friction coefficients). This means that there will
then be more than one solution to the mathematical problem. Roessler et al. [31] proposed
an experimental test called Draw Down Test (DDT), which through a single experiment,
allows four experimental results to be obtained: angle of repose, shear angle, mass flow rate,
and final mass, which are directly contrasted with results of the DEM model. Adjusting the
coefficients of friction between particles makes it possible to find a set of parameters that
predicts the experimental results and avoids calibration ambiguity.

In this work, the contact parameters of three materials are calibrated for use in DEM
models with non-cohesive spherical and polyhedral particles using a combination of BCA
and DMA, with the aim of comparing the influence of shape on the calibration of the
coefficient of friction. The DEM simulations are performed using Rocky DEM software
to calibrate the friction coefficients as a function of the angle of repose, shear angle, mass
flow rate, and final mass for each material with experimental data of Draw Down Tests.
Experimental tests are performed to measure the particle shape directly, coefficients of
restitution, and friction coefficient between particles and boundaries. The search for the
combination of parameters is an optimization problem where the objective function is
computationally expensive. Consequently, the number of iterations must be kept under
control. In order to deal with the task, a surrogate model with radial basis functions is
utilized. The influence of particle shape is studied, comparing the calibrated parameters:
static coefficient of friction, dynamic coefficient of friction, and rolling friction, with spherical
and polyhedral particles.

2. Materials and Methods
2.1. Materials

The ore samples used in the experiments correspond to quartz (milky quartz), gravel
(granite), and coal obtained from local mines and quarries in Chile. These are cleaned,
dried, and high aspect ratio particles are removed. The size ranges from 0.5 to 1 in, and all
samples are properly sieved according to ASTM E-11 standard [32]. Table 2 presents the
mass, material density [33] and moisture [34] of the samples. The particle size distribution
of each sample is presented in Figure 1.

Table 2. Mass, material density, and moisture of the samples of quartz, granite and coal.

Material Mass (kg) Material Density (kg/m3) Moisture (%)

Quartz 25.75 2604.1 0.5
Granite 27.75 2456.9 1.2
Coal 14.52 1324.2 1.6

2.2. Discrete Element Method

In the discrete element method, particles and boundaries are simulated such as rigid
bodies. Contact forces are typically modeled as damping-spring systems, considering their
overlap distance. In this work, the normal contact force is modeled with the hysteretic
linear spring model proposed by Walton and Braun [35] and the linear spring Coulomb
limit for the tangential component of the force. According to the following set of equations,
for the time step i, the normal contact model is:

Fn,i =

{
min(Knl · sn,i, Fn,i−1 + Knu · ∆sn) , if ∆sn > 0
max(Fn,i−1 + Knu · ∆sn, λ · Knl · sn,i) , if ∆sn < 0

(1)
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∆sn = sn,i − sn,i−1 (2)

where, Fn,i and Fn,i−1 are the normal elastic–plastic contact forces at the current time, ti,
at the previous time, ti−1, respectively. ∆sn is the change in the normal contact overlap
during the current time. sn,i and sn,i−1 are the normal overlap values at the current and
at the previous time, respectively. Knl and Knu are the values of loading and unloading
contact stiffnesses, respectively.
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Figure 1. Particle size distribution of quartz, granite, and coal samples used in the experiments.

The tangential forces, Ft, are represented by the linear spring Coulomb limit model:

Ft,i = min(
∣∣F′t ∣∣, µFn,i)

F′t
|F′t |

(3)

where F′t is the tangential force given by (4) and µ is the coefficient of friction.

F′t = Ft,i−1 − Kt∆st (4)

with Ft,i−1 the value of the tangential force at the previous time, ∆st the tangential relative
displacement of the particles during the time step, and Kt the tangential stiffness. The stiff-
nesses calculation is described in detail in the software technical manual [35]. The particles
are modeled as both polyhedral and spherical. Polyhedral particles are characterized by
four parameters: vertical aspect ratio, horizontal aspect ratio, superquadric degree, and the
number of corners.

2.3. Experimental Methodology

An experimental procedure for parameter calibration is introduced, where a direct
approach is used to estimate particle shape and coefficient of restitution; meanwhile, a bulk
calibration approach is used for friction coefficients.

2.3.1. Particle Shape

In total, three orthogonal dimensions of at least 100 particles per ore, between 3/4 and
1 inch in size, were measured. With these values, the vertical and horizontal aspect ratios
of the samples were calculated.

In addition to the aspect ratio, polyhedral particles are defined by the number of corners
and the superquadric degree. These parameters are adjusted manually, giving them the
appearance of actual particles. This manual adjustment is made by comparing 3D-scanned
models of an actual particle with the polyhedral particles modeled in Rocky DEM using 3D
modeling software.
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2.3.2. Coefficient of Restitution

Tests were performed to determine the normal coefficient of restitution between parti-
cles. The experimental setup used for the collision between particles consists of a beam, a
monochrome background, a length scale, test particles, and a video camera, following the
experimental setup of previous investigations [36]. The particles of irregular geometry are
suspended on the beam using a thin thread and collide between them. The particle tracking
is conducted by video and then programmed in MATLAB. The centroid of the particle is
obtained for each video frame, and then the trajectory is obtained. With the projection of the
velocities in the impact line, the coefficient of restitution e is calculated with the following
expression:

e = −
vB, f − vA, f

vB,0 − vA,0
(5)

2.3.3. Draw Down Test

The test bench shown in Figure 2 was manufactured, consisting of an upper and lower
box, with a mobile gate at the base of the upper box. The upper box is supported by a
steel frame with four load cells of 20 kg to measure the mass of ore in the upper box as
a function of time. Load cells are connected to an NI 9237 module, a bridge module that
contains all signal conditioning required for power and simultaneously measures up to
four bridge-based sensors. Data acquisition is performed with an NI cDAQ-9172 device
connected to a laptop computer. The test is also recorded on video and photographs to
complement the measurements. The experiment consists of the following steps [31]:

1. Feed the upper box with 20 to 30 kg of ore bearing a defined particle size distribution.
2. Level the ore bed and measure the height.
3. Open the top box gate to drop the ore.
4. Once the ore stops falling and is at rest, the angles of repose and shear are recorded

with a digital inclinometer.
5. Photographs of the final state are captured.
6. The ore is removed from the top box to measure its mass.

4 load
cells

upper
box

lower
box

(a) (b)

mobile
gate

500 mm

500
m

m

580 mm

100 mm
h0

(c)

β

ϕ580
m

m

180 mm

Figure 2. Draw Down Test: (a) Test bench schematic, presenting all the dimensions of the upper and
lower box and the position of the load cells, (b) filling of the upper box up to height h0, (c) end of the
test with the angle of repose β and shear angle ϕ.
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2.4. DEM Model

The Draw Down Test is modeled in DEM using Rocky DEM 4.2.0. It has been shown
that choosing only one particle shape can lead to the appearance of voids that affect the
flow of the ore [4]; therefore, it is studied the influence of the particle shape in the parameter
calibration. The particle shape is modeled with spheres or polyhedra, according to the three
simulation cases analyzed:

1. Spheres (sp): spherical particles.
2. 2-polyhedra (2p): polyhedral particles with two particle shapes.
3. 4-polyhedra (4p): polyhedral particles with four particle shapes.

In the first case, the particles are defined only geometrically by their size, and in the
other cases, the particles are defined by their size, vertical aspect ratio, horizontal aspect
ratio, number of corners, and superquadric degree. A screenshot of the simulations made
for the three materials with polyhedral particles is shown in Figure 3.

X

Y

Z

(a) (b) (c)

Figure 3. Geometries of the DDT DEM models with 4 polyhedral particles: (a) quartz, (b) granite and
(c) coal. Each model has their own particle shape, particle size distribution and material properties.

The setup of the DEM simulation corresponds to two processes: feeding and emptying.
The initial feeding simulation consists of filling the upper box with ore, as shown in
Figure 3, and achieving the height of the ore bed obtained experimentally by adjusting the
bulk density [31]. Each sub-figure presents the setup of the simulation of (a) quartz, (b)
granite and (c) coal having their own particle shape, particle size distribution and material
properties. Adjusted bulk and material densities are shown in Table 3.

Table 3. Calibrated bulk density and friction coefficients between particles and walls. µpw,1 corre-
sponds to the coefficient of friction between the wall of wood and the particle, and µpw,2 corresponds
to the coefficient of friction between the wall of glass and the particle.

Material Bulk Density (kg/m3) µpw,1 µpw,2

Quartz (sp) 1527 0.709 0.424
Quartz (2p) 1450 0.709 0.424
Quartz (4p) 1462 0.709 0.424
Granite 1400 0.803 0.356
Coal 703 0.792 0.326

Using the first part of the simulation as a basis, the emptying simulation is commenced,
where the geometry of the mobile gate is removed, and the particles descend to the lower
box. The end criterion of the simulation is when the magnitude of the maximum velocity
of the particles is less than 0.2 m/s, and the mass of the particles in the upper box is less
than 75% of the initial mass. The simulations run until that condition is met automatically,
and when finished, a post-processing script is run to obtain data files.



Minerals 2023, 13, 40 7 of 17

It is noted that for these simulations, the Young’s modulus was not calibrated, and
the value Ep = 10 MPa is adopted, which does not significantly affect the results of these
simulations [37]. Concerning the shape of the particles and the coefficient of restitution
between particles, the parameters directly measured are used. The e between particles and
wall (the glass and wooden walls of the boxes) were not calibrated, and a reference value of
0.3 was used. The experimentally obtained friction coefficients between particles and walls
are shown in Table 3, and the static friction coefficient is assumed to be equal to the dynamic
friction coefficient. The geometry of the walls corresponds to the boxes and the mobile gate,
with the geometry shown in Figure 2. The input particle size distribution corresponds to
the same used in the test to be replicated. The time step is equal to ∆t = 10−5 s.

Once the DEM simulation is completed, the following data must be extracted: angle of
repose β, shear angle ϕ, mass flow rate ṁ, and final mass m f for each material. For the angles
of repose and shear, the geometry of the particles is imported into MATLAB, and a line is
approximated with the edge that generates the front view of the particles. The mass flow is
calculated with the mass versus time curve of the upper box, as well as the remaining mass
of that box. These four values correspond directly to what was measured experimentally.

2.5. Optimization

The friction coefficients (static, dynamic, and rolling) are calibrated against the angle
of repose, shear angle, mass flow rate, and final mass. Therefore, there are three parameters
and four objective variables. To calibrate the parameters, it is approached as an optimization
problem, with f being the vector function that evaluates the DEM model regarding the
vector x containing the friction coefficients. So, it must be resolved:

min
x

f (x) (6)

subject to {
xlb < x < xub

c(x) 6 0
(7)

with x vector of variables or unknowns equal to (µs,pp, µk,pp, µr), f objective vector function,
xlb lower boundary condition vector, xub upper boundary condition vector, and c(x) is the
scalar function of the inequality constraint.

Multi-objective optimization reduces to a one-objective optimization by a linear scalar-
ization of the form:

min
x

f (x) =
1
4

min
x

4

∑
i=1

wi(ŷi(x)− yi)
2 , with

4

∑
i=1

wi = 1 (8)

subject to the same conditions (7), and with f objective scalar function, w is the calibration
weight vector, ŷ(x) is the predicted value or solution vector, and y is the vector of actual or
target value. The components of these vectors are represented with the subscript i. The
function f (x) is equivalent to the weighted mean square error (WMSE). The lower and
upper limits were adjusted according to previous results presented in the literature [31].
The inequality constraint ensures that the dynamic friction coefficient is greater than the
static one. Calibration weights are chosen to equal 2-degree changes in angles, 0.3 kg/s in
mass flow, and 0.5 kg in final mass.

These DEM simulations are known for their high computational burden, so an eval-
uation of the function f can take between 10 min and 1 h with spherical particles and 4
and 12 h with polyhedral particles, depending on the computational resources used (GPU
or CPU) and the simulation case analyzed. For these cases, the use and optimization of a
surrogate function is recommended.

It was optimized using MATLAB’s surrogateopt. This algorithm, through the evalu-
ation of random points, the interpolation of a radial basis function, and the evaluation of a
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merit function that considers the substitute function and the distance between the points,
allows the optimization of a function with high computational costs [38].

3. Results

The experimental and DEM simulated results of the Draw Down Test are presented.
Then, the optimization and validation results of this approach are delivered.

3.1. Experimental Section

In total, six representative shapes per material are selected with the geometric mea-
surements, and the results are displayed in the Table 4. The distribution of aspect ratios is
statistically analyzed to select the particles, choosing six representative percentiles: 20%,
33.3%, 40%, 60%, 66.6%, and 80%. Figure 4 shows some pictures of quartz, granite, and
coal, along with a modeled particle with the adjusted parameters. The 2-polyhedra case
uses particles 1 and 4, and the 4-polyhedra case uses particles 0, 2, 3, and 5.

Table 4. Shape parameters of polyhedral particles. Aspect ratios, number of corners and superquadric
degree of each modeled particle. For each material sample, 6 different shapes are selected.

Particle Horizontal Aspect Vertical Aspect Number of Superquadric
Ratio Ratio Corners Degree

Quartz 0 1.16 0.70 20 2.00
Quartz 1 1.26 0.77 15 2.00
Quartz 2 1.40 0.71 25 2.00
Quartz 3 1.42 0.80 20 4.00
Quartz 4 1.46 0.83 10 4.50
Quartz 5 1.61 0.77 25 2.50

Granite 0 1.15 0.62 30 2.00
Granite 1 1.22 0.61 25 2.50
Granite 2 1.27 0.70 15 5.00
Granite 3 1.39 0.73 18 3.55
Granite 4 1.42 0.61 25 2.50
Granite 5 1.56 0.72 15 2.5

Coal 0 1.19 0.67 25 2.35
Coal 1 1.26 0.70 23 3.5
Coal 2 1.31 0.66 20 5.00
Coal 3 1.49 0.76 28 3.00
Coal 4 1.59 0.76 15 2.75
Coal 5 1.68 0.69 16 5.5

(d)

(a) (b) (c)

(e) (f)

Figure 4. Particle shape: photographs of (a) quartz, (b) granite and (c) coal samples; and images of
the modeled geometries (d) Quartz 0 particle, (e) Granite 0 particle and (f) Carbon 0 particle.

The results of the coefficients of restitution test are presented. By analyzing each
test of each material and using Equation (5), the results of the Table 5 are obtained. As
each test is performed at different impact velocities, different geometry, and orientation
of the particles, the results can present a considerable dispersion. Considering that the
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contact model considers a single value of the coefficient of restitution, without depending
on the relative speed between the particles or orientation on impact, the average value
is acceptable [39]. In Rocky DEM, it is possible to use a velocity-dependent coefficient of
restitution, but the influence of contact geometry and orientation is still strong.

Table 5. Experimental results of the coefficient of restitution for the three sample materials.

Material Mean Standard Deviation

Quartz 0.3719 0.1633
Granite 0.2996 0.1212
Coal 0.2758 0.0781

Regarding the experimental results of Draw Down Test, for each material, the four
results are presented in the Table 6. These results are the averages of three tests, so six values
of each angle and three of each mass parameter are averaged. Figure 5 presents the binaries
images of the photographs of the final state of a test done with coal. From these images,
two angles of repose are calculated with (c) and (d), and two shear angles with (a) and (b),
which is performed by detecting the edge and then calculating its slope numerically. The
mass parameters are calculated from the measured mass signal over time, the mass flow
rate through the slope, and the final mass with the last values of the graph. The final mass is
also verified by measuring the mass remaining in the top box on a scale.

(c) (d)(a) (b)

Figure 5. Binaries images of the DDT of coal: (a) upper left image, (b) upper right image, (c) lower
left image and (d) lower right image. These images are processed from the photographs obtained in
the experimental test.

Table 6. Experimental results of the Draw Down Test. Angle of repose, shear angle, mass flow rate
and final mass of each sample.

Material β(◦) ϕ(◦) ṁ (kg/s) m f (kg)

Quartz 26.25 42.03 4.83 7.09
Granite 32.59 45.39 3.88 7.28
Coal 22.91 47.20 2.23 3.84

3.2. DEM

As an example, a DEM simulation of DDT with quartz is detailed. There are feed
25.75 kg of quartz simulated with four polyhedral particles, in size range of 1/2 and 3/4 in,
and the average results of this experimental test are presented in Table 6. In these simulations,
the height of the ore was 330 mm, achieving an bulk density of 1462 kg/m3.

Figure 6 shows an example of a simulation and analysis done with µs = 0.7, µk = 0.7
and µr = 0.5. Figure 6a shows a screenshot of the end of the DEM simulation, showing
the distribution of the particles in both boxes. By exporting particle information such as
shape, size, position, and orientation, it is possible to fully reproduce the geometry of each
polyhedral particle in MATLAB and obtain the edge of the projected surface in the front
view, as shown in Figure 6b. With the edge, a linear trend line can calculate the angles of
interest. Two angles of shear (ϕ1 and ϕ2) and of repose (β1 and β2) are obtained; the value
to use is the average of both results. The mass of the particles in the top box, shown in
Figure 6c, is analyzed. The mean mass flow rate is calculated with the slope and the final
mass taking the last value on the graph.
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Figure 6. DDT DEM simulation post-processing of quartz with 4 polyhedral particles: (a) front view
of DEM simulation, (b) border of particles and calculated angles, (c) evolution of the total particle
mass in top box.

When calculating the simulated results, it is obtained: β = 33.36◦, ϕ = 40.26◦,
ṁ = 4.59 kg/s and m f = 7.02 kg, and the error is WSME = 0.4967. These results dif-
fer significantly from the experimental ones. Hence, it is necessary to search for the optimal
values of the friction coefficients.

3.3. Optimization

To begin the calibration of parameters and obtain initial values, the condition is
analyzed in which the coefficient of sliding friction is equal to the static one, µs = µk, as
presented in the literature [31]. µk and µr are varied between 0.1 and 0.8, and the results of
Figure 7 are presented. Each graph represents the behavior of the variable regarding the
sliding coefficient and the rolling coefficient, describing a surface. These response surfaces
are different from those presented in the literature [30,31] because they are calibrated for
polyhedral particles instead of spherical particles. These graphs help find the ranges of
values that yield better results. Consequently, the best results are the pair 0.8 and 0.1, with
β = 28.31◦, ϕ = 43.45◦, ṁ = 5.21 kg/s and m f = 7.57 kg, with an error of WSME = 0.2323.
These results are closer to the experimental ones than the initial ones, but they can be
improved by adding the calibration of the static coefficient of friction.

With the calibration of µk and µr as initial values, the static friction coefficient is cali-
brated. The upper and lower limits of the optimization are extended according to the opti-
mal value found previously. The literature does not calibrate this parameter since the con-
tact model used only considers the coefficient of sliding friction [18,31]. Boikov et al. [15]
performed the calibration of this parameter without optimization.
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Figure 7. Friction calibration: (a) angle of repose, (b) shear angle, (c) mass flow rate, (d) final mass.Figure 7. Surface response of friction calibration regarding sliding friction and rolling friction: (a) angle
of repose, (b) shear angle, (c) mass flow rate, (d) final mass.

Optimization is restricted between 400 and 600 iterations, with three significant digits
in the friction coefficients and a function tolerance of 0.03. Figure 8 presents a graph of the
objective function f regarding the number of evaluations of the optimization performed for
quartz with 4-polyhedral particles, showing how the optimization progresses. It is observed
that the algorithm can find a minimum regarding the initial samples. Only the calibration
of quartz with 4-polyhedral particles is conducted with 150 initial values, in the other cases,
just 50 initial values are used. The Table 7 shows the results of the optimizations for the
three materials, the number of evaluations performed, and the WMSE.

50 100 150 200 250 300
0

0.5

1

1.5

Number of evaluations

O
bj

ec
ti

ve
fu

nc
ti

on
,

f

initial
adaptive
random
incumbent
best

Figure 8. Plot of objective function versus number of optimization evaluations using surrogateopt
for quartz with 4 polyhedral particles.
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Table 7. Results of optimization of friction parameters through Draw Draw Test DEM simulations.
The calibrated parameters of each material and particle shape are presented.

Material µs,pp µk,pp µr β(◦) ϕ(◦) ṁ (kg/s) m f (kg) Iterations WMSE

Quartz (sp) 0.938 0.919 0.231 27.98 44.66 5.30 7.50 600 0.0911
Quartz (2p) 1.125 0.925 0.100 30.04 40.18 4.97 7.13 400 0.0749
Quartz (4p) 1.000 0.880 0.100 28.39 43.01 4.97 7.11 400 0.0258
Granite (sp) 0.950 0.950 0.400 33.10 47.63 4.15 8.61 600 0.1486
Granite (4p) 0.950 0.895 0.304 33.51 45.5 4.05 7.92 400 0.0365
Coal (sp) 1.128 1.017 0.273 25.84 45.37 2.66 4.25 600 0.0916
Coal (4p) 1.000 0.800 0.200 26.49 44.23 2.26 3.88 400 0.0866

Comparing the results obtained for quartz with different particle shapes (sp, 2p, and
4p), it is noted that due to presenting the lowest WMSE value, the case with four polyhedral
particles performs best. In fact, when the particle shape is more complex, the improvement
in the calibration is significant, with errors occuring less frequently. For granite and coal,
when comparing the solutions of spherical and 4-polyhedral particles, a better solution is
also obtained in the 4p case. In all these optimizations, a better solution is obtained with the
same or less number of evaluations. The calibrated friction coefficients between the cases
for each material are close, with differences of 10% at most, and for rolling friction, the
maximum difference is 0.131. This means that when the particle shape is changed in a DEM
simulation, using parameters calibrated with another shape could deliver good results and
be improved by optimization with few iterations around the initial value. Since there is
less computation time with spherical particles, these values can be used as initial values of
the calibration parameters of polyhedral particles. Regarding differences in the calibrated
coefficient of friction, a clear trend concerning different shapes cannot be seen, and a
complete analysis is needed to relate particle shape parameters and friction coefficients.
The principal difference is that spherical particles need more rolling friction to achieve the
expected results. However, the mathematical relation between rolling friction parameter
and non-sphericity of the particles remains unclear [40].

3.4. Validation

Another Draw Down Test was utilized to validate the proposed approach, where a
quartz sample weighing 26.95 kg with the particle size distribution presented in Figure 9 is
used. A DEM simulation of this test with the calibrated parameters of quartz is performed,
and the results of interest are compared.
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Figure 9. Particle size distribution of the quartz sample used in validation.

Figure 10 shows a corresponding graphical comparison of this test and its simulation
in DEM. On the left is a photograph of the experimental test, and on the right is an image of
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the DEM simulation, for different times, from t = 0 s to t = 7 s. There is a good agreement
between the simulated and the experimental by simply comparing the images.

(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 10. Graphical comparison of the Draw Down Test used in validation, on the left is a photograph
of the test and on the right an image of the DEM simulation: (a) t = 0 s, (b) t = 1 s, (c) t = 2 s,
(d) t = 3 s, (e) t = 4 s, (f) t = 5 s, (g) t = 6 s, (h) t = 7 s.

The Table 8 presents the experimental and simulated results this test. The relative
errors of the angle of repose and final mass are less than 5%, while the errors of the shear
angle and mass flow are between 20 and 25%, respectively. The error of the fit is quantified
by and weighted mean square error of WMSE = 0.6621.

Table 8. Validation of the calibration of friction coefficients.

Variable β(◦) ϕ(◦) ṁ (kg/s) m f (kg)

Experimental 29.43 43.41 5.08 6.60
Simulated 28.75 34.54 6.35 6.72
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4. Conclusions

A better fit in friction coefficients, regarding the results of a Draw Down Test, can be
obtained using more complex particle shapes, as tested with quartz, granite, and coal ore mod-
eled with 4-polyhedral particles, 2-polyhedral particles, and spherical particles. The difference
in WMSE in the calibration between spherical and polyhedral particles is considerable, and
the calibrated coefficients of friction change between different particle shapes. As a result, all
ore samples selected are completely characterized for use in a DEM model.

The combination of bulk calibration and direct measurement of material parame-
ters in sample models presents a viable alternative to perform, and allows for improve-
ments in the prediction of DEM models. Optimization using a surrogate function is help-
ful for optimization problems where the objective function is expensive, such as in the
simulations presented.

Regardless of the best fit of polyhedral particles, computation time must be consid-
ered when choosing the particle shape. For instance, in the DEM simulations analyzed,
calculations with spheres occurred 24-times faster than polyhedra. Considering particle
shape, calibration, and computation time, recommendations include:

1. Spherical particles present the best alternative in scenarios where modeling the particle
shape is not required, and it is necessary to reduce simulation times while ensuring
calibration is still performed thoroughly.

2. Polyhedral particles are suggested when the particle shape is essential, and precision
is required in calculations. Furthermore, some DEM breakage models only work with
polyhedral particles, as in the case of breakage models of the software Rocky DEM. A
particle replacement model with polyhedral particles can conserve mass and volume,
whereas, this is not possible with spherical particles.

Overall, a method is proposed to study less expensive optimization methods for poly-
hedral particles. The simulations performed with polyhedral particles incurred high compu-
tational cost, so the use of polyhedral particles might be excluded in several applications
due to the expenses associated with calibration. However, its good behavior demonstrated
by the model makes it pertinent to examine less expensive calibration procedures. A viable
approach is through a previous calibration of spherical particles that delivers initial values of
the parameters. In addition, as each application case presents a different distribution of size
and shape, it is a complex process to unify a calibration method for all possible applications.
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Nomenclature

Variables
Symbol Definition Unit
β angle of repose ◦

f vectorial function
w weights vector
x vector of variables
y solution vector
λ stabilization parameter
µ friction coefficient
ρ density kg/m3

ϕ shear angle ◦

c constraint function
E Young’s modulus MPa
e coefficient of restitution
F magnitude of vector force N
f function
K stiffness N/m
m mass kg
s overlap m
v speed mm/s
Subindex
Symbol Definition
0 initial
co coal
f final
gr granite
k dynamic
l loading
lb lower boundary
n normal
p particle
qu quartz
r rolling
s static
t tangential
u unloading
ub upper boundary
w wall
Abbreviations
Symbol Definition
WMSE weighted mean square error
2p polyhedral particles with 2 particle shapes
4p polyhedral particles with 4 particle shapes
BCA Bulk calibration approach
DDT Draw Down Test
DEM Discrete Element Method
DMA Direct measuring approach
sp spherical particles
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et al. Calibration of DEM Parameters for Cohesionless Bulk Materials under Rapid Flow Conditions and Low Consolidation.
White Paper 2019. [CrossRef]

11. Rackl, M.; Hanley, K.J. A methodical calibration procedure for discrete element models. Powder Technol. 2017, 307, 73–83.
[CrossRef]

12. Zhou, H.; Hu, Z.; Chen, J.; Lv, X.; Xie, N. Calibration of DEM models for irregular particles based on experimental design method
and bulk experiments. Powder Technol. 2018, 332, 210–223. [CrossRef]

13. Westbrink, F.; Elbel, A.; Schwung, A.; Ding, S.X. Optimization of DEM parameters using multi-objective reinforcement learning.
Powder Technol. 2020, 379, 602–616. [CrossRef]

14. Richter, C.; Rößler, T.; Kunze, G.; Katterfeld, A.; Will, F. Development of a standard calibration procedure for the DEM parameters
of cohesionless bulk materials—Part II: Efficient optimization-based calibration. Powder Technol. 2020, 360, 967–976. [CrossRef]

15. Boikov, A.; Savelev, R.; Payor, V.; Potapov, A. Universal Approach for DEM Parameters Calibration of Bulk Materials. Symmetry
2021, 13, 1088. [CrossRef]

16. Degrassi, G.; Parussini, L.; Boscolo, M.; Petronelli, N.; Dimastromatteo, V. Discrete element simulation of the charge in the hopper
of a blast furnace, calibrating the parameters through an optimization algorithm. SN Appl. Sci. 2021, 3, 242. [CrossRef]

17. Nasato, D.S.; Albuquerque, R.Q.; Briesen, H. Predicting the behavior of granules of complex shapes using coarse-grained particles
and artificial neural networks. Powder Technol. 2021. [CrossRef]

18. Richter, C.; Will, F. Introducing Metamodel-Based Global Calibration of Material-Specific Simulation Parameters for Discrete
Element Method. Minerals 2021, 11, 848. [CrossRef]

19. Soltanbeigi, B.; Podlozhnyuk, A.; Kloss, C.; Pirker, S.; Ooi, J.Y.; Papanicolopulos, S.A. Influence of various DEM shape representation
methods on packing and shearing of granular assemblies. Granul. Matter 2021, 23. [CrossRef]

20. Xie, C.; Ma, H.; Zhao, Y. Investigation of modeling non-spherical particles by using spherical discrete element model with rolling
friction. Eng. Anal. Bound. Elem. 2019, 105, 207–220. [CrossRef]

21. Zhang, S.; Zsáki, A.M. Effect Geometric Detail on the Outcome of DEM Simulations with Polyhedral Particles. Geomech. Geoengin.
2022. [CrossRef]

22. Kruggel-Emden, H.; Rickelt, S.; Wirtz, S.; Scherer, V. A study on the validity of the multi-sphere Discrete Element Method. Powder
Technol. 2008, 188, 153–165. [CrossRef]

23. Nassauer, B.; Liedke, T.; Kuna, M. Polyhedral particles for the discrete element method. Granul. Matter 2012, 15, 85–93. [CrossRef]
24. Nezami, E.G.; Hashash, Y.M.A.; Zhao, D.; Ghaboussi, J. Simulation of front end loader bucket–soil interaction using discrete

element method. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 1147–1162. [CrossRef]
25. Landauer, J.; Kuhn, M.; Nasato, D.S.; Foerst, P.; Briesen, H. Particle shape matters—Using 3D printed particles to investigate

fundamental particle and packing properties. Powder Technol. 2019, 361, 711–718. [CrossRef]
26. Svanberg, A.; Larsson, S.; Mäki, R.; Jonsén, P. Full-scale simulation and validation of bucket filling for a mining rope shovel by

using a combined rigid FE-DEM granular material model. Comput. Part. Mech. 2020, 8, 825–843. [CrossRef]
27. Govender, N.; Rajamani, R.; Wilke, D.N.; Wu, C.Y.; Khinast, J.; Glasser, B.J. Effect of particle shape in grinding mills using a GPU

based DEM code. Miner. Eng. 2018, 129, 71–84. [CrossRef]
28. Govender, N.; Wilke, D.N.; Wu, C.Y.; Khinast, J.; Pizette, P.; Xu, W. Hopper flow of irregularly shaped particles (non-convex

polyhedra): GPU-based DEM simulation and experimental validation. Chem. Eng. Sci. 2018, 188, 34–51. [CrossRef]
29. El-Emam, M.A.; Zhou, L.; Shi, W.; Han, C. Performance evaluation of standard cyclone separators by using CFD–DEM simulation

with realistic bio-particulate matter. Powder Technol. 2021, 385, 357–374. [CrossRef]
30. Coetzee, C. Calibration of the discrete element method: Strategies for spherical and non-spherical particles. Powder Technol. 2020,

364, 851–878. [CrossRef]
31. Roessler, T.; Richter, C.; Katterfeld, A.; Will, F. Development of a standard calibration procedure for the DEM parameters of

cohesionless bulk materials—Part I: Solving the problem of ambiguous parameter combinations. Powder Technol. 2019, 343, 803–812.
[CrossRef]

32. ASTM E11-20; Specification for Woven Wire Test Sieve Cloth and Test Sieves. Standard, ASTM International: West Conshohocken,
PA, USA, 2020.

http://dx.doi.org/10.1016/j.powtec.2020.06.016
http://dx.doi.org/10.3390/min11080878
http://dx.doi.org/10.3390/min10080717
http://dx.doi.org/10.1007/s12206-022-0225-4
http://dx.doi.org/10.4279/pip.140010
http://dx.doi.org/10.1016/j.powtec.2017.01.015
http://dx.doi.org/10.13140/RG.2.2.26318.31048/1
http://dx.doi.org/10.1016/j.powtec.2016.11.048
http://dx.doi.org/10.1016/j.powtec.2018.03.064
http://dx.doi.org/10.1016/j.powtec.2020.10.067
http://dx.doi.org/10.1016/j.powtec.2019.10.052
http://dx.doi.org/10.3390/sym13061088
http://dx.doi.org/10.1007/s42452-021-04254-8
http://dx.doi.org/10.1016/j.powtec.2021.01.029
http://dx.doi.org/10.3390/min11080848
http://dx.doi.org/10.1007/s10035-020-01078-y
http://dx.doi.org/10.1016/j.enganabound.2019.04.013
http://dx.doi.org/10.1080/17486025.2022.2065037
http://dx.doi.org/10.1016/j.powtec.2008.04.037
http://dx.doi.org/10.1007/s10035-012-0381-9
http://dx.doi.org/10.1002/nag.594
http://dx.doi.org/10.1016/j.powtec.2019.11.051
http://dx.doi.org/10.1007/s40571-020-00372-z
http://dx.doi.org/10.1016/j.mineng.2018.09.019
http://dx.doi.org/10.1016/j.ces.2018.05.011
http://dx.doi.org/10.1016/j.powtec.2021.03.006
http://dx.doi.org/10.1016/j.powtec.2020.01.076
http://dx.doi.org/10.1016/j.powtec.2018.11.034


Minerals 2023, 13, 40 17 of 17

33. ASTM D7263-21; Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens. Standard, ASTM
International: West Conshohocken, PA, USA, 2021.

34. ASTM D2216-19; Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Standard,
ASTM International: West Conshohocken, PA, USA, 2019.

35. ESSS. DEM Technical Manual 4.2; ESSS Rocky DEM, S.R.L.: Florianópolis, Brazil, 2018.
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