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Abstract: The detailed reservoir characterization was examined for the Central Indus Basin (CIB), 
Pakistan, across Qadirpur Field Eocene rock units. Various petrophysical parameters were analyzed 
with the integration of various cross-plots, complex water saturation, shale volume, effective poros-
ity, total porosity, hydrocarbon saturation, neutron porosity and sonic concepts, gas effects, and 
lithology. In total, 8–14% of high effective porosity and 45–62% of hydrocarbon saturation are su-
perbly found in the reservoirs of the Eocene. The Sui Upper Limestone is one of the poorest reser-
voirs among all these reservoirs. However, this reservoir has few intervals of rich hydrocarbons 
with highly effective porosity values. The shale volume ranges from 30 to 43%. The reservoir is filled 
with effective and total porosities along with secondary porosities. Fracture–vuggy, chalky, and 
intracrystalline reservoirs are the main contributors of porosity. The reservoirs produce hydrocar-
bon without water and gas-emitting carbonates with an irreducible water saturation rate of 38–55%. 
In order to evaluate lithotypes, including axial changes in reservoir characterization, self-organizing 
maps, isoparametersetric maps of the petrophysical parameters, and litho-saturation cross-plots 
were constructed. Estimating the petrophysical parameters of gas wells and understanding reser-
voir prospects were both feasible with the methods employed in this study, and could be applied 
in the Central Indus Basin and anywhere else with comparable basins. 

Keywords: reservoir quality prediction; machine learning; SOM; lithological identification; cluster 
analysis 
 

1. Introduction 
In the oil industry, one of the most important tasks is the analysis of well-log data, 

which can be a time-consuming process [1,2]. Geoscientists have worked diligently over 
the past few decades to reduce the expense of obtaining these data. It is possible to evalu-
ate the potential for oil and gas production by analyzing important indicators, including 
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reservoir permeability, and by utilizing data through petrophysical logging techniques, 
which is both time- and cost-efficient [3]. The use of neural networks to simulate compli-
cated systems in geosciences has become increasingly popular in recent years [4,5]. Ma-
chine learning (ML) is a branch of artificial intelligence (AI) that involves numerous meth-
ods for analyzing data, such as clustering, classification, and regression [6,7]. The field of 
machine learning can be divided into two primary categories: unsupervised and super-
vised approaches [2,8]. Unsupervised machine learning heavily relies on the input param-
eters and predicted values [9,10]. It is becoming increasingly common practice in the pe-
troleum industry to employ machine-led tools that make use of wire-line logs in order to 
address geoscientific problems [11]. The present study will examine ways in which the 
unsupervised ML can enhance the reservoir characteristics and identify petrotypes by em-
ploying well-log data. Faster and more accurate object classification can be trained to a 
computer via machine learning. Since the 1990s, nonparametric methods including prin-
cipal component analysis, artificial neural networks, fuzzy logic, and other strategies have 
been widely used to determine facies [12]. While core samples provide the most important 
physical data for classifying facies, they are typically only collected from a limited number 
of wells within a producing reservoir due to their high cost. Since core samples are rarely 
collected, the facies projection method employs non-linear statistical methods. The self-
organizing maps (SOM) model may be preferable when there is a lack of facies infor-
mation or when dealing with unskilled geologists [2]. Cluster analysis (CA) is an ML ap-
proach designed to automatically categorize large datasets into relevant subgroups, 
wherein the statistics inside every subset have similar qualities while still being distin-
guishable from one another. It has various potential applications including data compres-
sion, data mining, and vector quantization. For persistent data, k-means CA is frequently 
applied. Discovering significant patterns hidden inside vast datasets is the objective of the 
clustering technique. K-mean cluster analysis is a fast and reliable approach for clustering 
which is also considerably simpler, and it is particularly useful for large datasets [13].  

As shown in Figure 1, the Qadirpur gas field is located in the Central Indus Basin 
(CIB), which is partitioned from the Upper Indus Basin through the Sargodha High, as 
well as the Pezu Uplift in the north [14,15]. National and multinational oil and gas corpo-
rations have conducted substantial geological and geophysical examinations inside the 
Indus basin, as it is a key hydrocarbon-producing region in Pakistan [5,16]. However, 
there is an extreme limitation with regards to the fairly insignificant amount of published 
material that addresses the reservoir characterization of the Indus Basin of Pakistan ob-
tained via wireline logging [17,18]. This is due to the fact that petroleum exploration cor-
porations prefer to keep the information they obtain private; as a result, this information 
is not easily accessible for the sake of academic and scientific investigation. Wireline logs 
have been widely utilized nowadays in hydrocarbon exploration to assess the reservoir 
capacity of drilled rocks [19]. For the purpose of potential oil and gas field progression as 
well as prospective assessment, an accurate description of reservoir characteristics is nec-
essary [20–22]. In the field of petroleum and natural gas exploration, petrophysics pro-
vides the most cutting-edge technique for evaluating reservoir properties including rock–
fluid interactions [23]. Petrophysics is also a one-dimensional research approach that in-
vestigates hydrocarbon and reservoir dynamics within geological formations [24]. In or-
der to analyze the primary attributes of the reservoir, petrophysical investigations are per-
formed on core samples or outcrop data, either in laboratories or in open boreholes [25,26]. 
This helps to improve awareness surrounding lithology, permeability, porosity, as well as 
fluid saturation within rocks [27]. In addition to this, evaluation methods can be used to 
identify possible reservoir zones, determine the type of fluid present inside a reservoir, 
and compute the amount of oil resources [28,29]. Although the Central Indus Basin is a 
key hydrocarbon source, there is limited information about its reservoirs from a petro-
physical perspective [30].  

Since the study area is in such high demand for forthcoming oil and gas explorations, 
our study will provide a comprehensive evaluation of the petrophysical assessment that 
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can be used to find new possibilities, establish the dependability of reservoirs, and more 
comprehensively evaluate the hydrocarbon potential. The spatial distribution of porosity, 
permeability, gas saturation, water saturation, and shale volume is still not properly ad-
dressed. In addition, the distribution of clustering and lithofacies in a heterogeneous en-
vironment is also complicated which makes it challenging to identify the adequate reser-
voir quality and potential. Henceforth, the current study is focused on the identification 
of rock typing, spatial distribution evaluation, and reservoir quality prediction, which is 
still missing in the study area. The present study will integrate SOM and CA with the 
logging data to predict lithotypes, reservoir rock types, and zones of interest; decrease the 
probability of errors occurring when interpreting well logs; and yield more precise results. 
Furthermore, the outcomes of this study can be utilized to reduce the dangers associated 
with upcoming development and exploration throughout the Indus Basin.  

 
Figure 1. Location map of the Qadirpur gas field (QGF). 

2. Geological Background of the Study Area 
The research area is located in the Middle Indus Basin. The major hydrocarbon-pro-

ducing area of Pakistan is the Central Indus Basin [31]. The Sember shale, the Mughalkot 
shale, and the Ranikot shale are the source rocks in the Qadirpur region. Additionally, for 
their source potential, the Sirki Formation was taken into consideration [32]. The Sui Main 
Limestone is not evident anywhere in Pakistan [33]. The Pirkoh and Habib Rahi Lime-
stones represent secondary reservoirs, whereas the Sui Main Limestone as well as the Sui 
Upper Limestone are the primary reservoir and source of gas, respectively [34]. The cap 
rocks inside the field of research comprise Ghazij shale along with Sirki shale, as shown 
in Figure 2. The Indian Shield is located to the east of the Central Indus Basin, while the 
marginal zone of the Indian Plate can be found to the west and the Sukkar Rifle can be 
discovered in the south [35]. Rifting of the Indian Plate from Gondwanaland is the pri-
mary tectonic activity that influences the Middle Indus Basin’s structural trends and sed-
imentary patterns (Jurassic to Early Cretaceous) [36]. In addition to the rifting, isostatic 
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uplift along the borders of the recently established ocean triggered uplift and eastward 
tilting during the start of the Cretaceous period. Cretaceous plate tectonics could have 
caused some sinistral strike-slip faulting, hot spots, and thermal doming along the Mada-
gascar–Indian plate border during this time period. As a consequence of this movement, 
the Deccan flood basalts and the NNW striking normal faults were uplifted [37]. Sinistral 
transpression occurred in the western part of the Middle Indus Basin as a result of the 
collision of the Himalayas throughout the Oligocene and the present day, including fold-
thrust structures being overprinted with sinistral flower structures [38]. The tilting fault 
blocks inside the horst–graben structural framework were the primary structural forces 
within the region. The geological and tectonic phenomena in the Middle Indus Basin 
could be subdivided between pre-rift and post-rift eras [39]. The Indian subcontinent was 
a component of Gondwanaland before the rupture between the two tectonic plates. Dur-
ing the Triassic period, the Afghan and Iranian blocks split off from Gondwanaland. Mes-
ozoic sedimentation occurred in the platform region, and the gap in sedimentation was 
caused by movements of orogenic plates [40]. Three key factors, i.e., tectonic activity, sea 
level variations, and sedimentation rates, govern the facies variations inside the Middle 
Indus Basin [41]. These elements are listed in the order of the most essential to the least 
important. In the area under investigation, rifting was the cause of fast marine transgres-
sion, which led to marine sedimentation. Paleocene is the time period in which the tectonic 
activities of the Sulaiman Fold Belt occurred [42]. During the Eocene time period, thrust 
faults formed along the eastern boundary of a Sulaiman region and further south in the 
Marri-Bugti zone. The displacement of the Indian plate and the tectonic forces of the Af-
ghan block led to the formation of a Sulaiman Foredeep [43]. The portion of the Punjab 
Platform that is not prone to instability can be found in the eastern part of the Sulaiman 
Foredeep area, as displayed in Figure 3. 
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Figure 2. Stratigraphic chart of the QGF. 
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Figure 3. Tectonic map of the QGF. 

3. Data and Methods 
Wire-line log data were used for the petrophysical analysis which incorporates bulk 

density (RHOB), neutron porosity (NPHI), deep resistivity (LLD), shallow resistivity 
(LLS), photoelectric effect (PEF), sonic (DT), self-potential (SP), and gamma-ray (GR)  
[27,44]. During the study of the Qadirpur gas field (QGF), the geophysical log data were 
taken from five wells (QGF-03, QGF-11, QGF-15, QGF-16, and QGF-17) within the con-
cerned block. With permission from Pakistan’s Directorate General of Petroleum Conces-
sion (DGPC), we analyzed data from five wells’ las files, which contained geophysical 
responses to carry out current investigations. The stacked geological strata are repre-
sented by their depth-dependent physical characteristic in the borehole logging. Table 1 
contains important data variables. These include the log type, the estimated physical at-
tributes at the appropriate tool, and the log interval of the QGF gas field, as observed in 
the existing study wells. 

The study was conducted to investigate the target-zone lithology, pore-fluid types, 
effective porosity, and permeability [45]. Data quality is associated with the typical mat-
ters of mud type and borehole circumstance, by which there are log interpretation impacts 
on both, i.e., the log stationary reading results are subsequently prominent to misinterpre-
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tations in the logs [46]. Well-log data analysis and optimum results compilation were per-
formed using Interactive Petrophysics (IP) software version 2019. The Sui Main Upper 
Limestone Formation log response is displayed in Figure 4. Several methods were utilized 
to analyze the data in this study, and are discussed below. 

Table 1. The data obtained within geophysical logs. 

Well Logs Signs Physical Features QGF -03 
(Depth, m) 

QGF-11 
(Depth, m) 

QGF-15 
(Depth, m) 

QGF-16 
(Depth, m) 

QGF-17 
(Depth, m) 

Bulk density RHOB Density 836–1342 860–1408 1653–1786 837–1382 693–1401 

Deep resistivity LLD 
Uninvaded zone resis-

tivity 
831–1342 393–1403 1653–1783 387–1377 357–1396 

Photoelectric PEF Photoelectric effect 688–1399 860–1408 1537–1791 837–1382 693–1402 

Sonic DT 
Compressional slow-

ness 
394–1342 390–1407 1630–1790 380–1380 372–1405 

Shallow resistivity LLS Invaded zone resistivity 830–1344 389–1402 1653–1786 386–1377 357–1390 
Self-potential SP Natural log 831–1322 389–1403 1660–1790 386–1377 357–1400 
Gamma ray GR Radioactivity 381–1346 388–1403 1537–1791 380–1390 357–1400 

Neutron porosity NPHI Porosity 836–1340 860–1408 1537–1791 837–1382 693–1378 

 
Figure 4. Lithosaturation mapping of the QGF well 03 reservoir zones within the study area. 

3.1. Environmental Corrections 
Mathematical relationships including Schlumberger charts were used to correct log-

ging data for a variety of unfavorable environmental influences [31]. Before executing the 
analyses described in the present study, preliminary corrections were conducted for well-
bore impacts, temperature alterations in geologic formation when depth increases, GR 
modifications for borehole variations, and NPHI log adjustments for matrix fluctuations. 

3.2. Petrophysical Parameters 
3.2.1. Volume of Shale 

The volume of shale must be analyzed in petrophysical examinations to address the 
findings of water saturation (Sw), permeability, and porosity for the affected consequences 
of the shale [27,47]. The volume of shale in the reservoir was used to determine its quality 



Minerals 2023, 13, 29 8 of 28 
 

[15,48]. Various shale indicators were used to determine the quality of the shale. The 
gamma-ray technique was employed to characterize the amount of shale in this study. 

To calculate the shale volume, the equation given below was used. Vୱ୦ = GR − GR୫ୟ୲୰୧୶GRୱ୦ୟ୪ୣ − GR୫ୟ୲୰୧୶ (1)

where the GR log denotes the actual borehole-corrected GR response/reading in the study 
zone. In clean zones, GRmin is the smallest borehole-corrected GR response/reading. In the 
shale zone, GRmax is the maximal borehole-corrected GR response/reading. 

3.2.2. Porosity Calculation  
Porosity can be determined using a specific porosity log (sonic, neutron, or density 

concepts) or a composite of porosity logs [49]. Porosity is considered as the total porosity 
when the clay content is directly obtained from logs without amendment [50]. The effec-
tive porosity is the porosity that remains after the clay effect is eliminated. Total and ef-
fective porosity values were calculated using sonic logs in the current study. The process 
uses the subsequent equation to investigate effective and total porosity. 

Sonic porosity=   𝜙ୱୀ (∆ି∆ ೘்ೌ)(∆்೑ି∆ ೘்ೌ) (2)

Shale porosity𝜙ୱ୦ୀ (∆୘౩౞ି∆ ೘்ೌ)(∆்೑ି∆ ೘்ೌ)  (3)

where ϕs denotes sonic-derived porosity, ϕsh denotes Shale porosity, ΔT log indicates the 
interval transit time in formation, ΔTma denotes the interval transit time in the matrix, and 
ΔTfl is the interval transit time in the fluid in formation (saltwater mud = 185 us/ft; fresh-
water mud = 189 us/ft) 

3.2.3. Permeability Calculation 
There was a lack of core data for all of the wells accessed in the investigation. Conse-

quently, the present petrophysical study relied on determining permeability via equa-
tions. In the absence of core data, a commonly used method is the Wyllie–Rose approach 
[37]. The following equation was used for calculation purposes. 

K =  a ∗  P୦୧ୠS୵୧ୡ (4)

where K is permeability, Phi is porosity, and Swi is irreducible water saturation. The con-
stants a, b, and c (Timur) are 8581, 4.4, and 2, respectively. 

3.2.4. Water Saturation 
The reservoir pores contain numerous liquids which are saturated with water. Pou-

pon and Leveaux provided the Indonesian formula as an analytical model in 1971 [51]. 
This idea was inspired by the extreme shaliness and freshwater characteristics of oil res-
ervoirs in Archie. 

The analytical relation is expressed as follows:  Sw = ቆ a × R୵R୲ × Φ୲୫ቇଵ୬
 (5)

where Sw is water saturation, Rt denotes true formation resistivity, Rw is formation water 
resistivity, Vsh denotes shale volume, Rsh is the resistivity of shale, ϕe denotes effective po-
rosity, m denotes the cementation factor, and a = the Archie constant (for limestone it is 
0.71)  

3.2.5. Hydrocarbon Saturation 
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Shepherd used the following equation to estimate the hydrocarbon saturation that is 
widely used in current research (Shc) [52]. 𝑆௛௖ = 1- Sw (6)

3.3. Cut-off Estimation 
In order to accurately calculate the originating oil in place and also the reservoir net 

pay, it is necessary to establish cutoff values such as the shale concentration, water con-
tent, porosity, and permeability values. 

3.4. Determination of Lithology Using Cross-Plots and the SOM 
3.4.1. M–N Cross-Plot 

This approach is based on log and fluid characteristics, which are integrated into 
three logs of porosity: density, neutron, and sonic concepts. Around 1997, Schlumberger 
reported that the M–N cross-plot, also known as the tri-porosity cross-plot, is frequently 
used in complicated lithology to depict the combination of minerals. The lithology be-
comes more apparent when the displayed M and N components are combined; these func-
tions were computed using density, neutron, and sonic concepts which are insensitive to 
fundamental porosity. The following equations that give these two parameters are poros-
ity-independent [53]. 

𝑀 = ൫ΔT୤୪୳୧ୢ − ΔT୪୭୥൯(ρ୫ୟ୲୰୧୶ − ρ୤୪୳୧ୢ) ∗ (0.01) (7)𝑁 = (𝜙୒୤୪୳୧ୢ − 𝜙୒୪୭୥)(ρ୫ୟ୲୰୧୶ − ρ୤୪୳୧ୢ)  (8)

3.4.2. PEF and RHOB Crossplot 
It is hard to assess a reservoir without first identifying its lithological characteristics. 

The term “lithology” is commonly used to describe the solid (matrix) portion of a rock. By 
utilizing a PEF-versus-RHOB cross-plot, a comprehensive investigation of the lithology 
feature of the current research region was carried out. 

3.4.3. Determination of Lithology Using SOM 
Recognizing the lithotype is a primary task within reservoir identification. Tradi-

tional approaches to lithotype identification using core data are both time-consuming and 
resource-intensive, and they present significant obstacles when applied to uncored wells. 
The most significant benefit of a SOM is its simplicity in terms of data interpretation and 
comprehension [54]. The elimination of unnecessary dimensions and the utilization of 
grid clustering make it easy to recognize patterns of similarity within the data [55]. These 
clusters are generated by SOMs, taking into account all of the information in the input, 
and the weight given to various types of data can be adjusted to achieve the desired results 
[56]. The SOM can summarize the data in a way that is informative, interactive, and easy 
to understand, and it can handle multiple categorization tasks at once [57]. The primary 
drawback of a SOM is that it needs adequate data to create significant clusters [58]. Infor-
mation that can properly categorize and differentiate inputs is required for the weight 
vectors. Groupings will be more disorganized if the weight vectors are incomplete or con-
tain irrelevant information. Finding the right information requires identifying the im-
portant components, which might be challenging or even unattainable in some cases. 
When considering the decision to utilize a SOM, the ability to identify a high-quality set 
of data is crucial [59]. An additional issue associated with using SOMs is that it can be 
challenging to obtain a proper mapping in which each cluster truly stands alone [60]. In-
stead, mapping irregularities emerge when two distinct clusters share an identical map. 
Multiple sub-clusters of specific neurons can emerge when a larger cluster is separated. 
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This can be avoided with proper map initialization, but not if the ultimate map configu-
ration is not immediately apparent. This study presents a far less costly technique for the 
objective and systematic assessment of lithotype from well-log data using Kohonen’s self-
organizing maps. SOMs are artificial neural networks that organize the input vector into 
subgroups in a topology-like architecture that is formed in accordance with alternations 
in the input data and they do not require supervision [61,62]. 

The empirical relationship can be defined this way: 

Eୢ = 1n ා ෍ hୠ౟,୨ฮ୶౟ି୵ౠฮమ୵୨ୀଵ෍ hb୧,୨୵୨ୀଵ
୬

୧ୀଵ
 (9)

3.5. Clusters Analysis 
A reliable evaluation of the reservoir rock type is crucial for the oil and gas industry 

as it determines the reservoir’s rate of production [12]. Rock type quality in the Sui main 
limestone reservoir is evaluated using a technique called cluster analysis. Throughout the 
several stages of this method, clusters can be relied upon to perform multiple functions. 
The three most essential methods are the nearest neighbor method, the farthest neighbor 
method, and the mean method. The distance between two points can be calculated using 
the Euclidean method formula, as follows [12,63]. 𝑥𝑦 =  ඨ෍ (𝑥𝑖 − 𝑦𝑖)ଶ௡௜ୀଵ  (10)

where x and y represent two points in the n-dimensional Euclidean space, xi and yi reflect 
the Euclidean vectors extending outward from the space’s beginning point, and n sym-
bolizes the n-dimensional Euclidean space. 

4. Results 
In order to estimate the petrophysical parameters of the current research region, well-

log data were employed. Based on the hydrocarbons, porosity values, gas effect, and GR 
response, a petrophysical interpretation was accomplished for the Habib Rahi Limestone 
between 836 and 1342 m in depth, as well as for the zone of interest between 1010 and 
1220 m in the QG well 03, as shown in Figure 4.  

4.1. Lithology 
As shown in Figure 5, the Eocene reservoir in the research area prominently com-

prises limestone along with the content of subordinate argillaceous, revealed by the cross-
plots of lithology (bulk density vs. photo-electric effect). There are dolomitic zones in the 
Habib Rahi and Sui Main Limestones.  

A comprehensive analysis of borehole lithology (LLD, CALI, LLS, GR, MSFL, SP, DT, 
NPHI, and RHOB) was provided by the wire-line log evaluation from the information of 
primary significance [8,27]. The bit-size log and caliper log always coincide with each 
other. When the caliper log displays values that are smaller compared to the bit size, a 
permeable formation is generated; conversely, it represents an impermeable formation 
(Figure 4 Track-6). The clean limestone deposited on shale is distinguished by natural 
gamma rays, which are utilized to analyze the lithological formation. Shale concentrations 
are shown to be greater in impermeable zones. The lower the permeability and effective 
porosity, the higher the shale content. Sandstone, limestone, and dolomite are common 
lithologies in permeable zones. However, the majority of rocks in this research region are 
limestone [64]. Increasing resistivity logs can be traced to high neutron log, gamma ray, 
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and density log values, all of which contribute to favorable conditions for the develop-
ment of shale. The diagenetic process i.e., compaction or cementation without water, 
causes an increment in the resistivity log (Figure 4). 

 
Figure 5. QGF well 03 PEF via RHOB cross-plot of reservoir zone. 

The uniformity of the M–N cross-plots was identical, the calcite point had a signifi-
cant concentration of data points, and a few points were pushed more toward the shale 
zone, confirming the non-clastic character of the reservoir. The data points moved to the 
north and west, indicating the presence of the gas effect. According to this explanation, 
the primary lithology of the Eocene reservoir of the present study is limestone, with some 
shale intercalations present in all wells. Secondary porosity can be observed in each well 
based on a small number of data points; this is caused by tectonic forces that lead to local 
fractures [14,65], as shown in Figure 6. 
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Figure 6. QGF well 03 M and N cross-plot of reservoir zones. 

In addition, this study developed and trained the SOM. The SOM was developed 
with the intention of elaborating the electrical well-log estimations that were acquired 
throughout the Qadirpur gas field in order to establish the lithological segment and iden-
tify various lithotype classes. It is also possible to determine the quality of the SOM map 
by computing the quantization error. The color coordinate codes of this kind of facies were 
established as horizontal and vertical distribution functions to proceed with the lithology 
characterization of the anticipated wells. Facies coded in brown indicate pure limestone, 
whereas those in fuchsia and aqua indicate the presence of shaly limestone and shale. The 
SOM model also demonstrates the magnitude and scope of the variability within hydro-
carbons, as previously established. Pure limestone displays a highly effective gas-bearing 
lithotype, while limestone containing a middle–low-gas-bearing lithotype is distin-
guished by its low shale percentage. This strategy makes it relatively simple to determine 
whether the particular group has favorable or unfavorable facies characteristics for the 
log’s potential, as shown in Figures 7 and 8. 
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Figure 7. Calibrated SOM QGF well 03 outputs with corresponding color indices highlighting indi-
vidual log impacts. 
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Figure 8. Well 03 SOM facies vertical dispersions inside the zone of interest. 

4.2. Water Saturation Assessment 
For the QGF, the essential components of the Archie equation—namely, a, m, n, and 

Rw, were not accessible. Because temperature logs and data on the resistivity of the mud 
filtrate were not available, the Pickett template method was used to determine a, m, and 
n for every well, in addition to the salinity of the formation water. The reliability of water 
saturation estimates relies on the accuracy of these unspecified Archie’s parameters. The 
results of a, m, n, and Rw within the rock interval that was analyzed are shown in Table 2, 
which can be used to estimate the precise water saturation values inside the wells that are 
currently investigated. The significant findings of the Eocene reservoir’s Pickett plot are 
presented in Figure 9. The existence of higher gas-bearing sections was denoted by clus-
ters that shifted to the northeast and are occupied among water content divisions of 50% 
and 20% within the ordinal scale of a resistivity log. This indicates the presence of better 
zones. The computed Sw color coding of the z-axis displays a realistic agreement between 
the displaying results and the quantitative procedures. Data points that lie below the line 
depicting 100% water saturation represent the Sw 100%. 

Table 2. Archie parameters for the QGF. 

Well ID a m n Rw 
Qadirpur-03 1 1.9 2 0.007 
Qadirpur-11 1 1.9 2 0.007 
Qadirpur-15 1 1.9 2 0.007 
Qadirpur-16 1 1.9 2 0.007 
Qadirpur-17 1 1.9 2 0.007 
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Figure 9. QGF well 03 Pickett plot of Φeff via LLDs with a gamma-ray response. API—American 
Petroleum Institute. 

4.3. Buckles Plot 
In the current investigation, a succession on bulk volume water (BVW) hyperbola 

confirmed the series of examined reservoirs via plotting porosity, mostly as the factor of 
Sw, while a BVW value of 0.04 indicated the presence of some Swirr prospects and oil 
production without water. The highest values indicated that only water was produced, 
whilst the lower values revealed that oil and water were produced together. These values 
suggested that oil and water were produced together as the values grew. The lower the 
BVW value, the more reliable the reservoir, which is characterized by higher permeability, 
larger coarse-grained particle sizes, and higher pore interconnectivity (Figure 10).  
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Figure 10. QGF well 03 Buckles plot. 

4.4. Cut-off Determination 
For the purpose of separating productive and unproductive zones in the Eocene res-

ervoir, several cross-plot frameworks were utilized to characterize reservoir cutoffs. Spe-
cifically, the thresholds for water saturation, shale volume (Vsh), permeability, and effec-
tive porosity were set at 40%, 3%, 60%, and 0.1 mD, respectively (Figure 11). In essence, a 
large proportion of net pay effective zones of interest exhibited effective porosity above 
3%, shale content below 40%, water content below 60%, and permeability above 0.1 mD. 
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Figure 11. QGF well 03. (a) Shale concentration versus effective porosity; (b) effective porosity ver-
sus water saturation; and (c) effective porosity versus permeability cross-plot, with gamma-ray 
scales for cutoff determination. 

4.5. Spatial Variations 
The petrophysical parameters of the Eocene reservoir can be seen in a vertical and 

horizontal orientation, respectively, using litho-saturation cross-plots with iso-parameter-
setric visualizations. The horizontal distribution of petrophysical parameters is depicted 
in Figures 12–16, and their vertical distribution is depicted in Figure 17. For contouring 
and upscaling, a map is shown with mean mathematical data from several wells inside 
the reservoir interval. The results of the numerical analysis for every conceivable interval 
are summarized in Table 3. One of the most useful indicators of reservoir quality is the 
presence or absence of shale, which can be used to separate reservoir rock from other rock 
types [66]. A lower shale concentration signifies a more sustainable reservoir. According 
to the projected geographical distribution of shale volume, the smallest amount of shale 
was found in well QGF-5 (30%), whilst the largest amount was found in well QGF-17 
(43%). The shale percentage was particularly low in the northwest and southwest. In con-
trast, it increased in the southeast and northeast of the study region, as displayed in Figure 
12. A deeper examination of the effective porosity distribution map reveals that the reser-
voir had a higher porosity overall. It varied between 8% and 14% in the QGF-11 and QGF-
17 wells, as shown in Figure 14. The analysis demonstrates that Sw values changed be-
tween 38% in QGF-15 and 51% in QGF-3. The reservoir’s water level dropped in the north-
west and southwest of the research region, whereas it increased in the northeast and the 
southwest, as indicated by the water saturation map shown in Figure 15. There was a wide 
variation in the amount of gas accumulation (Sg) in the Eocene reservoir, ranging from 
45% at well QGF-16 to 62% at well QGF-16. Considerable Sg closures were found in the 
northwest and southwest of the studied region, while the rest of the region showed a sig-
nificant decrease in gas saturation, as shown in Figure 15. There was a wide range in K 
values between wells, with 5 mD in well QGF-17 and 31 mD in well QGF-16, as shown on 
the permeability map. The proximity of high permeability was evident on the southwest 
side of the field, as demonstrated by the permeability map. Permeability was lowest in the 
north, as shown in Figure 16.  
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Table 3. A brief synopsis of the petrophysical characteristics of the Qadirpur gas field. 

S. No. 
Well 

Proposed Zone 
Top Bottom 

Thickness 
(m) 

Φeff 

% 
K 

mD 
Vsh 
% 

Sw 
% 

Sg 
% 

Qadirpur-
3 1010            1220 210 12 22 39 51 49 

Qadirpur-
11 

927              1145 218 8 7 35 42 58 

Qadirpur-
15 

1734              1784 50 9 8 30 38 62 

Qadirpur-
16 900              940 40 10 11 37 55 45 

Qadirpur-
17 925              1010 85 14 5 43 46 54 

 
Figure 12. QGF volume of shale (Vsh) variation map computed in (%). 
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Figure 13. Porosity (POR) variation map computed in (%).  

 
Figure 14. Water saturation (Sw) variation map computed in (%).  
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Figure 15. Gas saturation (Sg) variation map computed in (%). 

 
Figure 16. Permeability (PERM) variation map computed in (%). 
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Figure 17. QGF well correlation. 
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4.6. Cluster Analysis 
Results from the cluster analysis indicate that the studied rock sections could be di-

vided into four distinct lithotypes. Table 4 displays the “cluster means” results for every 
well, which were used to describe individual facies based on the average value of the 
parent log curves. The results of the cluster evaluation show that log facies 1 and 2 inside 
the Sui main limestone reservoir represented the most significant areas for the area under 
investigation. The histograms and cross-plots among the input curves that were created 
through the use of k means clustering for the different facies’ groups are displayed in 
Figure 18. Additionally, the log facies feature of reservoir rock types is given in Table 5. 

Table 4. Outcomes of the cluster analysis for every type of rock. 

K-Mean Clustering Results 
Fa-
cies 

Point
s 

Rock Typing GR Mean Φeff Mean Perm 
Mean 

Sw Mean 

1 137 
Excellent-quality 

rock type 58.873 0.05641 38.474 0.52641 

2 16 
Good-quality rock 

type 86.53 0.00833 0.37459 0.3541 

3 41 
Moderate-quality 

rock type 90.967 0.14072 637.82 0.30895 

4 109 
Poor-quality rock 

type 92.27 0.08073 134.89 0.53928 

Table 5. Detailed description of the features of log facies. 

S. No Rock Typing GR Φeff Perm Sw 

Facies-01 
Excellent-quality 

rock type Very low 
Good to ex-

cellent 
Good to ex-

cellent Very low 

Facies-02 
Good-quality rock 

type Low Good good low 

Facies-03 
Moderate-quality 

rock type Medium Fair to good Fair to good Medium 

Facies-04 
Poor-quality rock 

type High Low Low Very high 
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Figure 18. QGF-well 03 cluster analysis depicting the final result. 

5. Discussion 
Wire-line log investigations that rely on previously established formulas and com-

putations, cross-plots, and charts are included in the petrophysical analysis, revealed the 
hydrocarbon potential outcomes of the Eocene reservoir. Variations in the lithology and 
existence of shale can be detected using the DIA porosity (PEF/NPHI) cross-plot. Never-
theless, there are a few limitations with the well-log data. Since multiple companies eval-
uated and analyzed the log curves, numerous charts were employed in this study to esti-
mate several parameters that could have an impact on the accuracy of the findings. Be-
cause of this, it is necessary to make a comparison including a tri-porosity (M-N) cross-
plot to validate the accuracy of the data. Petrophysical variables confirmed that the Habib 
Rahi Limestone is a natural gas-bearing reservoir (Table 3). QGF well 03 is a highly pro-
ductive net pay zone in the upper and lower parts of Habib Rahi Limestone. Although the 
Sui Upper Limestone in its entirety is not a reservoir, a 210 m-thick section was found 
with a depth ranging between 1010 and 1220 m containing a significant amount of hydro-
carbon (59%), as shown in Table 3. Hydrocarbon-rich strata in the Habib Rahi Limestone 
were discovered at a depth of 927 to 1145 m and a thickness of 218 m in QGF well 11. 
(Table 3). The confirmation of gas existence is supported by the gas effect and significant 
formation resistivity. The zone was characterized by a low shale volume and high effec-
tive porosity (8%). The hydrocarbon saturation reached up to 58%. It is suggested that 
mud filtrate in the flushed zone with movability to the well bore was displaced due to 
58% hydrocarbon. With QGF-15, the Sui Main Limestone had low water saturation (38%) 
reservoir zones ranging from 1734 to 1784 m. The average hydrocarbon saturation reached 
up to 62% (Table 3). With QGF-16, the Habib Rahi Limestone was the source of the most 
abundant hydrocarbon-saturated zone with a depth of 900 to 940 m and a thickness of 40 
m. This zone included up to 45% hydrocarbon. This zone was validated as a net pay zone 
by the presence of values of effective porosity (10%), water saturation (55%), and shale 
volume (30%) (Table 3). The water–gas transition zone could be identified by the absence 
of a gas effect, as well as a dramatic decrease between the sonic and neutron porosities. 
Gas–water contact was found at a depth of 940 m. The presence of high shale content in 
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the Sui Upper Limestone was attributed to non-reservoirs, causing diminutive hydrocar-
bon saturation, as well as poorly effective and total porosities. QGF-17, the key reservoir 
zone in Habib Rahi Limestone, had a thickness of 85 m (in the rage of 925–1010 m). The 
net pay zones were marked where the presence of gas was clear from gas effects, high 
hydrocarbon saturation (54%) and low water saturation (46%), low volume of shale (43%), 
and high effective porosity (14%), as exhibited in Table 3. The current findings suggest 
that the Eocene reservoir is a minimal shale volume reservoir, validating the adoption of 
the Pickett method. The Pickett plot technique provides a constant framework for as-
sessing Archie’s parameters and determining the Sw under these conditions. Unsuper-
vised machine learning was used in the investigation of the QGF in Pakistan in order to 
classify the various lithotype. The primary findings of this study were found with a sim-
plified technique to categorize the lithotypes in the QGF in Pakistan by utilizing the SOM 
approach; an assessment of every different classifier of unsupervised learning methods; 
higher precision outcomes; and an evaluation of log-facies classification grounded on un-
supervised learning. The results obtained by the SOM in the lithotype categorization were 
more reliable. Additionally, the machine learning model accurately predicted lithotype 
values reflecting changes in rock physical attributes throughout depth zones due to vari-
ations in compaction as well as diagenetic mechanisms [11]. The specificity of this finding 
can fluctuate at deeper intervals in relation to the post-depositional events because of each 
formation endured; however, the machine learning model has an enormously high per-
formance and efficiently supports geological examinations within a significantly shorter 
period of time [67]. Most crucially, our research has shown that the efficacy of the SOM 
could be assessed from both a geological as well as a machine learning aspect. It is com-
mon practice that determining the quality of the reservoir rock types is essential for oil 
and gas firms, considering that these assessments determine the rates of reservoir produc-
tion. The performance of the zones of interest was evaluated using a hierarchical cluster-
ing method to analyze the reservoir rock type (RRT) [68]. The different kinds of rocks 
represent reservoir formations with a well-defined correlation among effective porosity, 
deliverability, gas and oil storage capacity, and the volume of a specific water content 
[69,70]. This method provides an accurate estimation of the total amount of oil present 
inside the reservoir as well as the amount that can be extracted [71]. Based on the petro-
physical characteristics computed and the type of rock that operates as the reservoir, it is 
clear that there are commercially extractable quantities of hydrocarbons within four 
linked reservoir limestone units. 

6. Conclusions 
The Eocene sequence in the Central Indus Basin of the Qadirpur area was studied 

with the potential of the reservoir using various parameters of petrophysics, and a de-
tailed study for the cut-off factor was performed. The findings and conclusions are men-
tioned below.  

The criteria for estimating the depth of oil and gas deposits were set by the cutoff. 
The volume of shale, water saturation, permeability, and porosity were approximately 
40%, 60%, 0.01 mD, and 3%, respectively. If a rock’s petrophysical properties are less than 
these threshold values, it is not considered a good reservoir. 

The primary goal of the SOM is to classify the reservoir’s underlying lithotype. It is 
a highly effective technique used for determining the lithology of complex geological 
structures. This study classifies the reservoir’s lithotype into three groups, each with its 
unique degree of heterogeneity (limestone, shaly limestone, and shale).  
1. In terms of lithology, the reservoir is mainly composed of Sui main limestone with 

little shale, while in terms of mineralogy, it is made up of calcite, as evidenced by the 
cross-plot results. 

2. The results of the cluster analysis show that the most intriguing parts of the Eocene 
reservoir for the Sui man limestone are in log facies 1 and 2. 
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3. The effective thickness of a QGF rises within the northwest and southwest regions of 
the research area, whereas water saturation increases in the northeast and southwest 
parts, as a result of spatial variations throughout petrophysical features. Further-
more, the petrophysical information obtained from the QGF provides crucial data on 
regional geologic variations to facilitate future studies in the research area’s SW and 
NW onshore blocks. 
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