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Abstract: (1) Background: Geological surveying is undergoing a digital transformation process
towards the adoption of intelligent methods in China. Cognitive intelligence methods, such as
those based on knowledge graphs and machine reading, have made progress in many domains and
also provide a technical basis for quality detection in unstructured lithographic description texts.
(2) Methods: First, the named entities and the relations of the domain-specific knowledge graph of
petrography were defined based on the petrographic theory. Second, research was carried out based
on a manually annotated corpus of petrographic description. The extraction of N-ary and single-entity
overlapping relations and the separation of complex entities are key steps in this process. Third,
a petrographic knowledge graph was formulated based on prior knowledge. Finally, the consistency
between knowledge triples extracted from the corpus and the petrographic knowledge graph was
calculated. The 1:50,000 sheet of Fengxiangyi located in the Dabie orogenic belt was selected for
the empirical research. (3) Results: Using machine reading and the knowledge graph, petrographic
knowledge can be extracted and the knowledge consistency calculation can quickly detect description
errors about textures, structures and mineral components in petrographic description. (4) Conclu-
sions: The proposed framework can be used to realise the intelligent inspection of petrographic
knowledge with complex entities and relations and to improve the quality of petrographic description
texts effectively.

Keywords: knowledge graph of petrography; entity sequence labelling; relation classification;
complex entity separation; regional metamorphic petrology

1. Introduction

Due to the growing availability of massive earth observation data, the research on and
application of artificial intelligence technologies, such as knowledge graphs (KGs), machine
learning and deep learning, are receiving increasing attention [1–3] in the solid earth [4],
remote sensing [5], geological image recognition [6–8] and metallogenic process [9] domains.
In response to the rapidly increasing and varying types of filed data, scholars have proposed
that studies should be guided by big data thinking and techniques commonly applied
in deep information mining, such as hidden-mode processes, unknown correlations or
other useful information that could be leveraged for decision making [10,11]. Meanwhile,
the geological data tend to be uncertain, sparse, multiresolution and multiscale and need
knowledge-rich intelligent systems for processing [12–16]. Among these approaches,
machine reading based on natural language processing [17–20] and domain-specific KGs
of geosciences [21–24] have also attracted increasing attention from geologists.

PaleoDeepDive, a digital library and machine reading system, is an early application
of Data Mining and Knowledge Base in the geosciences [25]. To measure the relative
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frequency of the occurrence of stromatolites in Macrostrat (https://macrostrat.org, accessed
on 18 March 2022) for the North America-Caribbean region, a similar approach named
GeoDeepDive was used to extract mentions of the term “stromatolite(s)” or “stromatolitic”
within the published documents. A total of 10,683 papers were retrieved and 612 unique
stratigraphic names were found linked to stromatolites [26]. For the Chinese geological
literature, which constitutes unstructured data, researchers carried out keyword extraction
based on Chinese word segmentation and word frequency statistics and showed the
intrinsic information of the literature using a KG [27,28].

Google KG is the basis of Google’s semantic search and intelligent question answering
service released in 2012. In general, KGs can be divided into generic KGs, such as Google
KG, and domain-specific KGs. At present, domain-specific KGs have drawn the attention of
some research and have been developed in some commercial applications such as intelligent
question answering, intelligent decision making and intelligent detection services in health,
education, geology and other fields [21]. In KGs, knowledge is a factual triple in the form
of (subject, predicate, object), where each triple entity is represented as a node and edges
represent the relation between nodes [29]. As large-scale probabilistic knowledge triples
were extracted by information extraction tools, a probabilistic database was also proposed
to associate probabilities with triples [30–32]. With the applications of KGs in different
domains, geologists have also begun to study how to extract knowledge from unstructured
literature sources. Knowledge extraction in the geosciences has focused on the recognition
of geological entities or keywords, such as geological time. For instance, Liu et al. [33]
divided the information into two types, general time entity and geological time entity,
depending on the description characteristics in geological and mineral texts, and realised
the structural extraction of geological time entities using a BiLSTM-CRF model. Named
entity recognition (NER) using deep learning has also been applied in the extraction of
information to construct a domain-specific KG of geological hazards [34]. In Western
Australia, KGs were generated from the mineral exploration reports for iron ore deposits
in the Chichester Range Project and gold deposits in the Coolgardie Gold Project [17].
The automated KG formulation framework showed the prospect of machine reading in
knowledge extraction from unstructured geological texts.

During the process of knowledge extraction in the geosciences, entity recognition
is important content, and relationship extraction is also crucial [35,36]. A traditional
relation extraction task is to predict whether there is a relation between two entities in
a single sentence and classify this relationship; this task is also called binary relation
extraction. However, in practical applications there are also complex relation extraction
and entity recognition tasks. Figure 1 shows some types of relations encountered in actual
scenarios, including a binary relation, N-ary relation, overlapping relation (subdivided
into single-entity overlapping relation and entity pair overlapping relation) and cross
relation [37]. In general, professionally trained geologists usually follow certain rules to
form complex entities in petrographic descriptions. For instance, dual-structure and dual-
colour entities often appear in structure and colour descriptions, whereas metamorphic
rocks with an equigranular blastic texture are often described as multistructure entities in
Chinese petrographic descriptions.

Previous research on KG formulation in geosciences mainly focused on simple NER
and relation extraction. The extraction of complex knowledge characterised by complex
named entities or complex relations has not been studied. The applications of KGs in the
geosciences have thus far prioritised basic queries and visualisation [36]. Smart applications,
such as the automatic quality inspection of petrographic descriptions, have not been
developed. A module of the intelligent mineral geological survey cloud platform, which
was named as the “information release and knowledge question”, was only just designed.
Research on prospective prediction based on KGs was proposed, but has not yet been
carried out [38].

At present, a digital geological survey has been published for China, and a cognitive
geological survey is also under development. In this paper, the massive Chinese rock
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descriptions obtained through field observations are taken as the research object to carry
out the geological record quality inspection using artificial intelligence. An automatic
knowledge extraction and quality inspection framework based on KGs and machine reading
is studied. The framework proposed in this paper will eventually provide a quality
inspection service on rock description texts in the form of a web service interface.

Figure 1. Diagram of the types of relations: (a) binary relation; (b) N-ary relation; (c) single-entity
overlapping relation; (d) entity pair overlapping relation; (e) cross relation.

The rest of this paper is organised as follows: the framework for knowledge extraction
and quality inspection is introduced in Section 2. The framework components include the
definition of the named entities and relations of the petrographic descriptions based on
prior knowledge, sequence labelling of rock named entities based on word embedding,
N-ary relation extraction of petrographic descriptions based on an enriched pre-trained
Chinese language model and complex entity separation based on prior rules. In Section 3,
a case study based on the 1:50,000 sheet of Fengxiangyi located in the Dabie orogenic
belt is presented. Error propagation in the pipeline mode, integration of variant data and
specifications, knowledge recommendation and knowledge reasoning are discussed in
Section 4. The paper is concluded in Section 5.

2. Knowledge Extraction and Quality Inspection Framework

The proposed automatic knowledge extraction and quality inspection framework for
rock descriptions involves several processes, including rock named entity and relation
definitions, NER, relation extraction and knowledge consistency calculation. Figure 2 shows
the process of the proposed framework. First, the types of the named entities and relations
of rock descriptions are defined according to the prior petrographic knowledge, and the
semi-automatic formulation of the petrographic KG is completed. Second, according to
the defined entity and relation types, manual annotation of petrographic descriptions is
carried out to formulate the labelled corpus. The corpus is divided into a training dataset,
validation dataset and testing dataset, according to the general practice of supervised
learning methods. In this paper, a pipeline mode is adopted for petrographic knowledge
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extraction, which consists of two closely linked components, namely, NER and relation
extraction. Training and fine-tuning of rock NER and relation extraction models are
carried out using the labelled corpus. After inputting a rock description, entities and
relations are extracted using the trained models and entity separation is carried out in
cases where the entities extracted from the description are complex. Then, the knowledge
triples are created from the extracted entities and relations. Finally, using the formulated
KG and the extracted knowledge triples, a consistency calculation is carried out on the
petrographic knowledge obtained. Geologists verify the validity of the extracted knowledge
and consistency calculation through random sampling. Some sampled descriptions which
are not extracted correctly are used as an incremental annotation corpus.

Figure 2. The framework for knowledge extraction and quality inspection of petrographic descriptions.

2.1. Predefinition of Named Entities and Relations Based on Prior Petrographic Knowledge

Scholars have different understandings of the predefinition of geological entities and
relations. Wang et al. [39] opined that entity relation extraction in the geological field
needs to conform to the diversity of entity and relation types in the domain’s corpus. This
problem makes accurate predefinition of geological entities and relations difficult. Their
proposed solution was to directly extract entities and the relations from the geological texts
without predefinition.

Some researchers only carried out the predefinition and annotation of geological
named entities, and then the relation types were extracted from the corpus. For exam-
ple, six entity types (STRAT, ORE_DEPOSIT, MINERAL, ROCK, TIMESCALE, LOCA-
TION) were predefined and labelled in a corpus collected from WAMEX reports, and then
14 relation types (contains, in, associated_with, current_name_of, overlain_by, underlain_by,
dominated_by, interbedded_with, aged, bounded_by, occur_in, located_in, intruded_by,
hosted_in) were identified after filtering [9].

Geological texts usually contain basic concepts, spatial distribution, attribute informa-
tion and relations [40]. Chu et al. [41] clearly defined geological named entities with four
categories: entity objects (GEO), geological age (TIME), geological processes (PROCESS)
and other geological indicators (OTHERS). Xie et al. [42] further subdivided geological
named entities into six categories, namely, geological age, geological structure, strata, rock,
mineral and location.



Minerals 2022, 12, 1080 5 of 17

In the geological domain, petrographic description texts are different from the above
corpus in the geological domain. In petrographic studies, the contents of rock observations
and descriptions generally include colour, texture, structure and mineral composition. The
type of rocks are classified based on their description and specific classification principles.
Therefore, the named entity types in rock description texts can be predefined as rock, colour,
texture, structure and mineral.

In rock descriptions, colour is the most striking feature; it is also an important iden-
tification characteristic and genesis marker. When observing rocks, fresh and weathered
colour should be distinguished. For crystalline rocks, metrographic descriptions need
to distinguish the major, minor and accessory minerals. For rocks with a porphyritic
or porphyroblastic structure, the description also should contain the comparison of phe-
nocrystic and groundmass minerals. Interstitial materials or cements are also important
descriptors for rocks with clastic or granular structures. In summary, the relation types
in rock descriptions can be predefined as follows: fresh colour (FRESH_COLOR), weath-
ered colour (WEATH_COLOR), preserved texture (PRESERVE_T), preserved structure
(PRESERVE_S), major mineral (MA_MINERAL), minor mineral (MI_MINERAL), acces-
sory mineral (ACC_MINERAL), phenocrystic mineral (PHE_MINERAL) and groundmass
mineral (GRO_MINERAL). There are various relation types among named entities and
most relations point to the same rock entity. Hence, the relations in the rock description can
be considered as N-ary relations or single-entity overlapping relations. There is also the
subordinate relation type (CATEGORY_OF) between rock entities, which may also exist
between mineral entities. To simplify the named entities and relations of rocks, in this study
organic matter, fossils, quaternary sediments and related relations were not considered.
Figure 3 shows the meta-graph for the named entities and relations of the domain-specific
KG of petrography.

Figure 3. Meta-graph for named entities and relations of the domain-specific KG of petrography.

2.2. Petrographic Named Entity Recognition Based on Sequence Labelling Model

Existing NER approaches are based on rules and the dictionary or on deep learning.
An unsupervised geological knowledge extraction method based on the geological domain
vocabulary and association rules was proposed for unstructured Chinese documents [27].
In recent years, NER based on deep learning has become the mainstream method [2].
Deep learning methods transform geological NER into sequence labelling. Models, such as
DBN [40], BiLSTM-CRF [33] and BiGRU-CRF [34], were used in corresponding experiments.
The GRU is a variant of LSTM and its advantages are fewer parameters and faster training.
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However, LSTM models are more able to strongly express large amounts of data [43]. The
optimal choice between a LSTM or GRU model depends on the specific tasks at hand.
With the widespread use of large-scale pre-training Chinese models, some approaches,
such as ELMO-CNN-BiLSTM-CRF [41] and BERT-BiLSTM-CRF [17,44], are beginning to be
adopted to identify the geological named entities in the geoscience domain. In addition,
the emergence of the ELECTRA and XLNet models [45] offer more choices for downstream
Chinese natural language processing tasks.

In this paper, the sequence labelling method is also adopted. Based on the labelled
corpus of petrographic descriptions, the comparative experiments between bidirectional
RNN models (BiLSTM-CRF and BiGRU-CRF) and pre-training Chinese models (BERT,
ELECTRA, XLNet) were carried out to determine which model is suitable for NER of
petrographic descriptions. The comparison processes for the rock named entity sequence
labelling models is shown in Figure 4. The petrographic description texts are first labelled
and saved as ANN format files and then tokenised at the Chinese character level. ANN
is the file format of the BRAT (Brat Rapid Annotation Tool) [46]. The character-level
representation of the input sequence is completed via an embedding layer, and the feature
extraction is realised through an encoding layer. The token classification layer is finally
used to determine the probability of each entity type. Models based on RNNs adopt
a randomly initialised embedding layer and a CRF classification layer. However, the
models based on pre-trained models only require fine-tuning of the dense layer.

Figure 4. Framework for the named entity sequence labelling model comparison.

2.3. Petrographic Relation Extraction Based on Enriching R-Transformer Model

As mentioned above, relation extraction comprises binary relation extraction, N-ary
relation extraction and entity overlapping relation extraction. Binary relation extraction
was proposed earlier as a means to identify the relation between two entities in a single
input sentence [47]. N-ary relation extraction pertains to the recognition of relations among
n entities through multiple sentences [48]. As shown in Figure 1b, the relations among the
three entities also need to be classified. The possible relation categories between entities
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are predefined. In addition, “NA” is included in the predefined relation set to indicate
that there is no association between entities. Overlapping relation extraction means that
different relation triples in one or more sentences may have various degrees of overlap [37].
In general, there are two forms of overlap: single-entity overlap (SEO) and entity pair
overlap (EPO). SEO refers to cases where triples share an overlapping entity, but they
do not share overlapping entity pairs (Figure 1c). In contrast, EPO refers to the triples
sharing overlapping entity pairs (Figure 1d). The extraction of cross relations (Figure 1e) is
a challenging problem in geoscience, though some advanced network models were pro-
posed for biomedical cross-sentence relation extraction [49].

Existing methods used to extract relations in the geosciences are mostly based on
templates, i.e., a template library is used to match the context of two given entities in
the input text. If the context fragment is successfully matched with a template in the
library, the corresponding relation in the template is regarded as the relation between the
two entities. Template-based methods contain two specific template implementations,
one based on trigger words and one based on syntactic structure. Trigger words usually
include verbs and prepositions. A word-level relation extraction approach using such trig-
ger words was proposed to identify relations in mineral exploration reports [17]. Methods
based on syntactic structure usually take verbs as the starting point to formulate rules
that place entities on nodes and the dependency relations on edges. For instance, an open
Chinese syntactic structure extraction model was established in the geological field, in
which relations were extracted based on the syntactic structure [39]. The model uses the
open Chinese language technology platform developed by the Harbin Institute of Tech-
nology to analyse the dependency syntax and obtain the syntactic structure. Based on
a small number of annotated geological corpora, the syntactic structure-based patterns are
automatically learned to obtain the high-frequency relation extraction templates. Finally,
the learned templates are used to match the structure of the dependency relation and then
identify entities and relations. However, the relation extraction templates in the model
only cover the high-frequency syntactic structure, as it is difficult to achieve comprehensive
templates. It can be seen that methods based on a template in the geosciences have realised
unsupervised relation extraction. However, the overlapping relations, which appear often
in geological knowledge descriptions, cannot be determined using syntactic-based relation
extraction models and word-level relation extraction methods.

To achieve the overlapping relation extraction from the petrographic descriptions,
an approach based on an enriching R-Transformer model is proposed in this paper. The
method transforms the relation extraction task into a relation classification task. For sin-
gle relations between rocks and mineral entities or between rocks and structure entities,
relation classification mainly involves determining whether there is a relation between
the two entities and the problem is considered as a binary classification problem. If there
are multiple possible relations between rocks and colour entities or between rocks and
mineral entities in a single rock description sentence, the relation classification is called
a multiclassification problem. In this paper, the absence of a relation is considered a special
relation type (marked as NA). Sequence semantic feature extraction in the R-Transformer
model is based on pre-trained language models such as BERT, XLNet and ELECTRA.
The framework of the proposed R-Transformer relation classification model is shown in
Figure 5. First, the position of the entity pair in the sequence is marked in the input
of the model; thus, the extracted vector representation of the sentence contains the po-
sition information of the entity pair. Second, the model extracts semantic information
from the sentence vector and the two-entity vectors. Each entity vector is aggregated via
an averaging method, and dimension reduction is realised using a fully connected dense
layer with the Tanh activation function. Third, the two-entity vectors with reduced dimen-
sions are concatenated with the sentence vector, and the annotation classification prediction
of each sequence character is realised through the fully connected dense layer, which
adopts the softmax multiclassification activation function. Considering the scale of the
corpus and the total number of the entity pairs, a dropout layer is added after the combi-
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nation layer to deal with the possible over-fitting problem and improve the model perfor-
mance. The relationship extraction method used in this paper will be presented in detail in
another article.

Figure 5. R-Transformer models for relation classification.

2.4. Rule-Based Complex Entity Separation

In general, geological investigators write the Chinese petrographic descriptions ac-
cording to certain rules. For example, in structure and colour descriptions, often dual
terms appear, such as “massive-gneissic structure” (块状-片麻状构造), “grey-light flesh red”
(灰红-肉红色), etc., “块状-片麻状构造” is a term in Chinese, and “massive-gneissic struc-
ture” is the corresponding translation in English. The same below. The rule of “grain
size + minor mineral morphology + major mineral morphology” is often used to describe
rocks with a granoblastic structure in Chinese geological texts. Thus, the extraction of such
entities with complex descriptions is an important problem to be solved in this process.

Sequence labelling models based on deep learning require manual entity annotation
to realise semantic information extraction of the labelled entities. However, dual-construct
entities are usually labelled as single entities, thus models trained on corpora annotated
in this manner usually recognise the dual-construct entity as a single entity. To realise the
extraction of dual-structure entities, it is necessary to separate entities based on rules. In
this paper, dual-construct entities were split and reformed according to the concatenation
character using the complex entity separation algorithm shown in Algorithm 1. For exam-
ple, after splitting and reformation, “massive-gneissic structure” (块状-片麻状构造) was
extracted as two entities, namely, “massive structure” (块状构造) and “gneissic structure”
(片麻状构造).

Algorithm 1. Complex entity separation algorithm.

Input: a complex entity
Output: entities separated
1: input complex entity containing the entity type
2: if entity type is Texture
3: if entity is blastic texture and len (entity) > 7
4: execute extraction of grain size, minor and major mineral textures
5: else if entity type is Structure
6: if concatenation characters are present in entity
7: execute entity separation based on the concatenation character
8: return entities
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3. Experimental Results

In this paper, the 1:50,000 sheet of Fengxiangyi located in the Dabie-Sulu orogenic
belt in central and eastern China (Figure 6a) was selected for the empirical research. From
2014 to 2016, the Institute of Geological Survey of Anhui province carried out a digital
geological and mineral survey in this area [50], thus creating a large number of electronic
rock description texts. Middle-deep metamorphic strata and Neoproterozoic intermediate-
acid metamorphic intrusive rocks, which are part of the core of the Dabie-Sulu orogenic
belt [51], are widely distributed in this area. Figure 6b shows the major distribution of
the metamorphic plutonic rocks and metamorphic supracrustal rocks in the studied sheet,
including paragneiss, granitic gneiss, monzogranitic gneiss, granodioritic gneiss, eclogite,
amphibolite, marble, quartz-muscovite schist and quartzite. Quaternary sediments are
not studied in this paper. The rock descriptions were typical N-ary and single-entity
overlapping relation texts. For example, the description text of the quartz-muscovite schist
covers the single-entity overlapping relation between rock and structure (or texture). It also
contains some N-ary relations between rock and mineral, including the major, minor and
accessory minerals between rock and mineral. The structure and texture in the metamorphic
rock description texts are typical complex entities. For example, the structural description
of monzogranitic gneiss is a “massive-gneissic structure” (块状-片麻状构造), which is
a double-structural entity. Its structure is also a typical granular crystal structure, which
is usually described using multistructure description modes, such as the “lepidoblastic
granoblastic texture” (鳞片花岗变晶结构).

Figure 6. (a) Schematic tectonic map for the Dabie-Sulu orogenic belt in central and eastern China,
showing the location of the 1:50000 Fengxiangyi sheet. The inset shows the major tectonic divisions
of China (modified after Qiu et al., 2021 [52]); (b) simplified geological map of the Fengxiangyi sheet,
showing the distribution of rocks.

3.1. Construction of the Prior Petrographic KG

Once a medium-scale regional geological survey has taken place in an area, e.g., at
a scale between 1:200,000 and 1:250,000, the rock types in the region are generally known.
According to the petrographic knowledge, previous survey reports and expertise, the
textures, structures and material composition of the different rock types also are known.
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Therefore, in this paper, a KG is constructed based on prior knowledge for the inspection
of rock description texts. Due to the high credibility of prior knowledge, a probabilistic
database approach is not adopted in this paper.

The rock types and characteristics in the experimental sheet were comprehensively
summarised in the survey report, which formed the prior knowledge for the formulation of
the domain-specific petrographic KG. Taking the Neoproterozoic intermediate-acid meta-
morphic plutonic rocks as an example, the rock types mainly contain monzogranitic gneiss,
granitic gneiss and granodioritic gneiss. These plutons are ancient intrusions disintegrated
from the original Susong Group, and have undergone multistage metamorphism and de-
formation [50]. Table 1 summarises the prior knowledge on the metamorphic deformation
intrusions in the Fengxiangyi sheet, including rock type, texture, structure and mineral
composition. The characteristics of rock composition are described by means of major,
minor and accessory minerals.

Table 1. Prior knowledge of the metamorphic plutonic rocks in the Fengxiangyi sheet.

Rock Type Texture Structure Major Minerals Minor Minerals Accessory
Minerals

Monzogranitic gneiss
(二长花岗质片麻岩)

Lepidoblastic
texture

(鳞片变晶结构),
granoblastic

texture
(花岗变晶结构),
porphyroclastic

texture
(碎斑结构),

blastogranitic
texture

(变余花岗结构),
coarse-grained
blastic texture

(粗粒变晶结构),
medium-grained

blastic texture
(中粒变晶结构)

Gneissic structure
(片麻状构造),

massive structure
(块状构造),

weak gneissic
structure

(弱片麻状构造),
ophthalmitic

structure
(眼球状构造),

streaky structure
(条纹状构造),

banded structure
(条带状构造)

Quartz
(石英),

plagioclase
(斜长石),

k-feldspar
(钾长石)

Biotite
(黑云母),

muscovite
(白云母), epidote

(绿帘石)

Zircon
(锆石),
sphene
(榍石),

magnetite
(磁铁矿),
garnet

(石榴子石)

Granitic gneiss
(花岗质片麻岩)

Lepidoblastic
texture

(鳞片变晶结构),
granoblastic

texture
(花岗变晶结构),
blastogranitic

texture
(变余花岗结构),

fine-grained blastic
texture

(细粒变晶结构)

Gneissic structure
(片麻状构造)

Quartz
(石英),

k-feldspar
(钾长石),

plagioclase
(斜长石)

Biotite
(黑云母),

muscovite
(白云母)

Zircon
(锆石),
apatite

(磷灰石),
rutile

(金红石),
ilmenite
(钛铁矿),

magnetite
(磁铁矿),
garnet

(石榴子石)

Granodioritic gneiss
(花岗闪长质片麻岩)

Blastogranitic
texture

(鳞片变晶结构),
porphyroclastic

texture
(碎斑结构)

Gneissic structure
(片麻状构造),

massive structure
(块状构造)

Quartz
(石英),

plagioclase
(斜长石),

k-feldspar
(钾长石)

Biotite
(黑云母),

hornblende
(角闪石)

Magnetite
(磁铁矿),
sphene
(榍石),
zircon
(锆石)

Note: monzogranitic gneiss (二长花岗质片麻岩): “二长花岗质片麻岩” is a term in Chinese. “Monzogranitic
gneiss” is the corresponding translation in English.
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3.2. Knowledge Extraction and Quality Inspection

The quality inspection task requires that the computer system can accurately extract
named entities and relations from the input texts. In the proposed quality inspection frame-
work, the sequence labelling model and the enhanced R-Transformer relation classification
model recognise the named entities and extract the relations from the input rock description
texts in a pipeline mode. The extracted entities and relations are eventually composed
into knowledge triples. The rock types in the selected sheet are mainly metamorphic
rocks, which are mostly classified on the basis of texture (grain size, shape, orientation),
structure and mineral composition. Based on the extraction of knowledge triples and the
petrographic KG constructed based on prior knowledge, a quality inspection of the rock
description texts can be realised based on the consistency between rock knowledge and
knowledge triples.

Figure 7 shows the calculation process applied for knowledge alignment. The first step
is the consistency calculation of the extracted texture, structure and mineral composition
information. Based on the extracted rock type, Cypher, a graphic query language, is used
to match the extracted textures, structures, major minerals and minor minerals with their
corresponding information of this rock type in the KG one by one. To evaluate the matching
results of step 1, if there are mismatched extraction knowledge triples, step 2 is executed. If
all triples match, the algorithm proceeds to step 3. The unmatched triples of step 2 may be
an error description or new knowledge, and the program returns the mismatch information.
At the same time, the program automatically saves the rock description text to the corpus,
which should be manually verified. Step 3 involves matching the rock entity extracted from
the rock description text with the rock entities in the petrographic KG, which conform to the
characteristics of the extracted texture, structure, major minerals and minor minerals. The
output of this step is the number of rock entities that match the description. The process is
terminated if only one match is found; if two or more entities are returned in step 3, then
step 4 is executed. In step 4, the program indicates that there are some rock entities with
the same descriptive characteristics. The knowledge identified between the rock entities
is returned. This step plays the role of knowledge recommendation while conducting the
consistency calculation.

Figure 7. Knowledge consistency calculation.
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As an example, in Table 2 the rock description text for a granitic gneiss outcrop is
presented. The extracted rock entity name, structure entities, texture entities and mineral
entities, along with the relations of the major and minor minerals, are described. Figure 8a
is the subgraph for granitic gneiss. The consistency calculation for the extracted triples
went through steps 1 and 3. In the petrographic KG, only granitic gneiss has the same
characters extracted from the rock description text. Table 3 is the rock description text for
another eclogite outcrop, and Figure 8b is the subgraph of the petrographic KG for eclogite.
The consistency calculation after knowledge extraction also involves the execution and
termination of steps 1 and 3.

Table 2. An example of description text extraction for granitic gneiss.

Description text in Chinese 点南为灰白色厚层状花岗质片麻岩,细粒鳞片花岗变晶结构,片麻状-块状构造,主要矿
物斜长石50%,钾长石20%,石英20%,他形粒状,少量黑云母.

Description text
The south of the point is greyish-white, thick, layered granitic gneiss; fine-grained and
lepidoblastic-granoblastic structure, gneissic-mass structure; major minerals: plagioclase 50%,
k-feldspar 20%, quartz 20%, xenomorphic crystal, a small amount of biotite.

Structure Gneissic structure (片麻状构造),
massive structure (块状构造) Texture

Fine-grained blastic texture
(细粒变晶结构),

lepidoblastic texture
(鳞片变晶结构),

granoblastic texture
(花岗变晶结构)

Major mineral Plagioclase (斜长石), k-feldspar
(钾长石), quartz (石英) Minor mineral Biotite (黑云母)

Extracted rock entity Granitic gneiss (花岗质片麻岩)

Note: (1) Gneissic structure (片麻状构造): “片麻状构造” is a term in Chinese, “Gneissic structure” is the
corresponding translation in English. (2) The named entities are underlined in the Chinese text.

Figure 8. (a) Granitic gneiss subgraph; (b) eclogite subgraph.
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Table 3. An example of description text extraction for eclogite.

Description text in Chinese 点北为榴辉岩,灰绿色,细粒变晶结构,块状构造,主要由石榴子石30%,辉石70%组成,矿物颗粒较
细小,多在0.5 mm左右,石榴子石多风化呈红褐色圆粒状.

Description text
The north of the point is eclogite. Grey-green, fine-grained blastic texture, mass structure, mainly
composed of garnet 30%, pyroxene 70%. Mineral particles are small, mostly around 0.5 mm.
Weathered garnet is mahogany and has a rounded grain.

Structure Massive structure (块状构造) Texture Fine-grained blastic texture
(细粒变晶结构)

Major mineral Garnet (石榴子石),
pyroxene (辉石) Minor mineral

Extracted rock entity Eclogite (榴辉岩)

Note: (1) Massive structure (块状构造): “块状构造” is a term in Chinese, “Massive structure” is the corresponding
translation in English. (2) The named entities are underlined in the Chinese text.

For the quartz-muscovite schist, the application of the knowledge extraction and
consistency calculation process demonstrated that muscovite is described as the major
mineral in most quartz-muscovite schist description texts. However, muscovite is the minor
mineral in the standard description of quartz-muscovite schist. The process executed steps
1 and 2 in turn and terminated. The related rock description text was automatically stored
in the corpus waiting for manual validation by users of the proposed framework. A review
by geologists revealed that the reason for the mismatch was the imprecise description by
investigators.

4. Discussion
4.1. Error Transformation in Pipeline Mode

In this paper, comparative experiments were carried out on the sequence labelling
models used for the rock NER and the R-Transformer relation classification models used
for the relation extraction. Table 4 shows the results of the comparative experiments, which
shows that the sequence labelling model and the relation classification model based on
BERT achieved the best performance in the naming entity and relation extraction based
on the F1 scores. In particular, the F1 value of the BERT-based sequence labelling model
reached 98.04%. This high accuracy can reduce the errors of the NER stage effectively and
remedies the deficiencies of the error transmission in the pipeline mode. Meanwhile, there
was relatively little difference between the performance of the various models. The possible
reason is the corpus size. Further experimental studies on the comparison of different
models under corpora of different scales will be carried out in the future.

Table 4. The performance of different models in a sequence labelling task and relation extraction task.
Bold marks indicate the best performance in all methods.

Indicator BiLSTM-CRF BiGRU-CRF BERT XLNet ELECTRA

Entity
p 97.81 97.14 97.57 95.38 97.38
R 97.81 98.33 98.51 97.63 97.81
F1 97.81 97.74 98.04 96.49 97.60

Relation
p - - 91.77 91.15 90.84
R - - 94.71 93.32 90.56
F1 - - 93.22 92.22 90.70

Note: “-”: non-execution.

4.2. Integration of Variant Data and Specifications

In digital mapping systems, apart from the unstructured data, there are also important
structured data, which are more important, such as the location, landform and mapping
unit of the geological observation point. At present, the objects of information extraction in
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the geosciences are mostly unstructured data, including texts and documents. However,
based on the experience of domain-specific KG formulation in other fields, structured data
are also an important source of knowledge. The integration of structured and unstruc-
tured data to realise the rapid construction of a large-scale KG is an aspect that needs
further research.

In geological texts, a common occurrence is that the use of the terms “texture” and
“structure” is confused. However, in petrology specifications, such as the terminology
classification and code of geology mineral resources, Part 10: Petrology (GB/T 9649.10-
2009), the terms “texture” and “structure” have unambiguous definitions. In this paper,
standardised terms are stored in the KG of petrography as a form of prior knowledge. If
a nonstandard entity term is extracted or separated, a triple consisting of the term will have
difficulty passing the consistency calculations.

4.3. Knowledge Recommendation and Knowledge Reasoning

This study takes the extraction and inspection of petrographic knowledge with com-
plex entities and relations as the research object. As described in Section 3.2, when matching
the rock description characteristics with the rock entities in the petrographic KG, there
may be more than one match with the same description characteristics. In particular, some
metamorphic rocks have the same fabric characteristics and mineral composition. Owing
to their different geological environments (geological occurrences), the basic names of
rocks may vary greatly, resulting in the phenomenon of synonymy of the same rock. For
example, massive rocks mainly composed of muscovite and quartz are named muscovite
quartzite formed by the regional metamorphism, but those formed through gas-liquid
metamorphism of granitic rocks are also named muscovites. In such cases, the process
needs not only to return the possible rock entity matches, but also to prompt the geological
investigator to pay more attention to the field observation of the geological occurrence.
Therefore, apart from the quality inspection of petrographic descriptions, rock identification
knowledge recommendation is another possible application of petrographic KGs.

Another potential application of KGs is knowledge reasoning. Generally, metamorphic
facies can be determined according to the minerals and mineral assemblages of metamor-
phic rocks. Since the proposed framework can be used to obtain mineral information of
metamorphic rocks in the studied sheet through machine reading, the metamorphic facies
of the metamorphic strata can be inferred based on the mineral information of the rocks
which belong to the metamorphic strata and the computable and stored decision rules in
the KG.

5. Conclusions

In this study, the methods for automatic knowledge extraction and quality inspection
of petrographic description texts with complex entities and relations were investigated.
A framework which contains rock named entity and relation definitions was proposed
based on prior petrographic knowledge, rock NER based on a sequence labelling model,
petrographic relation extraction based on an enriching R-Transformer relation classification
model and rule-based complex entity separation. Considering the high accuracy of NER,
the framework allows for rock named entity sequence labelling and relation classification
in a pipeline mode. The petrographic descriptions of regional metamorphic rock types
in the sheet of Fengxiangyi located in the Dabie orogen were selected as the experimen-
tal dataset. The experimental results showed that: (1) Large-scale pre-trained language
models are suitable for complex entity recognition and complex relation extraction on
small-scale petrographic description texts. (2) The framework proposed in this paper can
automatically extract knowledge from petrographic descriptions of regional metamorphic
rocks in the Dabie orogen. (3) Adoption of the proposed method for KG-based quality
inspection can lead to improvements in rock description quality and avoid obviously
inconsistent descriptions.
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