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Abstract: In recent years, with the integration and development of artificial intelligence technology
and geology, traditional geological prospecting has begun to change to intelligent prospecting.
Intelligent prospecting mainly uses machine learning technology to predict the prospecting target
area by mining the correlation between geological variables and metallogenic characteristics, which
usually requires a large amount of data for training. However, there are some problems in the
actual research, such as fewer geological sample data and irregular mining features, which affect
the accuracy and reliability of intelligent prospecting prediction. Taking the Pangxidong study
area in Guangdong Province as an example, this paper proposes a deep learning framework (SKT)
for prospecting target prediction based on selective knowledge transfer and carries out intelligent
prospecting target prediction research based on geochemical data in Pangxidong. The irregular
features of different scales in the mining area are captured by dilation convolution, and the weight
parameters of the source network are selectively transferred to different target networks for training,
so as to increase the generalization performance of the model. A large number of experimental results
show that this method has obvious advantages over other state-of-the-art methods in the prediction
of prospecting target areas, and the prediction effect in the samples with mines is greatly improved,
which can effectively alleviate the problems of a small number of geological samples and irregular
features of mining areas in prospecting prediction.

Keywords: transfer learning; dilated convolution; deep learning; prospecting target prediction

1. Introduction

Mineral resources are an essential strategic resource to ensure national stability and
economic development. After years of geological exploration, surface minerals have grad-
ually become scarce, resulting in a further increase in the difficulty of prospecting. The
prospecting work started in deep surfaces and overburdened areas. In recent years, the
development of machine learning technologies, especially deep learning, has achieved
satisfactory success in many fields, e.g., in computer vision [1], natural language process-
ing [2], synthetic aperture radar [3], and atmospheric prediction [4]. Meanwhile, it has
also interested and been selected by geological researchers [5–8]. Therefore, the traditional
geological prospecting method is gradually turning into an intelligent prospecting method
based on machine learning.

An intelligent prospecting target refers to the use of machine learning technologies to
mine the correlation between geological variables and metallogenic characteristics to predict
the metallogenic target area [9,10]. Although quantitative prospecting target prediction
based on machine learning technologies is in its infancy, some progress has been made.
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These works can be divided into the following three categories according to the method
of implementation:

(1) Methods based on ensemble learning combine multiple supervised learning algo-
rithms for prospecting target prediction. For example, the authors in [11] determined
the hyperparameters of the random forest by simulating the natural evolution process,
which were used to improve the accuracy of the model in predicting the prospecting
target area. The authors in [12] used the isolation forest algorithm to predict outliers
to determine the prospecting target area. The authors in [13] proposed the use of
metric learning in the random forest to project the sample features into the feature
space, separating the background and mining targets, so as to improve the prediction
accuracy of the model.

(2) Methods based on the support vector machine (SVM) divide mining samples and
other samples through a hyperplane. For example, the authors in [14] separated
the “mines” samples from “non-mines” samples through the optimal hyperplane
and determined three prospecting target areas on both sides of the hyperplane. The
authors in [15] used a genetic algorithm to optimize the hyperparameters of SVM to
reduce its influence on prospecting target prediction.

(3) Methods based on depth neural networks project the geoscience data into the same
depth neural network space and extract effective features through multiple nonlinear
transformations for prospecting target prediction. For example, the authors in [16]
used three-layer convolution to extract the features of a Zn-element concentration
distribution map to predict the prospecting target area. The authors in [17] used
AlexNet to extract the features of multiple ore-forming factor maps to determine four
prospecting target areas.

Although the aforementioned methods have achieved success, problems such as
the small number of geological samples and the irregular features of mining areas in
prospecting target prediction have not been properly solved. Fortunately, in recent years,
in-depth research has been carried out on these problems. These works can also be divided
into the following two categories according to the method of implementation:

(1) Methods based on data augmentation increase the diversity of geological samples by
cropping, changing the chromatic aberration and size, and distorting features. For
example, the authors in [18] added random noises into geological data to predict
a prospecting target by a deep convolutional network. The authors in [19] first
oversampled the samples with mines and then used the random forest to determine
the prospecting target areas. The authors in [20] proposed recombining pixel pairs of
geological samples to assist in prospecting target prediction. These methods increase
the number of geological samples but cannot cope with the irregular features of the
mining areas.

(2) Methods based on multiscale feature transformation acquire mining area features
of different scales through irregular sampling for training [21,22]. For example, the
authors in [23] proposed to extract irregular features of different scales using multi-
group convolution or a pooling operation and fused them for prospecting target
prediction. The authors in [24] used four convolution operations with different sizes
to extract and fuse irregular features of geological data to improve the prediction
accuracy. However, these methods do not consider the small number of samples in
the prospecting target area.

To summarize, the motivation behind our method comes from two aspects: (1) Selec-
tive transfer of label information learned from large tasks to small-shot tasks can effectively
improve its generalization performance; therefore, we try to selectively transfer knowledge
from a well-trained large prospecting target prediction task to the target task to assist
training. (2) The other is to expand the receptive field of the convolution kernel without
increasing the number of parameters. In this way, we can utilize it to deal with the irregular
features of the mining areas. Therefore, we combine these two motives and propose a novel
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deep learning framework based on selective knowledge transfer (SKT) for prospecting
target prediction to solve the problems existing in prospecting target prediction. As shown
in Figure 1, we first introduce a large well-trained prospecting target prediction network as
the source network and define multiple target networks with the same structure. Next, we
use a soft mask to alleviate the differences in metallogenic effects that different elements
may cause. Then, we use dilated convolution to capture features of different scales as
inputs of the target networks. Based on this, we selectively transfer the weight parameters
from the source network for the training of the different target networks. Finally, we
perform top-down distillation on the large-scale and small-scale target network to mine the
hidden knowledge between feature maps of different scales for small-scale target network
learning. It is worth noting that the input size of W × H × n is obtained by processing the
geochemical data, where W denotes width, H denotes height, and n denotes the number
of geochemical elements. Meanwhile, the output is generated by voting through all the
target networks and contains two values representing the votes obtained for with and
without mines, respectively. The whole SKT framework works in an end-to-end manner.
Extensive experimental results show that our method is significantly competitive with
state-of-the-art methods.
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Figure 1. Schematic architecture of the SKT framework. wl
S denotes the convolution kernels of the

l-th convolution layer of the source network, Ntv , v = 1, 2, . . . , m denotes the target networks, ŵl
tv

denotes the convolution kernels transferred to Ntv from the source network, and Kti ,tj denotes the
direction of knowledge distillation, which means that Nti guides Ntj to learn. Knowledge distillation
proceeds from the top down, e.g., knowledge distillation performs in the order of 1©, 2©, 3©. Weight
selection makes the source network weights sparse through the Hadamard product and then transfers
to the target network.

The main contributions of this paper include the following:

1. A deep learning framework for prospecting target prediction is proposed, which
provides a new way for prospecting target prediction.

2. A novel selective knowledge transfer mechanism is designed, which selectively trans-
fers knowledge from the source network to target networks, which increases the
performance of the target networks in prospecting target prediction during testing
without adding additional computational cost.

3. For the first time, a soft mask strategy is proposed to maintain the consistency of related
mineral elements. Its purpose is to utilize the metallogenic indicative significance of the
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main mineral elements and associated mineral elements to complete the prospecting
target prediction task.

The rest of this paper is organized as follows. Section 2 introduces introduces the study
area and data processing methods. Section 3 infers the structure of the SKT framework.
Section 4 exhibits our experiment, including analysis of the experimental results and
visualization. Section 5 summarizes the work of this paper.

2. Study Area and Data
2.1. Study Area

The study area is the Pangxidong study area in Guangdong Province, China. Figure 2
shows a simple geological map of the study area, where the red dots are the mining
areas. It is a part of the Qinzhou–Hangzhou metallogenic system, and the metallogenic
geological conditions are superior. Its tectonic background belongs to the eastern margin
of the southern segment of the Qinzhou–Hangzhou metallogenic system. Since the late
Paleozoic, it has been uplifted for a long time and is an important metallogenic area for
precious metals and non-ferrous metals, with many kinds of minerals [25]. The minerals
that have been explored or are being exploited include gold ore, silver ore, lead–zinc ore,
tungsten and molybdenum ore, iron ore, etc. [26]. The types of deposits mainly include
ductile shear zone silver–gold deposits, porphyry-type molybdenum–tungsten–copper
polymetallic deposits, sedimentary reformation type, magmatic hydrothermal type, and
contact metasomatic lead–zinc polymetallic deposits [27]. Minerals are mainly distributed
in the northwest and southeast, along the Pangxitong fault zone and the Gucheng–Shachan
fault zone, in a northeast direction.

Figure 2. Simple geological map of the study area (1—Quaternary; 2—Early Yanshanian granite;
3—Late Yanshanian granite; 4—Upper Proterozoic migmatite; 5—Lower Member of Middle-Upper
Proterozoic Fengdongkou Formation; 6—Upper Member of Middle-Upper Proterozoic Fengdongkou
Formation; 7—Middle-Upper Proterozoic Lankeng Formation; 8—Devonian Yangxi Formation; 9—
Devonian Laohutou Formation; 10—Devonian-Carboniferous Maozifeng Formation; 11—Devonian
Xindu Formation; 12—Silurian Liantan Formation; 13—Faults; 14—Deposit).
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2.2. Data Processing

The experimental data consist of geochemical data and were extracted from a 1:50,000
stream sediment survey. They were obtained from the Pangxidong study area in Guang-
dong Province. The sampling area of the stream sediment was 1694 km2, and the average
sampling density was 4.27 samples km2. Sixteen chemical elements, including Au, B, Sn,
Cu, Ag, Ba, Mn, Pb, Zn, As, Sb, Bi, Hg, Mo, W, and F, were analyzed from the stream
sediment samples. Table 1 shows some of our original data, with X and Y as the coordinates
of the sampling points and the rest as the values of the geochemical elemental content,
totaling to 7237 points. The area under curve (AUC) is defined as the area under the re-
ceiver operating characteristic (ROC) curve enclosed by the coordinate axes [28]. Based on
thesis [29], we leveraged SVM and statistical methods to screen out geochemical elements,
which are indicative of mineralization. Specifically, we calculated the AUC of each element
using the SVM algorithm, and then the standard deviation of the AUC was calculated by

SAUC =

√√√√AUC(1−AUC) +
(
Cp − 1

)(
Q1 −AUC2

)
+ (Cn − 1)

(
Q2 −AUC2

)
Cp ×Cn

(1)

where SAUC denotes the standard deviation of the AUC; Cp and Cn denote the numbers

of samples with and without mines, respectively; and Q1 = AUC
2−AUC and Q2 = 2AUC2

1+AUC are
temporary variables. To determine whether the AUC was significantly different from 0.5,
we defined the following random variable:

ZAUC =
AUC− 0.5

SAUC
(2)

Table 1. Geochemical dataof Pangxidong.

X Y Au B Sn Cu Ag Ba Mn Pb Zn As Sb Bi Hg Mo W F

422.24 2418.80 0.9 3 8.7 4 0.025 33 147 27 26 1.17 0.31 0.23 0.04 2.67 0.79 212
421.37 2418.80 0.54 4 2.56 7 0.078 88 209 12 23 0.9 0.29 0.13 0.04 0.82 1.16 204
419.76 2418.25 0.81 3 1.52 5 0.043 1111 423 42 14 0.51 0.35 0.06 0.07 0.59 0.38 101
420.12 2418.40 0.37 2 1.65 6 0.046 941 498 38 17 0.53 0.31 0.1 0.02 0.57 0.33 111
420.55 2418.60 1.09 4 1.53 8 0.033 427 338 37 29 0.74 0.28 0.09 0.07 1.68 0.73 186
433.81 2397.92 2.31 121 2.2 4 0.075 365 239 16 18 4.31 0.96 0.43 0.066 0.77 3.01 186
424.17 2415.02 0.43 5 2.18 4 0.069 42 250 13 14 1.21 0.33 0.4 0.031 1.04 1.53 201
423.74 2415.31 0.51 5 4.85 7 0.004 30 242 47 31 0.5 0.26 0.32 0.016 1.02 3.07 210
425.14 2414.87 0.46 6 2.08 7 0.061 28 298 15 25 1.49 0.35 0.24 0.075 1.75 1.3 217
425.14 2415.15 0.47 6 1.95 7 0.055 54 420 9 18 1.07 0.37 0.14 0.042 1.08 0.85 108
424.86 2414.76 0.5 5 1.46 4 0.036 21 355 6 11 1.1 0.33 0.17 0.022 0.98 1.14 130
424.47 2414.47 0.59 6 2.6 4 0.038 29 170 6 21 1.01 0.33 0.2 0.039 1.32 2.02 192
424.82 2414.37 0.43 11 2.26 2 0.027 22 210 6 19 1.19 0.31 0.2 0.03 1.5 1.76 177
425.22 2414.46 1.05 45 4.2 3 0.065 39 125 6 25 1.94 0.39 0.54 0.046 2.17 3.04 396
424.41 2414.11 0.4 6 1.84 3 0.054 16 231 6 10 0.77 0.28 0.11 0.016 0.83 0.91 93
424.72 2413.83 0.9 7 3.87 9 0.094 135 231 48 45 2.15 0.41 0.73 0.069 1.82 2.54 327
424.35 2413.78 0.68 6 2.68 3 0.059 26 130 5 25 2.32 0.34 0.37 0.045 1.09 1.69 201
431.88 2411.24 0.81 4 3.58 15 0.053 140 143 83 34 2.76 0.36 2 0.052 2.05 8.94 241
432.90 2411.89 0.39 3 3.4 10 0.077 121 133 93 33 1.73 0.34 4.24 0.061 2.33 6.41 230
433.60 2410.63 0.42 5 2.62 1 0.042 81 152 12 21 1.55 0.31 0.3 0.054 0.77 0.94 135
433.91 2411.37 0.8 4 3.49 2 0.025 120 88 31 33 3.17 0.33 0.72 0.062 0.85 1.48 231
434.07 2410.91 0.42 6 2.99 4 0.057 109 117 12 22 2.38 0.32 0.27 0.048 0.63 2.19 210
434.73 2410.27 0.37 4 3.11 9 0.045 171 132 12 21 1.93 0.31 0.12 0.042 0.69 1.98 180
434.09 2409.69 0.36 5 2.92 6 0.044 135 123 5 21 1.76 0.29 0.09 0.046 0.71 0.6 156
432.45 2414.37 1.86 46 1.82 11 0.059 96 278 13 22 11.58 0.42 0.35 0.017 0.78 3.05 150
432.29 2414.59 3.76 65 6.04 4 0.036 41 164 67 20 9.37 0.79 0.67 0.047 2.42 7.75 486
432.60 2414.75 2.63 83 2.09 22 0.049 112 208 30 17 26.06 0.54 0.64 0.033 1.18 3.09 201
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The random variable ZAUC satisfies a standard normal distribution. The critical value
is obtained by comparing ZAUC with the standard normal distribution table. Based on
Table 2, we chose a ZAUC greater than the critical value of 2.58 when the significance level
was 0.01. In other words, a total of eight elements, including Au, Sn, Cu, Ag, Ba, Sb, Hg,
and Mo, were selected as indicative elements for prospecting target prediction.

Table 2. AUC and ZAUC calculational results of 16 geochemical elements.

Element AUC ZAUC Element AUC ZAUC

Au 0.6024 2.8395 B 0.5901 2.4839
Sn 0.6065 2.9595 Cu 0.6311 3.6977
Ag 0.6762 5.1563 Ba 0.6147 3.2020
Mn 0.5573 1.5617 Pb 0.5778 2.1341
Zn 0.5450 1.2232 As 0.5655 1.7893
Sb 0.5942 2.6017 Bi 0.5901 2.4839
Hg 0.6393 3.9516 Mo 0.5983 2.7203
W 0.5778 2.1341 F 0.5696 1.9037

We combined experimental results and the geological environment of the study area
for analysis. The Pangxidong study area has faults, developed fold structures, and strong
magmatic activity. The metallogenic geological environment is similar to many areas with
rich mineral resources in the Qinzhou–Hangzhou metallogenic belt. The types of minerals
involved are mainly Au, Ag, Pb, Zn, W, Mo, Fe, and Mn metal ores. Then, Pb, Zn, and
Cu metal ores are visible in Devonian strata in the study area. In addition, the northeast
Gucheng–Shachan and Pangxitong faults in the study area are the main ore-conducting
and storage structures for Au, Ag, Sn, and other minerals [30]. In summary, most of the
eight indicator elements we selected are consistent with the metallic ores in the study area.
This shows the validity of our choice of indicator elements.

By referring to the processing method of the stream sediment data in [31], we used
inverse distance weight interpolation to generate 3072× 3072 grids (elemental content map)
according to the values of the geochemical elemental content. Specifically, we calculated
the distance between the nearby discrete points and the grid (x0, y0) by

Di =

√
(x0 − xi)

2 + (y0 − yi)
2 (3)

where Di denotes the distance from the i-th discrete point near (x0, y0), and (xi, yi) denotes
the coordinates of the i-th discrete point.

Based on this, we estimated the value of the grid (x0, y0) as follows:

Z(x0, y0) =
N

∑
i=1

1

(Di)
2 Zi/

N

∑
i=1

1

(Di)
2 (4)

where Z(x0, y0) denotes the estimated value at the grid (x0, y0), Zi denotes the observed
value at the i-th discrete point, and N denotes the number of discrete points involved in
the calculation.

Figure 3 shows the elemental content maps of the eight elements. We normalized the
values of the elemental content map, making its mean value 0 and its variance 1. For a
value x in the elemental content map, the normalized value is as follows:

x̂ =
x− x

σ
(5)

where x̂ denotes the normalized value, x denotes the mean of the values of the elemental
content map, and σ denotes the variance of the values of the elemental content map.

We divided the elemental content map of size 3072 × 3072 into two parts, where the
upper part (2560 × 3072) was used for making the training dataset, and the lower part
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(512 × 3072) was used for making the test dataset. We defined two 256 × 256 windows to
slide on the upper and lower elemental content maps with a step length of 128. There were
437 patches in the training dataset, where 78 patches were with mines and 359 patches
were without mines. On the other hand, the test dataset contained 69 patches, including
17 patches with mines and 52 patches without mines. In addition, Gaussian noise with
a mean value of 0 and a variance of 0.01 was added to augment the data [32,33]. In
the end, the generated training dataset had 2169 patches, with 1092 patches with mines
and 1077 patches without mines, and the generated test dataset had 275 patches, with
119 patches with mines and 156 patches without mines. We combined the elemental
content maps of the eight elements, i.e., our experimental dataset consisted of 2444 patches
with a size of 256 × 256 × 8. In addition, we would randomly clip the data into a 224 × 224
size before each iteration as the input of our model.

Figure 3. Elemental content diagrams.

3. Methodology

In this section, we propose a method of selective knowledge transfer for prospecting
target prediction. Specifically, Section 3.1 formally addresses this issue. Section 3.2 explains
how to use the soft mask to keep the weight between the associated mineral elements and
the main mineral elements consistent and use dilated convolution to capture feature maps
of different scales. Section 3.3 discusses selective knowledge transfer. Section 3.4 raises
self-distillation to mine the hidden knowledge of target networks with different multiscale
features. Section 3.5 exports the objective function of SKT used to deploy this mechanism.

3.1. Problem Formulation

In this section, we transform geochemical data into a geochemical elemental content
map through inverse distance weight interpolation [31]. Then, we define a sliding window
with a size of 256 × 256 by referring to [34]. At the same time, a geochemical dataset
D =

{
xi

h, yi
h
}N

h=1,i=1,2,...,n is constructed by cutting the elemental content map with a step
size of 128. Here, N denotes the number of samples, i denotes the class of the geochemical
element, and xh ∈ Rd and yh ∈ {0, 1} denote the feature vector and the corresponding label,
where 0 and 1 mean “without mines” and “with mines”, respectively, and d denotes the size
of the sample feature space. We suppose that the SKT framework consists of a well-trained
source task network NS and multiple target task networks NT = {Nt1 , Nt2 , . . . , Ntm}.
These networks have the same structure and L convolution layers, where the numbers
of input and output channels in the l-th convolution layer are Ml and Ml+1, respec-
tively. The convolution kernel at the l-th layer in the source network NS is defined as
W l

S =
[
wl

S1, wl
S2, . . . , wl

SMl+1

]
, where W l

S ∈ RMl+1×Ml×K×K, wl
Sj ∈ RMl×K×K, and K × K is

the size of the convolution kernel. For all convolution kernels at the l-th layer of NT , it is
defined asW l

T =
[
W l

t1
, W l

t2
, . . . , W l

te

]
∈ Re×Ml+1×Ml×K×K, where the convolution kernels of
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the task network tv are Wl
tv
=
{

wl
tv1, wl

tv2, . . . , wl
tv Ml+1

}
, and the setting of the convolution

kernel is consistent with that in NS. We propose using selective transfer knowledge for
prospecting target prediction.

3.2. Congruence of Related Mineral Elements

We consider that the concentration of geochemical elements has indicative significance
for mineralization, and different elements have differences in predicting mineralization.
Generally, mined minerals contain associated minerals. Their main mineral elements
have an important indicative significance for mineralization, while the associated mineral
elements also have a certain indicative significance [35]. Therefore, we try to introduce a
soft mask M = [M1,M2, . . . ,Mn] strategy based on the above consideration. Its purpose
is to make the corresponding weight of the associated mineral elements as consistent as
possible with that of the main mineral elements and increase the diversity of effective
samples as follows:

x̂i
h = xi

h ×Mi (6)

where xi
h denotes the h-th sample in the i-th geochemical element, andMi denotes the

weight corresponding to the i-th geological element in M, which is a scalar; x̂i
h denotes the

h-th sample in the i-th geochemical element by the mask operation. In this way, we obtain
the feature maps of different geochemical elements.

To meet the challenge brought by the irregular features of the mining areas, we perform
the dilated convolution operation on the features of different geochemical elements to
generate feature maps of different scales. Specifically, we define a set of dilated coefficients
ρ = {ρ1, ρ2, . . . , ρm}, where each coefficient corresponds to a feature map and target
network at different scales. Then, we perform a dilated convolution operation on the v-th
scale feature map as the input of the target network Ntv , where the value of the position
(prow, pcol) on the feature map is calculated by

fi
tv =

r

∑
u=−r

r

∑
g=−r

x̂i
tv(ρtv u + prow, ρtv g + pcol)× o(u, g) (7)

where fi
tv

denotes the tv-th sample scale feature map of the i-th geochemical element through
dilated convolution, ρtv denotes the corresponding dilated coefficient to Ntv , x̂i

h(·, ·) denotes
the weight of the h-th sample position of the i-th geochemical element, and o(·, ·) denotes
the weight of the position on the dilated convolution kernel. u, g denotes the nearest
neighbor units of the position (prow, pcol), and r = S− 1, where S is the size of the dilated
convolution kernel. For example, for a dilated convolution kernel of size 3, the nearest
neighbor of u and g is 1.

3.3. Selective Knowledge Transfer

Due to the small number of samples, it easily leads to problems such as underfitting
or nonconvergence in the training process of the prospecting target prediction model. Thus,
we selectively transfer elements in the convolution kernels from the well-trained source
task network NS to assist target network learning, as shown in Figure 4. Specifically, we
first define a matrix Pl

tv j with the same size as the convolution kernel in the target network

Ntv . Then, we calculate the Hadamard product of Wl
S as follows:

ŵl
tv j = wl

Sj � Pl
tv j (8)

where ŵl
Sj denotes the selected convolution kernels, and � denotes the Hadamard product.
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Figure 4. Description of the weight selection algorithm. wl
Sj denotes the convolution kernels of the

l-th convolution layer of the source network, j = 1, 2, . . . , Ml+1 denotes the output channels, Pl
tv j

denotes a matrix corresponding to the target network Ntv , v = 1, 2, . . . , m, � denotes the Hadamard
product, ŵl

tv j denotes the selected convolution kernels, and wl
tv j denotes the convolution kernels

of Ntv .

To further help target task network training, we transfer ŵl
Sj to NT for training by

ftv =
(

ŵl
Sj × wl

tv j

)
∗ fi

tv + b (9)

where ftv denotes the convolution operation output, ∗ denotes the convolution operation, b
denotes the convolution bias, and fi

tv
denotes the tv-th sample scale feature map of the i-th

geochemical element.

3.4. Self-Distillation

To mine the hidden knowledge between the feature maps of different scales, we
perform knowledge distillation from top to bottom according to the target network cor-
responding to the size of the feature maps. For example, there are three target networks,
Nt1 , Nt2 , and Nt3 , and the size of their input feature maps decreases successively. We use
Nt1 to guide Nt2 and Nt3 , and Nt2 to guide Nt3 . Specifically, we use Kullback–Leibler (KL)
divergence to calculate the probability distribution of the softmax output between each
pair of target networks by

LtvKD =
v−1

∑
j=1

n

∑
i=1

f
(

fi
tj

, θ
Ntj
)

log

 f
(

fi
tj

, θ
Ntj
)

f
(

fi
tv

, θNtv
)
 (10)

where LtvKD denotes the self-distillation loss of the target network Ntv ; the size of the input

feature maps of Ntj is larger than that of Ntv ; θ
Ntj and θNtv denote the parameters of the

target networks Ntj and Ntv , respectively; f (·) denotes the softmax operation; and fi
tj

and

fi
tv

denote the tj-th and tv-th sample scale feature maps of the i-th geochemical element
through the dilated convolution operation.
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3.5. Objective Function

The target network maps features to the corresponding label space through the full
connected layer. During the training, we designed the classification loss for each target
network by

Ltv =
n

∑
i=1

L
(

θNtv , fi
tv , P1:L

tv , yi
h

)
(11)

where Ltv denotes the classification loss of the target network Ntv , L(·) denotes cross
entropy, θNtv denotes the parameter of Ntv , yi

h is the label for input xi
h, fi

tv
denotes the

tv-th sample scale feature map of the i-th geological element obtained through the mask
operation and dilated convolution operation, and P1:L

tv
denotes the matrix associated with

selective knowledge transfer.
In the end, the overall optimization objective of SKT is to minimize the classification

and self-distillation losses by

Ltotal =
m

∑
v=1
Ltv + β

m

∑
v=1
LtvKD (12)

where Ltotal denotes the objective function, and β denotes the coefficient of self-distillation loss.

4. Experiments

In this section, we present extensive experiments to verify our method. Specifically,
Section 4.1 describes the experimental environment and settings. Section 4.2 presents
the comparison of our method with state-of-the-art methods on the geochemical dataset
and the analysis of the experimental results. Section 4.3 presents the experimental results
based on the relevant modules and parameters of our method. Section 4.4 visualizes the
prediction result of the Pangxidong study area in Guangdong Province.

4.1. Experimental Settings

The evaluation metrics used in the experiments include Accuracy, Recall, and F1-score.
All experiments are programmed and implemented with the PyTorch framework and one
GeForce RTX 3090 GPU.

The SKT framework is implemented based on the ResNet-18 architecture. During
training, the model uses an SGD optimizer with a momentum of 0.01, a weight decay of
1× 10−4, and a mini-batch size of 128. The learning rate is initially 0.1 and decreases by half
every 30 epochs. We set the dilated coefficients ρ = {ρ1, ρ2, ρ3, ρ4, ρ5, } = {1, 6, 12, 18, 24},
referring to DeepLab [36]. The model is trained for 150 epochs on the geochemical dataset.
In addition, the coefficient β of the self-distillation loss is set to 0.7.

4.2. Experimental Results and Analysis

In this section, we compare machine learning algorithms and some state-of-the-art clas-
sification methods with SKT to demonstrate that it outperforms other models in prospecting
target prediction tasks. Specifically, we compare the following methods, including the
traditional methods SVM [37], KNN [38], RandomForest [39], and Decisiontree [40] and the
deep learning methods ResNet-18, ShufflenetV2 [41], GoogLeNet [42], MobilenetV2 [43],
Mnasnet [44], SCnet [45], Efficientnet-b0 [46], T2T-vit-14 [47], and SNL [48]. It is worth
noting that for fairness of comparison, SCnet and SNL are implemented based on the
ResNet-18 architecture. In a machine learning algorithm, we compress each data point in
the geochemical dataset into a one-dimensional tensor as the input to the algorithm.

As shown in Table 3, our model obviously performs better than ResNet-18. Specif-
ically, the Accuracy of our model increases by 12.30%, Recall increases by 15.83%, and
F1-score improves by 11.79%. Furthermore, SKT outperforms the other methods in terms
of Accuracy, Recall, and F1-score. This indicates that SKT has excellent performance in
prospecting target prediction and has the highest improvement in the prediction of samples
with mines. Meanwhile, this also proves that our method can effectively solve problems
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such as the small number of geological samples and the irregular features of mining areas
in prospecting target prediction.

Table 3. Experimental results. The optimal performances are bolded.

Methods Accuracy Recall F1-Score

SVM 49.51 17.64 43.73
KNN 51.45 35.29 50.09

RandomForest 59.70 25.49 54.27
Decisiontree 58.73 39.21 57.03
ResNet-18 56.79 24.50 53.21

ShufflenetV2 57.45 17.64 48.24
GoogLeNet 61.81 31.09 56.51

MobilenetV2 55.82 16.66 47.74
Mnasnet 59.22 17.64 50.61

SCnet 58.73 30.39 55.05
Efficientnet-b0 57.28 23.52 51.70

T2T-vit-14 57.76 39.21 56.19
SNL 59.70 35.29 57.07
Ours 69.09 40.33 65.00

Figure 5 is a confusion matrix, showing the number of True Negative (TN), False
Positive (FP), False Negative (FN), and True Positive (TP) samples. This figure shows that
(1) among these four values, TN is the highest, i.e., the number of correctly predicted the
samples without mines is the largest. At the same time, FP is the lowest, i.e., the number of
incorrectly predicted samples without mines is the smallest. We explain that before using
Gaussian noise for data augmentation, the samples without mines are much more than the
samples with mines, and the samples without mines have rich features, which are helpful
to the STS framework for prediction. (2) TP denotes the number of correctly predicted
samples with mines. On the contrary, FN denotes the number of incorrectly predicted
samples with mines. TP is the third of the four values, lower than FN but much higher
than FP. The reason for this result is the small number of samples with mines and their
irregular features, which negatively affects the STS framework for predicting the samples
with mines, but still has a certain performance. In conclusion, SKT can predict the samples
without mines well, and it also has a certain ability to predict the samples with mines.

TN:142 FP:14

FN:71 TP:48

True Label

Predict Label

Negative           Positive

Negative         Positive

Figure 5. Confusion matrix.
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In the SKT framework, the final prediction result is obtained by multiple target network
voting. Table 4 shows the predicted results for the multiple target networks and voting.
The following can be seen from this table: (1) As the dilated coefficient increases, the
performance of the target networks first increases and then decreases. (2) When compared
with the best target network, voting only has a small gap in Accuracy and F1-score, but
there is a certain gap in Recall. The above result is caused by the performance of the
model being affected with the increase in expansion coefficient, but at the same time,
self-distillation can improve the performance of the target network, leading to first the
increase and then the decrease. In addition, due to the contradiction between the dilated
coefficient and self-distillation for the improvement of the model performance, we cannot
determine the optimal target network. However, voting has a similar performance to the
optimal target network, so the final prediction result obtained by voting is reasonable to a
certain extent.

Table 4. Experimental results of the target networks and voting.

Target Network Accuracy Recall F1-Score

ρ = 1 57.45 31.93 53.30
ρ = 6 65.45 41.17 62.08

ρ = 12 61.45 35.29 57.38
ρ = 18 70.18 47.05 67.34
ρ = 24 64.72 37.81 60.70
Voting 69.09 40.33 65.00

4.3. Correlation Analysis Experiment

We present the experimental results based on the relevant modules of SKT in Section 4.3.1.
Then, in Section 4.3.2, we verify the effect of the coefficient of self-distillation loss on SKT.

4.3.1. Ablation Experiments

To evaluate the performance of the method proposed in this paper, we perform SKT
ablation experiments and deploy various SKT variants. Specifically, we design the following
ablation experiments: (1) remove soft mask (R-S-Mask), (2) remove dilated convolution (R-
D-Convolution), (3) remove selective knowledge transfer (R-Sk-Transfer), and (4) remove
self-distillation (R-S-Distillation). Based on SKT, we apply the control variable approach
to soft mask, dilated convolution, and selective knowledge transfer one at a time. It is
worth noting that we set the dilated coefficients ρ = {ρ1, ρ2, ρ3, ρ4, ρ5, } = {1, 1, 1, 1, 1} in
the second experiment. Finally, SKT is compared to the above methods.

Table 5 presents the experimental results. The following observations are made:

1. The soft mask makes the corresponding weight of the associated mineral elements as
consistent as possible with that of the main mineral elements. Dilated convolution
deals with the irregular features of the mining areas through different receptive fields.
Selective knowledge transfer improves the model generalization performance to
solve the problem of a small number of samples. Self-distillation mines the hidden
knowledge between the feature maps of different scales. All of the aforementioned
methods can improve the Accuracy, Recall, and F1-score of the prospecting prediction.

2. The contributions of these methods to SKT are different. According to the contribu-
tion from large to small, they are ranked as follows: dilated convolution, selective
knowledge transfer, soft mask, and self-distillation.
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Table 5. Ablation experiment results. The optimal performances are in bold.

Methods Accuracy Recall F1-Score

R-S-Mask 64.72 29.41 55.43
R-D-Convolution 61.09 29.41 58.29

R-Sk-Transfer 62.54 30.25 56.83
R-S-Distillation 65.81 31.09 59.72

Ours 69.09 40.33 65.00

4.3.2. Parameter Analysis Experiments

The objective function of SKT includes self-distillation loss. To evaluate the effect of
the coefficient of self-distillation loss β on SKT, we set β = 0.1, 0.2, . . . , 1 to perform a total
of 10 experiments. Figure 6 shows the experimental results. From this figure, we can find
the following: (1) β has a certain effect on the SKT performance. (2) The best prospecting
target prediction results can be obtained when β is between 0.6 and 0.8.

Figure 6. The coefficient of self-distillation loss experiment results.

4.4. Visualization

In this section, we use the SKT trained in Section 4.2 to predict the prospecting
target area in the Pangxidong study area and visualize the prediction results. Specifically,
we first cut the elemental content map of size 3072 × 3072 obtained in Section 2.2 into
12 × 12 patches, each with a size of 256 × 256. Then, we use the trained SKT to predict
and visualize it. Figure 7 shows the visualization result. Based on the visualization, we
come to the following conclusions: (1) The predicted prospecting target area is basically
consistent with the actual mining area. (2) The prediction results of (row 7, column 4),
(row 11, column 10), (row 12, column 4), and (row 12, column 11) are inconsistent with the
actual mining area. In addition, we use the principal component analysis (PCA) method to
reduce the dimensionality of geochemical data in the experiment to one dimension and
visualize it [49]. As seen from Figure 8, we can find that (1) most of the mining areas
correspond to high values, i.e., rich in these eight geochemical elements. This proves that
geochemical elements have an important influence on mineralization, which is consistent
with the conclusion of paper [50,51]. (2) Irregular features of geochemical-enriched regions
in incorrectly predicted samples with mines (green boxes) make STS prediction difficult. In
summary, we can conclude that SKT can fit the distribution of the prospecting target area
in the Pangxidong study area. This again shows the effectiveness of SKT in prospecting
target prediction.
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mining area

Predict no-mining areas

Predict mining areas

Figure 7. Visualization of experimental results in Pangxidong study area.

Figure 8. Visualization of geochemical data.

5. Conclusions

In this paper, a deep learning framework (SKT) for prospecting target prediction based
on selective knowledge transfer is proposed to solve the problems of fewer geological
sample data and irregular mining area features in the research of intelligent prospecting
prediction. Taking the Pangxidong study area of Guangdong Province as an example, the
prospecting target area is intelligently predicted by using the geochemical data of this
area. Compared with other methods, the effectiveness of this method is proved. The main
conclusions are:

(1) In view of problems such as the small number of geological samples and the irregular
features of mining areas in the research of prospecting prediction, the deep learning
framework (SKT) for prospecting target prediction based on selective knowledge
transfer has greatly improved the prediction of the samples with mines, which is
obviously superior to other methods.

(2) Soft mask makes the corresponding weight of associated mineral elements consistent
with that of the main mineral elements as much as possible; dilation convolution
enriches irregular features of the mining areas through capturing features at different
scales; selective knowledge transfer improves the generalization performance of the
model and solves the problem of a small number of samples; and self-distillation
mines the hidden knowledge between different scale feature maps.
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(3) Parameter analysis experiments show that dilation convolution, selective knowledge
transfer, soft mask, and self-distillation can improve the accuracy of SKT prediction,
but their contribution to SKT gradually weakens.
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