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Abstract: Gold and Bi-bearing parageneses are pivotal to understanding gold concentration and
deposition processes. The large-scale Laozuoshan gold deposit is located in the Jiamusi Block,
northeastern China, and has experienced complex mineralization processes with abundant gold and
Bi-bearing minerals. However, the relationship between Bi-minerals and gold is unclear, preventing
our understanding of the gold enrichment and precipitation mechanism in the Laozuoshan gold
deposit. Optical microscope and SEM results show three stages of gold mineralization: pyrrhotite
(Po-1) + arsenopyrite (Apy-1) + Bi-bearing minerals (Bis-1) + Au-1; arsenopyrite (Apy-2) + chlorite
+ Bi-bearing minerals (Bis-2) + Au-2; and arsenopyrite (Apy-3) + graphite + Bi-bearing minerals
(Bis-3) + Au-3. The abundant amount of gold (Au-1~Au-3) is associated with Bi-bearing minerals
(Bis-1~Bis-3), which coexist as inclusions and fill in fractures in these minerals. The mineral assem-
blages of arsenopyrite, Bi-minerals, and gold exhibit a clear As-Bi-Au mineralogy in the ores, and
the ternary diagram of the chemical compositions of the Bi-minerals shows that Bi-minerals all fall
in reducing regions, indicating that Bi-minerals are precipitated under reducing conditions. The
gold compositions demonstrate a positive correlation (R2 = 0.58) between Au and Bi. Consequently,
we propose that the gold experienced the ore-forming fluids concentration and further Bi-melts
scavenging for the Laozuoshan gold deposit mineralization. The Bi collector model is essential in
interpreting the high-grade gold in the Laozuoshan gold deposit, indicating that the geochemical
anomalies observed with bismuth may be a critical potential exploration target for the high-grade
gold deposits in the Jiamusi Block.

Keywords: arsenopyrite; gold; Bi-minerals; Laozuoshan; enrichment

1. Introduction

Bismuth is widely found in various sulfide-rich gold deposits [1], including in orogenic
deposits [2,3], Cu-Au porphyry-epithermal deposits [4,5], skarn Au deposits [6–10], Iron-
Oxide-Copper-Gold (IOCG) deposits [11], Au-rich Volcanogenic Massive Sulfide (VMS)
deposits [12], and intrusion-related gold deposits [13–16].

Gold and Bi-bearing parageneses are pivotal to understanding gold deposition and
remobilization processes [1]. Bismuth acts as an effective Au scavenger in the liquid phase
and dissolves ~20% of Au at 300 ◦C [17]. This process has been called the Bi collector
model, an important mechanism for gold enrichment [10,15,17–19]. Gold scavenging using
Bi-melts processes is facilitated at temperatures >271 ◦C, which tends to contribute to the
formation of high-grade ore bodies with complex minerals [17,19]. In this context, elements
such as Bi are considered as gold pathfinder elements in mineral exploration [1].

The Laozuoshan gold deposit is a large gold deposit in the north-central part of the
Jiamusi Block, NE, China, and has an indicated reserve of 32 t and an average grade of
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7.38 g/t [20]. Previous reports indicate that the study area experienced regional metamor-
phism in the early Paleozoic era, skarn mineralization (the early hydrothermal mineraliza-
tion) in the late Paleozoic era (264.6 ± 2.6 Ma), and magmatic-hydrothermal superimposi-
tion (the late hydrothermal mineralization) in the Mesozoic era (104.6 ± 1.8 Ma) [21,22],
resulting in multiple sulfidation stages as well as the development of complex textures and
intricate mineral patterns in the Laozuoshan gold deposit [21–24]. The early hydrothermal
mineralization was found to have occurred in the East and Central ore belts of the Laozu-
oshan gold deposit. In contrast, the late hydrothermal mineralization mainly occurred in
the West ore belt, with minor occurrences in the East and Central ore belts [23,25]. C-O-S-Pb
isotope data indicate that the ore-forming materials have a magmatic origin [20]. According
to mineral paragenesis, there are two metallogenic periods and seven mineralization stages,
and arsenopyrite and pyrrhotite are the main gold-bearing minerals [23,25,26]. We found
abundant Bi-minerals coexisting with gold in the ores, occurring as inclusions in arsenopy-
rite or filling in arsenopyrite fissures. However, the relationship between Bi-minerals and
gold is unclear, which restricts our understanding of gold enrichment and the precipitation
mechanism in the Laozuoshan gold deposit.

In the present study, we focus on describing the arsenopyrite and Bi-minerals found in
association with gold in the Laozuoshan gold deposit. We provide detailed information on
the mineral paragenesis, chemistry, and textures of the arsenopyrite, Bi-minerals, and gold
using ore microscopy, SEM-EDS (scanning electron microscopy with energy dispersive
spectrometry), and EPMA (electron probe micro-analysis). These results might reveal the
gold enrichment and precipitation mechanism.

2. Geological Setting

The Jiamusi Block is situated in the easternmost segment of the Central Asian Orogenic
Belt (Figure 1a). The exposed geological units mainly include the Paleozoic Mashan
Group, the Majiajie Group, Paleozoic–Mesozoic granitic rocks, and sedimentary rocks
(Figure 1b) [27,28]. The Mashan Group is the Precambrian metamorphic basement portion
of the Jiamusi Block [29]. The Mashan Group comprises graphite and phosphorus and is
rich in aluminum and intercalated with marble, calcium silicate, and quartz schist that has
undergone high-amphibolite–granulite facies metamorphism [30]. The Majiajie Group is
mainly composed of aluminum-rich and carbon-rich sedimentary clastic rocks that have
undergone contact metamorphism [31,32]. The Paleozoic–Mesozoic sedimentary strata
are mainly distributed on the southern margin of the Jiamusi Block [27,33]. The early
Paleozoic granitic rock is a late Pan-African magma product, as is the Mashan Group, and
it constitutes the metamorphic crystalline basement of the Jiamusi Block (Figure 1b). The
late Paleozoic magmatic rocks result from the southward subduction of the Paleo-Asian
Ocean tectonic domains. In contrast, the Mesozoic magmatic rocks are the result of the
superimposition and transformation of the Mongolia–Okhotsk Ocean’s and Paleo-Pacific
Ocean’s tectonic domains [34–36]. The Jiamusi Block has experienced complex tectonic–
magmatic activities, forming large- to medium-scale gold deposits such as the Laozuoshan,
Tuanjiegou, and Malian deposits (Figure 1b) [23,37].
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Figure 1. (a) Sketch tectonic map (modified according to Hao et al. [38]) and (b) simplified geological 
map of the Jiamusi Block (modified after Wilde et al. [39]). Gold deposit in (b) 1—Lianzhushan gold 
deposit; 2—Pingdingshan gold deposit; 3—Malian gold deposit; 4—Tuanjiegou gold deposit; 5—
Dujiahe gold deposit; 6—Taipinggou gold deposit; 7—Dongfengshan gold deposit; 8—Yangbishan 
gold deposit; 9—Xinli gold deposit; 10—Jiazhuagou gold deposit; 11—Laozuoshan gold deposit. 
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The stratigraphic units of the Laozuoshan gold deposit include the Early Paleozoic 

Mashan Complex, the Jurassic Chengzihe Formation, and Quaternary unconsolidated 
sediments (Figure 2a) [27]. The Mashan Complex is exposed in the northeastern part of 
the mine and is dominated by biotite plagioclase granulite, biotite plagioclase gneiss, mar-
ble, and migmatite (Figure 2b). The Jurassic Chengzihe Formation consists of sandstone 
and carbonaceous shale exposed in the western area of the ore district (Figure 2a). The late 
Paleozoic gneissic granites (262 ± 3.9 Ma) are widespread in the center and western areas 
of the mine and make minor intrusions into the Mashan Complex and make contact with 
the marble in those areas to form skarn (Figure 2b) [22,40]. The magmatic activity in the 
late Mesozoic era resulted in the emplacement of diorite (103 ±1 Ma), felsite (100.9 ± 1.6 
Ma), granite porphyry (104.6 ± 1.8 Ma), plagiogranite, and granodiorite, as well as in wide-
spread diorite porphyry dykes (Figure 2a) [21]. The ore-controlling structures in the ore 
are mainly NW-NWW- or EW-trending faults or ductile–brittle shear zones (Figure 2a,b), 
which provide channels for magmatism and hydrothermal fluids. 

Figure 1. (a) Sketch tectonic map (modified according to Hao et al. [38]) and (b) simplified geological
map of the Jiamusi Block (modified after Wilde et al. [39]). Gold deposit in (b) 1—Lianzhushan
gold deposit; 2—Pingdingshan gold deposit; 3—Malian gold deposit; 4—Tuanjiegou gold deposit;
5—Dujiahe gold deposit; 6—Taipinggou gold deposit; 7—Dongfengshan gold deposit; 8—Yangbishan
gold deposit; 9—Xinli gold deposit; 10—Jiazhuagou gold deposit; 11—Laozuoshan gold deposit.

3. Deposit Geology

The stratigraphic units of the Laozuoshan gold deposit include the Early Paleozoic
Mashan Complex, the Jurassic Chengzihe Formation, and Quaternary unconsolidated
sediments (Figure 2a) [27]. The Mashan Complex is exposed in the northeastern part
of the mine and is dominated by biotite plagioclase granulite, biotite plagioclase gneiss,
marble, and migmatite (Figure 2b). The Jurassic Chengzihe Formation consists of sandstone
and carbonaceous shale exposed in the western area of the ore district (Figure 2a). The
late Paleozoic gneissic granites (262 ± 3.9 Ma) are widespread in the center and western
areas of the mine and make minor intrusions into the Mashan Complex and make contact
with the marble in those areas to form skarn (Figure 2b) [22,40]. The magmatic activity
in the late Mesozoic era resulted in the emplacement of diorite (103 ± 1 Ma), felsite
(100.9 ± 1.6 Ma), granite porphyry (104.6 ± 1.8 Ma), plagiogranite, and granodiorite,
as well as in widespread diorite porphyry dykes (Figure 2a) [21]. The ore-controlling
structures in the ore are mainly NW-NWW- or EW-trending faults or ductile–brittle shear
zones (Figure 2a,b), which provide channels for magmatism and hydrothermal fluids.
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Figure 2. (a) Geological map of the Laozuoshan gold deposit; (b) and the East ore belt of the
Laozuoshan gold deposit (modified after Meng et al. [23]).

The Laozuoshan gold deposit experienced two periods of metallogenesis activity (the
early hydrothermal mineralization and the late hydrothermal mineralization), resulting
in the formation of three ore belts (East, Central, and West) (Figure 2a). Seven stages of
mineralization are recognized based on field and microscopic observations (Figure 3) [23].
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Figure 3. Photographs show the textural relationships and paragenesis features of ore samples at the
different ore-forming stages in the Laozuoshan gold deposit: (a) Skarn alteration dominated by garnet
and diopside (polarized light); (b) Gold-bearing arsenopyrite occurs along contact with pyrrhotite
(reflected light); (c) Colloidal pyrite occurs along contact with pyrrhotite and then cut by arsenopyrite
(reflected light); (d) Gold is distributed in the fissure of arsenopyrite and pyrrhotite (reflected light);
(e) Gold and Bi-minerals occur as inclusion in arsenopyrite (reflected light); (f) Carbonate minerals
such as calcite fill chlorite interstitial spaces (cross-polarized light); (g) The alteration of feldspar into
sericite in alteration belt (cross-polarized light); (h,i) Bi-minerals and gold occur as the inclusion or
fill in the fissure-developed arsenopyrite, and the arsenopyrite fissure is filled with graphite, quartz,
and calcite (reflected light); (j) The fined pyrite and marcasite aggregates which containing fine
chalcopyrite inclusions are surrounding by arsenopyrite and pyrite (reflected light); (k) Arsenopyrite
occurs with pyrite and marcasite (reflected light); (l) Fine-grained euhedral pyrite occur in oriented
banded marcasite (reflected light). Abbreviation: Apy—arsenopyrite; Au—gold; Bis—Bi-minerals;
Cal—calcite; Chl—chlorite; Ccp—chalcopyrite; Di—diopside; Elt—electrum; Fsp—feldspar; Gn—
Galena; Gr—graphite; Grt—garnet; Mrc—marcasite; Po—pyrrhotite; Py—pyrite; Qtz—quartz; Ser—
sericite. The geochronological data come from Wu et al. [40] and Bai et al. [21].
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The early hydrothermal mineralization mainly occurred in the East and Central ore
belts [27], with a similar occurrence with the wall rock (Figure 2b). The contact zone and
the NW-NWW- or EW-trending faults zones controlled the ore bodies (Figure 2b). These
ore bodies occur as vein- and lenticular-type bodies and mostly have lengths of 13–330 m,
thicknesses of 0.43–9.62 m, and downward plunge depths of 6–400 m and generally dip in
the NE direction at an angle of 50◦–80◦ [27].

Ore minerals comprise arsenopyrite, pyrrhotite, and chalcopyrite, with minor pyrite,
Bi-minerals, electrum, and native gold accounting for 5%–15% of the ores (Figure 3b–e).
Gangue minerals include garnet, diopside, chlorite, epidote, quartz, and calcite (Figure 3a,f).
Wall rock alteration is characterized by skarnization and chloritization containing amounts
of garnet, diopside, epidote, and chlorite (Figure 3a,f). Three stages (Stage I to Stage III)
have been identified based on the paragenetic assemblages of minerals (Figures 3a–f and
4). Stage I (the pyrrhotite–arsenopyrite–calcite stage) is represented by massive aggre-
gates of garnets, diopsides, and pyrrhotite, with minor amounts of arsenopyrite (Apy-
1) (Figure 3a,b). Stage II (the colloidal pyrite–quartz stage) is characterized by fine- to
coarse-grained aggregates of the colloidal pyrites (Figure 3c). Stage III (the coarse-grained
arsenopyrite–calcite stage) is marked by abundant coarse-grained arsenopyrite (Apy-2)
with anhedral to subhedral radial chlorites (Figure 3d–f).

The late hydrothermal mineralization mainly occurred in the West ore belt, with minor
occurrences observed in the East and Central ore belts. The fault structure controlled the
ore bodies and converged in the NE direction, spreading in the SW direction in the West ore
belt. These vein-type ore bodies have lengths of 25–482 m, thicknesses of 0.19–4.96 m, and
downward plunge depths of 7–390 m and generally dip in the NW direction at an angle of
45◦–55◦ [27].

The ore minerals consist of arsenopyrite, pyrite, chalcopyrite, and marcasite with minor
amounts of pyrrhotite, galena, sphalerite, Bi-minerals, electrum, and native gold within
gangue minerals such as quartz, feldspar, sericite, calcite, and graphite (Figure 3g–l). K-
feldspar alteration is characterized by quartz, K-feldspar, sericite, and carbonate. According
to the mineral paragenetic assemblages, four stages (Stage IV to Stage VII) have been
identified (Figures 3g–l and 4). Stage IV (the massive quartz stage) is characterized by a large
amount of coarse-grained quartz that is largely precipitated without sulfide (Figure 3g).
Stage V (the coarse-grained arsenopyrite–quartz stage) is represented by coarse-grained
gold-bearing arsenopyrites (Apy-3) that are associated with graphite, quartz, and calcite
(Figure 3h,i). Stage VI (the polymetallic sulfide–arsenopyrite quartz stage) is marked by
polymetallic sulfide assemblages consisting of chalcopyrite, pyrite, marcasite, arsenopyrite
(Apy-4), sphalerite, and galena (Figure 3j–l). Apy-4 can be euhedral to subhedral in shape,
can be medium- to fine-grained, and coexists with pyrite and galena (Figure 3k). The final
stage (Stage VII: the quartz–calcite stage) comprises calcite and quartz veins ranging from
millimeters to centimeters in length (Figure 3l).
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Figure 4. The paragenetic sequence of minerals in the Laozuoshan gold deposit. The shadow bar
represents the gold precipitation stages (modified after He [25] and Meng et al. [23]).

4. Samples and Analytical Methods

The No. 401 ore body (which has an average grade of 13.07 g/t) and the No. 2 ore
body are the main ore bodies in the East and Central ore bodies, respectively. Both of them
developed skarn mineralization. In total, 41 disseminated samples were collected from
the No. 401 ore body adit located in the East ore belt (Figure 2b), and 15 samples were
collected from the No. 2 ore body adit in the Central ore belt. The No. 304 ore body (which
has an average grade of 7.64 g/t) in the West ore belt represents the late hydrothermal
mineralization. In total, 14 massive structural samples were collected from No. 304 ore
body adit in the West ore belt (Figure 2a). After detailed macroscopic observations of
the ore samples, the mineralogy of these samples was analyzed using transmitted and
reflected light microscopy to identify silicate and ore mineral assemblages, especially those
of arsenopyrite, Bi-minerals, electrum, and native gold.

Further, the microscopic textural and elemental qualitative analyses of the sulfides,
Bi-minerals, electrum, and native gold were performed using an Ultra Plus field emission
scanning electron microscope (FESEM) (Carl Zeiss, Berlin, Germany) at the Analytical and
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Testing Center of Northeastern University, China. The device has a back-scattering electron
(BSE) detector and an energy-dispersive X-ray spectrometer (EDS). The resolution was
0.8 nm, the magnification ranged from 12 to 1,000,000, and the acceleration voltage ranged
from 20 V to 30 kV.

The composition data of arsenopyrite, Bi-minerals, and gold were determined using a
JOEL JXA-8350F field emission electron probe microanalyzer (EPMA) (JEOL, Ltd., Tokyo,
Japan) in the same laboratory. The microprobe was operated with a beam energy of 20 kV
and a beam current of 20 nA with a 1 µm diameter. The counting time was 40 s for the
peak and 20 s for the background of each element. The standards were pyrite–FeS2 (Fe, S),
arsenopyrite–FeAsS (As), Au metal (Au), Ag2S (Ag), Bi metal (Bi), chalcopyrite–CuFeS2
(Cu), Co metal (Co), Ni metal (Ni), Sb2S3 (Sb), ZnSe (Se), TeCdHg (Te), and ZnS (Zn).
Analytical results were processed using the ZAF correction routines.

5. Results
5.1. Texture of the Arsenopyrite, Bi-Minerals, and Gold

The Laozuoshan gold deposit has undergone three gold mineralization stages
(Au-1, Au-2, and Au-3), which occurred in Stages I and III during the early hydrothermal
mineralization and in Stage V during the late hydrothermal mineralization, respectively
(Figures 3 and 4). The aurous minerals (Au-1 to Au-3) are closely related to arsenopyrite
(Apy-1 to Apy-3) and the Bi-minerals (Bis-1 to Bis-3) (Figures 5–7).
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Figure 5. Reflected light photomicrographs (a–c), BSE images (d–e), and element mapping (g–i) show
the textural and chemical features of Apy-1, Au-1, and Bi-minerals (Bis-1) in Stage I. (a) Coarse-grained
electrum distributed in arsenopyrite margin; (b) Pyrrhotite occurs as inclusions in arsenopyrite, while
minor electrum and joséite-B fill the fissure of garnet and diopside; (c) Bi-minerals and gold occur the
fissure between arsenopyrite and pyrrhotite; (d) Electrum and Bi-mineral coexisted along the contact
with arsenopyrite (Apy-1); (e) Native Bi coexisted with the joseite-B as inclusions or in the joseite-B
margin, and both of them occurred as inclusion in chalcopyrite; (f) Coarse-grained electrum coexisted
with joseite-B as the solid solution. Element mappings (g–i) are the results of (d); (g) The Bi element
mapping of Bi-minerals; (h) The Ag element mapping of electrum; (i) the Co element mapping of
arsenopyrite; Abbreviation: Apy—arsenopyrite; Au—gold; Bi—native Bi; Bis—Bi-minerals; Ccp—
chalcopyrite; Di—diopside; Elt—electrum; Grt—garnet; JoB—joséite-B; Po—Pyrrhotite.
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Figure 6. Reflected light photomicrographs (a–c), BSE images (d–e), and element mapping (g–i)
show the textural and chemical features of Apy-2, Au-2, and Bi-minerals (Bis-2) in Stage III. (a) Bi-
minerals occur as inclusions in pyrrhotite; (b) Gold fills the fissure of arsenopyrite which contains
Bi-minerals inclusions; (c) Bi-minerals and gold occur as inclusions in arsenopyrite and pyrrhotite,
respectively; (d) Native gold, native bismuth, and hedleyite coexisted in arsenopyrite or filled the
fissure of arsenopyrite; (e) Electrum and hedleyite coexisted with arsenopyrite; (f) Maldonite occurs
as inclusions in arsenopyrite or native bismuth, while native gold and electrum occur along the
contact with native bismuth; Element mappings (g–i) are the results of (d). (g) the Bi element mapping
of native bismuth and hedleyite; (h) the Ag element mapping of electrum; (i) the Co mapping of
arsenopyrite; Abbreviation: Apy—arsenopyrite; Au—gold; Bi—native Bi; Bis—Bi-minerals; Ccp—
chalcopyrite; Elt—electrum; Mld—maldonite; Po—Pyrrhotite; Py—pyrite.

5.1.1. Stage I (Pyrrhotite–Arsenopyrite–Calcite Stage)

The sulfides are disseminated in garnet and diopside (Figure 3a,b) and are distributed
in the skarn ore bodies in the East and Central ore belts. Arsenopyrite (Apy-1) can be
medium- to fine-grained (100 to 500 µm) and is associated with coarse-grained (>500 µm)
pyrrhotite (Po-1), chalcopyrite, and pyrite (Py-1) (Figure 5a–c).

Electrum with minor amounts of native gold usually intergrowths among the Bi-
minerals (Bis-1) (Figure 5). Electrum can be subhedral to anhedral shape, with particle sizes
of about 40–120 µm. It occurs in inclusions in joséite-B, native bismuth, or chalcopyrite
(Figure 5b,e) or at the boundary between sulfide (arsenopyrite (Apy-1), pyrrhotite (Po-1),
and chalcopyrite (Figure 5c) and related gangue minerals (garnet and diopside, Figure 5b).
The surface of the electrum associated with joséite-B is rough and porous (Figure 5f). The
Bi-minerals (joséite-B, native bismuth, etc.) can have coarse- to fine-grain (20 to 200 µm)
particles and are distributed at the margins of arsenopyrite (Apy-1) or fill in narrow
fractures between pyrrhotite (Po-1) and arsenopyrite (Apy-1) or fissures in garnet and
diopside (Figure 5a–d). The joséite-B also occurs as inclusions in arsenopyrite (Apy-1),
chalcopyrite, and pyrrhotite (Po-1) (Figure 5e). The EDS results show that Bi, Ag, and Co
are evenly distributed in Bi-minerals (Bis-1), electrum (Au-1), and arsenopyrite (Apy-1),
respectively (Figure 5g–i).
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Figure 7. Reflected light photomicrographs (a–c), BSE images (d–f), and element mapping (g–j)
show the textural and chemical features of Apy-3, Au-3, and Bi-minerals (Bis-3) in Stage V. (a) Bi-
minerals and gold occur as inclusions in arsenopyrite, which surrounding by chalcopyrite, pyrite, and
marcasite; (b,c) Graphite occurs in the fissure of arsenopyrite, which containing gold and Bi-minerals;
(d) Native gold coexisted with Bi-minerals, which occurs as inclusion in arsenopyrite, while minor
electrum occurs along the contact with arsenopyrite; (e) Electrum coexisted with maldonite and
Bi-minerals such as joséite-A in arsenopyrite; (f) Electrum coexisted with native bismuth and pilsenite,
which occur as inclusions in arsenopyrite, while minor electrum filled the fissure of arsenopyrite.
Element mappings (h–j) are the results of (g). (h) the Au element mapping of electrum; (i) the Ag
element mapping of electrum; (j) the Co element of arsenopyrite; Abbreviation: Apy—arsenopyrite;
Au—gold; Bis—Bi-minerals; Ccp—chalcopyrite; Elt—electrum; Gr—graphite; JoA—joseite-A; Mrc—
marcasite; Po—Pyrrhotite; Py—pyrite.

5.1.2. Stage III (Coarse-Grained Arsenopyrite–Calcite Stage)

Sulfides are disseminated in ore and are distributed in the skarn ore bodies in the East
and Central ore belts. Arsenopyrite (Apy-2) is the diagnostic mineral of Stage III and is
characterized by its coarse grain size (0.2 to 1 mm; Figure 6a–c). Apy-2 fissures are filled in
with chlorites and calcites (Figure 3f). Pyrrhotite (Po-1), when replaced by Apy-2, appears
to be round (Figure 3d,e). Colloidal pyrite (Py-2) is cut by Apy-2 (Figure 3c) [41].

Native gold and electrum with a minor amount of maldonite coexist with the Bi-
minerals (Bis-2) (Figure 6d–f). Native gold and electrum are subhedral to anhedral shape
(30 to 150 µm, Figure 6d,e). Both of them occur as inclusions in arsenopyrite (Apy-2) or the
Bi-minerals (Bis-2) or fill-in arsenopyrite (Apy-2) fractures (Figure 6a–f). Minor amounts of
fine electrum (<10 µm) occur as inclusions in pyrrhotite (Po-1) (Figure 6c). The Bi-minerals
(native bismuth, maldonite, and hedleyite) have various particle sizes ranging from 10 to
300 µm (Figure 6d–f). Hedleyite and native bismuth occur as inclusions in arsenopyrite
(Apy-2) and chalcopyrite (Figure 6a–f), with minor native bismuth filling in arsenopyrite
(Apy-2) fissures (Figure 6d). EDS element mapping shows that Ag and Bi are uniformly
distributed in gold, hedleyite, and native bismuth (Figure 6g,h). There are apparent Co
anomalies in Apy-2 (Figure 6i). According to the EPMA data, the Co content is high in
Apy-1, while minor contents are present in Apy-2 (Supplementary Materials Table S1).
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Therefore, the abnormal Co in Apy-2 might indicate that Apy-1 forms Apy-2 through the
dissolution–reprecipitation mechanism (Figure 6i) [42].

5.1.3. Stage V (Coarse-Grained Arsenopyrite-Quartz Stage)

Arsenopyrite (Apy-3) is the main sulfide and coexists with graphite (Figure 7a–c). It
is mainly distributed in the West ore belts. Coarse-grained arsenopyrite (Apy-3) is about
2 to 3 mm in size and has developed fissures filled in with graphite, quartz, and calcite
(Figure 3h,i and Figure 7a–c).

Electrum with minor native gold coexists with Bi-minerals (Bis-3) as inclusions in
arsenopyrite (Apy-3) (Figure 7a–f). Additionally, minor native gold particles occur in
arsenopyrite fissures and carbonate veins (Figure 7d). Compared to Au-1 and Au-2, the
particle sizes of gold (electrum with minor native gold) decrease significantly and range
from 5 to 30 µm (Figure 7a–f). Bi-minerals occur as inclusions in arsenopyrite (Apy-3)
or at the edge of Apy-3 (Figure 7a–f). The particle sizes (5–50 µm) of Bi-minerals also
decrease significantly (Figure 7d–f). The Ag in some gold particles (Au-3) shows a trend of
enrichment from the center to the edge (Figure 7g–i), something that is further confirmed
by EMPA data (Figure 7g and Supplementary Materials Table S2). Meanwhile, there are
apparent Co anomalies in arsenopyrite (Apy-3) (Figure 7j).

5.2. Compositions of Arsenopyrite, Gold, and Bi-Mineral Assemblages
5.2.1. Compositions of Arsenopyrite

EPMA data show that the contents of As, S, and Fe in four generations of arsenopyrite
vary significantly (Supplementary Materials Table S1 and Figure 8a). The arsenic contents
in Apy-1 (average (Ave): 48.41 wt.%; N = 13) and Apy-3 (Ave: 49.65 wt.%, N = 8) are higher
than those in Apy-2 (Ave: 46.39 wt.%; N = 7) and Apy-4 (Ave: 46.34 wt.%) (Supplementary
Materials Table S1). The sulfur contents in Apy-1 (Ave: 17.90 wt.%; N = 13) and Apy-3
(Ave: 17.98%; N = 8) are lower than those in Apy-2 (Ave: 19.31 wt.%; N = 7) and Apy-4
(Ave: 19.67 wt.%; N = 5) (Supplementary Materials Table S1). The Fe contents in the four
generations of arsenopyrite vary significantly, and the mean values are 33.02 wt.% (Apy-1),
35.08 wt.% (Apy-2), 29.08 wt.% (Apy-3), and 34.44 wt.% (Apy-4) (Supplementary Materials
Table S1). The Co contents of the arsenopyrites also changed significantly (Supplementary
Materials Table S1), e.g., Apy-3 had the highest content (Ave: 4.16 wt.%, N = 8), followed by
Apy-1 (Ave:1.69 wt.%, N = 13), Apy-2 (Ave: 0.16 wt.%, N = 7), and Apy-4 (Ave: 0.13 wt.%,
N = 5) (Supplementary Materials Table S1). In addition, arsenopyrite with a high arsenic
content usually contains elevated Co, even though As is not significantly correlated with
Co.

The scatter plot shows that the compositions of Apy-1 and Apy-3 fluctuate greatly
(Figure 8a). In contrast, the composition changes observed in Ayp-2 and Apy-4 were
relatively stable (Figure 8a). Arsenic was negatively correlated with S (R2 = 0.70) and Fe
(R2 = 0.43) in arsenopyrite (Figure 8b,c). There was a strong negative correlation between
Fe and Co (R2 = 0.88) in arsenopyrite (Figure 8d), indicating that cobalt may replace Fe
during arsenopyrite formation [42].

5.2.2. Compositions of Gold

The EPMA data show that the Au and Ag contents varied greatly from Au-1 to Au-3
(Supplementary Materials Table S2 and Figure 9). The Au content in Au-1 (electrum with
minor amounts of native gold) is 68.57%–87.27%, with an average of 83.46 wt.% (N = 14)
and a variance of 4.60 (Supplementary Materials Table S2). Au-2 is mainly composed
of native gold. The Au content in gold (Au-2) is 89.87–91.42 wt.%, with an average of
90.46 wt.% (N = 5) and a variance of 0.58 (Supplementary Materials Table S2). Au-3 is
dominated by electrum and contains minor amounts of native gold. The Au content
in Au-3 varies greatly, ranging from 50.23 to 98.43 wt.%, with an average of 62.10 wt.%
(N = 10) and variance of 15.38 (Supplementary Materials Table S2).
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Figure 8. (a) Ternary plots showing compositions of the Fe, S, and As in different arsenopyrite
generations; (b–d) Binary plots show compositions of selected main elements in different arsenopyrite
generations. (b) As vs. S; (c) As vs. Fe; (d) Co vs. Fe. All data based on the results of arsenopyrite
analyses by EPMA are given in Supplementary Materials Table S1.
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generations. (a) Au vs. Ag; (b) Au vs. Bi; (c) Au vs. Te. All data based on the results of gold analyses
by EPMA are given in Supplementary Materials Table S2.

The above results show that the compositions of Au-1 and Au-2 are relatively homo-
geneous. In contrast, the compositions of Au-3 vary greatly (Figure 9a). EPMA data
reflect that the Au-bearing phases (Au-1 to Au-3) also contain minor amounts of Bi
(0.33–0.83 wt.%) and Te (~0.45 wt.%) (Supplementary Materials Table S2). Native gold
contains more bismuth (Supplementary Materials Table S2 and Figure 9b). The amounts of
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Au and Bi in gold (Au-1 to Au-3) are positively correlated (Figure 9b, R2 = 0.58) and are
negatively correlated with Te (Figure 9c, R2 = 0.50).

5.2.3. Compositions of Bi-Minerals

The EPMA data show that the Bi-minerals (Bis-1 to Bis-3) that are associated/coexist
with gold also demonstrate apparent differences (Supplementary Materials Table S3 and
Figure 10). The Bi-minerals (Bis-1) mainly include joséite-B (Bi4Te2S: Bi 73.04~75.68 wt.%,
Te 20.87~22.10 wt.%, S 2.33~2.76 wt.%), and ingodite (Bi2TeS: Bi 63.96~69.96 wt.%, Te
21.37~30.33 wt.%, S 4.05~5.29 wt.%), with minor amounts of tsumoite (BiTe), pilsenite
(Bi4Te3), and native bismuth (Supplementary Materials Table S3). The Bi-minerals (Bis-
2) include native Bi with minor amounts of maldonite (Au2Bi) and hedleyite (Bi7Te3)
(Supplementary Materials Table S3). The Bi-minerals (Bis-3) include joséite-B (Bi4Te2S),
native bismuth, and minor amounts of joséite-A (Bi4TeS2) as well as pilsenite (Bi4Te3) and
maldonite (Au2Bi) (Supplementary Materials Table S3). The Bi vs. Te binary diagram of the
Bi-minerals shows relatively obvious zoning between the three generations of Bi-minerals
in the Laozuoshan gold deposit (Figure 10a). The typical Bi-rich Bi-minerals of joséite-B,
native Bi, with minor amounts of ingodite and joseite-A, where Bi/(Te + S) > 1 (Figure 10b),
confirm that the ore-forming fluids in reducing conditions [43,44].
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Figure 10. (a) The binary diagrams (Bi vs. Te) show the concentration of selected main elements in
different Bi-minerals generations; (b) Ternary diagram (Bi + Sb + Pb − Te − S + Te shows compositions
of Bi-minerals in the Laozuoshan gold deposit (modified after Cook et al. [45]; Wei et al. [46]). The
Bi/Te + S = 1 line is from Ciobanu and Cook [43] and Ciobanu et al. [44], which separates the
Bi-minerals formed in reduced fluids from those in oxidized fluids. Noted that the Bi-minerals from
reduced fluids usually have Bi/Te + S > 1 and have an assemblage of native gold and pyrrhotite,
whereas those from oxidized fluids usually have Bi/Te + S < 1 and have an assemblage of native
gold and pyrite. All data based on the results of the Bi-minerals analyses by EPMA are given in
Supplementary Materials Table S3.

6. Discussion
6.1. The Physical–Chemical Conditions of the Ore-Forming Fluids Indicated by Minerals
Assemblages

Based on the texture and structure of the typical ores and the paragenetic association
of the minerals, the Laozuoshan gold deposit can be divided into areas that experienced
early hydrothermal mineralization and late hydrothermal mineralization and can be further
divided into seven mineralization stages (Figures 3 and 4). Stages I and III are the main
gold precipitation stage during the early hydrothermal mineralization. Stage V is the main
gold precipitation stage during the late hydrothermal mineralization (Figures 5–7).
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The reduced gold skarns are characterized by low garnet/pyroxene ratios and are
dominated by hedenbergite and grandite [47]. There is a genetic association with reduced
granitoid intrusion during the late Paleozoic era (264.6 ± 2.6 Ma) and a Fe2O3/(Fe2O3 +
FeO) ratio between 0.12 and 0.17 for Laozuoshan granite [21,22,40]. The earliest alteration
stage is characterized by potassium hornfels. Following this alteration stage, prograde skarn
formation subsequently occurred. This process is characterized by garnet in the grossular–
andradite series and pyroxene in the hedenbergite–diopside series in the Laozuoshan gold
deposit, similar to the reduced gold skarn deposit [20,40,47,48]. Furthermore, Bi-bearing
phases and gold are often developed in later stages and accompanying base metals in
reduced gold skarn deposits [47]. Usually, these assemblages postdate previous early
sulfidation stages and are dominated by pyrrhotite and arsenopyrite with or without
lollingite [47,49]. In the Laozuoshan gold deposits, most of the Au- and Bi-bearing phases
are indeed postdated. Both the assemblages marked by coarse-grained pyrrhotite (Po-1) and
arsenopyrite (Apy-1) without lollingite are from Stage I and show a distinctive Au-Bi-As ±
Co geochemical association (Figure 5a–f and Supplementary Materials Table S1). Gold was
also observed to coexist with the Bi-phases, and both of them occur along the contact with
arsenopyrite or pyrrhotite (Figure 5a–f), which are typical mineral assemblages in reduced
skarn gold deposits, suggesting their precipitation at reduced conditions (Figure 5) [47].

Arsenopyrite (Apy-1 to Apy-3) is a gold-bearing mineral found in the Laozuoshan
gold deposit (Figures 5–7). The As(III) hydroxide complex As(OH)3 is the most dominant
As-bearing species and has a wide range of temperatures (25~500 ◦C) and fluid densities
(0.05~1.1 g/cm3) in the natural hydrothermal system, as indicated by experimental stud-
ies [50–52]. The decreases in f O2 induce arsenopyrite crystallization and decrease the H2S
and arsenic concentrations in ore-forming fluid [53,54]. In the Laozuoshan gold deposit,
coarse-grained arsenopyrites (Apy-2) are associated with pyrrhotite (Po-1), chlorite, and
calcite in Stage III (Figures 3d–f and 6). The chlorite composition belongs to ripidolite,
representing reduced conditions that favor arsenopyrite precipitation [23]. In Stage V,
the abundance of graphite, quartz, and calcite filling in arsenopyrite (Apy-3) fractures
suggests that arsenopyrite was precipitated under the reduced conditions (Figure 3h,i and
Figure 7a–f).

After a careful examination of the mineralogy (Figures 5–7), it was possible to recognize
that a wide range of disseminated Bi-minerals (Bis-1~Bis-3) coexist with the gold (Au-1~Au-3),
something that is not described in Meng et al. [23]. The general forms of Bi-sulfosalts
under high f S2 conditions are associated with pyrite stability. Bismuth–chalcogenides
and native bismuth usually form within the fields of pyrrhotite and arsenopyrite under
low f S2 and f O2 conditions [10,11,55,56]. Accordingly, most of the Bi-bearing phases in
the Laozuoshan gold deposit are dominated by joséite-B, ingodite, and native bismuth,
with minor amounts of tsumoite, pilsenite, maldonite, hedleyite, and joséite-B and no
Bi-sulfosalts (Figures 5–7), which suggest that the Bi-bearing minerals might crystallize
under reduced conditions [15]. The ternary diagram depicting the chemical compositions
of the Bi-minerals (Bis-1 to Bis-3) shows that the Bi-minerals all occur in the reducing
regions, indicating that Bi-minerals are precipitated under reducing conditions (Figure 10b
and Supplementary Materials Table S3) [44–46]. Therefore, the mineral assemblages and
their chemical compositions indicate that gold mineralization occurs under the reducing
conditions in the Laozuoshan gold deposit.

6.2. Gold Scavenging Using Bi-Melts and Refining Processes during the Cooling of the
Mineralization System

Previous work shows that gold is commonly transported as thiosulfate and chloride
complexes in hydrothermal solutions, depending on their relative f O2 conditions and
temperatures [57]. However, it might migrate by forming [Au, As]2- or [Au(As, S3)]2- in As-
rich reduced hydrothermal fluids [58,59]. In the Laozuoshan gold deposit, Bi-minerals are
associated with gold and exist as inclusions or fill in arsenopyrite and pyrrhotite fractures
(Figures 5–7), indicating that gold might be transported as a thiohydron complex or as an
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As-bearing complex [57–59]. Gold and Bi-minerals occurred as invisible solid inclusions in
arsenopyrite and pyrrhotite (Figures 5–7) and were identified using the LA-ICP-MS data
of Shi et al. [22], implying that gold and bismuth were available in the fluids that were
responsible for forming the earlier sulfide assemblages. The compositions and textures of
the Bi-bearing assemblages related to gold where Au and Bi show a positive geochemical
correlation (R2 ≥ 0.5) have been described in previous studies [1,5,15,60]. The EPMA data
for gold (electrum, native gold) show a positive correlation (R2 = 0.58) between Au and Bi
(Figure 9b and Supplementary Materials Table S2), suggesting that the Bi collector model
might play an important role in gold enrichment in the Laozuoshan gold deposit.

Oxidized Bi3+ is the predominant Bi-bearing phase of Bi in hydrothermal fluids [19,55].
If bismuth is present in the Au-bearing solution, with favorable sulfur-oxygen fugacities
and temperatures (above 271 ◦C), Bi-melts form and effectively scavenge Au from the fluids,
forming Bi-Au-melts [15,17–19,60]. The ore-forming temperature is identified according to
the homogenization temperatures of the quartz and calcite fluid inclusions (366.5~410.3 ◦C)
and of the arsenopyrite (Apy-2) geothermometer (390–420 ◦C) in the Laozuoshan gold
deposit [23,61], all of which are above the melting point of Bi (271 ◦C) [17], indicating that Bi
could exist as melts in the ore-forming fluids in the Laozuoshan gold deposit. Furthermore,
the Bi-minerals and gold undergoing typical eutectic crystallization in the Laozuoshan gold
deposit (Figures 5d–f and 7d–f) demonstrated similar textures and assemblages to those that
have been previously reported in a large number of deposits worldwide [3,7,11,56,60,62].
The Bi-minerals coexist with pyrrhotite and arsenopyrite, and the Bi-bearing phases have
Bi/(Te + S) ratios ≥ 1 (Figures 5, 6, 7 and 10b), which suggests that the reduced conditions
might facilitate the formation of bismuth immiscible fluids [3,7].

The abundant gold and Bi-mineral particles that occur as inclusions in arsenopyrite
(Apy-1~Apy-3) and pyrrhotite (Po-1) or that fill in the fractures in these sulfides (Figures 5–7)
suggest the existence of Bi melts that scavenged Au, filling in the fractures of earlier sulfides.
The major elements (Fe, As, Co) found in arsenopyrite varied, and the positive correlation
between Co and Fe in arsenopyrite indicates that Co replaced Fe (Figure 8a,d), which might
facilitate the formation of lattice defects in arsenopyrite and the mechanical incorporation
of nano-micron gold and Bi-minerals inclusions [22]. Further, element mapping shows
abnormal Co in arsenopyrite (Apy-2) (Figure 6i), implying that arsenopyrite (Apy-1) might
experience dissolution and reprecipitation and form arsenopyrite (Apy-2) [63]. Therefore,
the abundance of native gold and native bismuth particles filling in arsenopyrite (Apy-2)
fractures suggests that invisible gold and Bi were remobilized from arsenopyrite during
arsenopyrite recrystallization and that part of the Bi-enriched immiscible melts survived
and scavenged gold after arsenopyrite crystallization until the waning stages of the hy-
drothermal system (Figure 6d,g,i) [1]. Similar processes have been proposed by Fougerouse
et al. [64] and Morey et al. [65].

In summary, we propose that gold experienced the concentration of ore-bearing fluids
and further Bi-melt scavenging during mineralization in the Laozuoshan gold deposit.
During the water–rock reaction, the f O2 of the As-rich gold-bearing fluids decreased under
the reducing conditions, which led to the precipitation of base metal sulfides such as
pyrrhotite and arsenopyrite [51,52,54]. The Au+ and Bi3+ thiohydrogen complex in the ore-
forming fluids desulfurized to form gold and bismuth nanoparticles, which were initially
enriched in arsenopyrite or pyrrhotite as visible or invisible inclusions [19,55,64]. Since
the melting point of bismuth is lower than the precipitation temperature of pyrrhotite
and arsenopyrite [17], bismuth could exist in the ore-forming fluid as immiscible melts
to further scavenge Au from the ambient fluids [18,19]. Subsequently, the gold-bearing
immiscible bismuth melts precipitated and separated into gold and Bi-minerals as the
temperature of the hydrothermal fluids decreased or underwent supersaturation during
migration [15], which is confirmed by the gold and Bi-minerals inclusions in arsenopyrite
(Apy-1~Apy-3) and pyrrhotite (Po-1) as well as by their presence in the fractures of these
sulfides (Figures 5–7). The Bi collector model is essential for interpreting the high-grade
gold in the Laozuoshan gold deposit, indicating that the bismuth geochemical anomaly
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may be a critical potential exploration target for the high-grade gold deposits in the Jiamusi
Block.

7. Conclusions

1. The Laozuoshan gold deposit has experienced complex mineralization processes (the
early hydrothermal mineralization and the late hydrothermal mineralization), with
three gold precipitation processes occurring successively. The abundant gold (Au-1 to
Au-3) and Bi-mineral (Bis-1 to Bis-3) particles are associated with pyrrhotite (Po-1) +
arsenopyrite (Apy-1), chlorite + arsenopyrite (Apy-2), and graphite + arsenopyrite
(Apy-3).

2. Bi-minerals (such as joséite-B, ingodite, and native bismuth without Bi-sulfosalts)
are associated with gold (electrum, native gold, or minor maldonite) and coexist as
inclusions or as fracture fillings in arsenopyrite (Apy-1~Apy-3) and pyrrhotite. The
mineral assemblages of arsenopyrite, Bi-minerals, and gold exhibit a clear As-Bi-Au
mineralogy in the ores, and the ternary diagram of the chemical compositions of the
Bi-minerals shows that the Bi-minerals all fall in reducing regions, indicating that
Bi-minerals are precipitated under reducing conditions.

3. The gold compositions show a positive correlation (R2 = 0.58) between Au and Bi.
The gold experienced the concentration of the ore-forming fluids and further Bi-
melt scavenging during the mineralization of the Laozuoshan gold deposit. The Bi
collector model is essential for interpreting the high-grade gold in the Laozuoshan
gold deposit, indicating that the bismuth geochemical anomaly may be a critical
potential exploration target for the high-grade gold deposits in the Jiamusi Block.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12091137/s1, Table S1: Compositions of the different genera-
tions of arsenopyrite in Laozuoshan gold deposit; Table S2: Compositions of gold in Laozuoshan gold
deposit; Table S3: Compositions of the Bi-minerals and Bi-Au minerals in Laozuoshan gold deposit.
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