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Abstract: In the flotation of semi-soluble minerals such as calcite and fluorite, Ca2+ is one of the
common dissolved components influencing the collector adsorption behaviors on the mineral surfaces.
However, there is very limited research focusing on how the dissolved Ca2+ affects the separation of
fluorite and calcite. In the study, with sodium oleate (NaOL) as a collector and tannic acid (TA) as a
depressant, a flotation test, zeta potential measurement, and adsorption experiment in the presence of
Ca2+ were conducted. Flotation tests indicated that in the presence of Ca2+, fluorite and calcite were
both significantly depressed by TA, leading to difficulty in the separation of the two minerals. It was
also found that the depression effect on fluorite flotation was minimized with a high concentration
of NaOL. Zeta potential measurement and the adsorption experiment results are consistent with
the flotation results, revealing that it is only in the low concentration of NaOL that the flotation of
fluorite was depressed by TA in the presence of Ca2+. Specifically, in the low concentration of NaOL,
TA adsorbed on the fluorite surface and depressed the flotation of fluorite due to the preferential
interaction between NaOL and Ca2+ in the solution leading to a shortage in the effective NaOL in the
solution. In the high concentration of NaOL, the adsorbed TA on the fluorite surface was displaced
by the excessive NaOL in the solution; hence, the flotation of fluorite was recovered. In contrast, TA
always hinders the interaction of NaOL with calcite regardless of the presence and absence of Ca2+

and NaOL, hence, depressing the flotation of calcite. The study presented that a high concentration
of NaOL may mitigate the negative effect of Ca2+ on the fluorite surface and improve the separation
of fluorite from calcite.

Keywords: calcium ion; fluorite; adsorption mechanism; tannic acid

1. Introduction

Fluorite (CaF2) is an important strategic mineral that is used primarily for the pro-
duction of hydrofluoric acid and as a flux agent in steel making [1]. In practice, calcite
is one of the common gangue minerals in fluorite ore [2]. Froth flotation has been con-
sidered one of the most effective ways to separate fluorite from calcite. Fatty acids and
their salts, such as sodium oleate (NaOL), were usually realized as collectors for fluorite
and calcite flotation [3–5]. A comprehensive review of the interaction of NaOL onto the
fluorite and calcite was reported as chemisorption, followed by the formation of hydropho-
bic aggregates and surface precipitation of calcium carboxylate from bulk solution [6–8].
In addition, the interaction of NaOL on fluorite and calcite surface is recognized mainly
through chemisorption and physical adsorption, respectively [9]. Due to the similar surface
properties and chemical reactivity with reagents [10], the separation of fluorite and calcite
is relatively difficult, and a selectively depressant is considered the key to their separation.
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Many calcite depressants were identified by researchers for the separation of fluorite
and calcite, including inorganic and organic [11]. Due to the limit, pH application range,
and the dewatering problem of the inorganic depressants, the organic depressants, such
as tannic acid [1], psyllium seed gum [12], and sulfonated lignite [13], can selectively
adsorb with Ca2+ on the calcite surface, have become an important direction in studying
the separation of fluorite and calcite. Tannic Acid (TA) is one of the most widely used
organic reagents for the depression of calcareous and siliceous ores in industry. In the case
of calcite flotation, Castro et al. [11] demonstrated that the effect of quebracho, a tannic
acid extract is more effective on calcite than on celestite. Yuehua Hu et al. [1] identified the
selective adsorption of TA on calcite via Ca2+ and Ca(OH)+ components on the mineral
surface and depressed calcite in the fluorite flotation using NaOL as a collector. However,
the results of a bench-scale flotation test for a fluorite ore flotation from Hunan, Chenzhou,
were not good enough without hydrochloric acid adjustment using NaOL as collector
and TA as depressant [14]. Considering the species, especially calcium ion dissolved from
calcium-bearing minerals, is inevitable during a long flotation processing, the floatability
of fluorite and calcite may be different in a high Ca2+ content flotation slurry [15–17].

It is documented that the interaction between the collector and Ca2+ in bulk solution
dominated the collector adsorption mechanism at these mineral surfaces [18]. For example,
Yijun Cao et al. [15] noted that both scheelite and fluorite were depressed strongly by
sodium silicate in the presence of calcium. Many researchers also indicated that the Ca2+

adsorbed on mineral surface or suspended in solution would also consume the flotation
reagent by precipitating into calcium salts, which would significantly reduce the flotation
recovery of scheelite [8,19,20]. These investigations provided valuable information for
the current study. However, in the fluorite and calcite flotation system, the adsorption
mechanisms of NaOL and TA on the mineral surface in the presence of Ca2+ have not been
reported. It was still hard to realize the separation of fluorite from calcite in the presence of
Ca2+ when using TA as a depressant. Therefore, flotation tests, zeta potential measurements,
and adsorption experiments were employed to elucidate the effect of calcium ions on the
fluorite and calcite flotation and the adsorption mechanism of NaOL and TA in this study.

2. Materials and Methods
2.1. Materials and Reagents

Pure fluorite and calcite samples (each 5 kg) were obtained through hand picking from
the faces of a fluorite mine in Guangxi, China. X-ray diffraction analyses were carried out
on D8 Advance Bruker (Bruker Co., Berlin, German)with Cu Kα radiation. The XRD results
revealed that the purity of fluorite and calcite is greater than 95%, as shown in Figures 1
and 2. The samples were crushed with a hammer, ground in a laboratory porcelain mill,
and then screened to collect −74 + 44 µm particle size fractions for flotation tests and
adsorption experiments. Samples further ground to −5 µm in an agate mortar were used
for zeta potential measurements.

Chemically pure reagents were obtained from the following sources: Sodium oleate
(NaOL) and tannic acid (TA) collected from Aladdin Biological Technology Ltd. (Shanghai,
China) were used as a collector and a depressant, respectively. CaCl2 collected from
Baisaiqin Chemical Technology Co., Ltd. (Shanghai, China) was used to adjust the ions
concentration in the solution. The pH was adjusted with NaOH or HCl stock solutions.
Deionized water was used for all experiments.
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Figure 1. XRD spectra of fluorite samples used for flotation tests. 
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Figure 2. XRD spectra of calcite samples used for flotation tests. 
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2.2. Flotation Tests

Flotation was performed in a 150 mL mechanical flotation cell at 1400 rpm with an
airflow rate of 0.125 L/min. Fluorite or calcite single mineral (5 g) was combined with
120 mL DI water and mixed for 1 min. NaOH solution was then added to adjust pH 9.0,
at which fluorite and calcite may be floated with sodium oleate. This pH was maintained
throughout the flotation process. The depressant (TA) was added and conditioned over
2 min after the pH adjustment. Then the collector (NaOL) was added, and the suspension
was agitated for further 2 min; the froth collection was performed for 8 min finally. When
CaCl2 was used, it was added prior to the pH adjustment and conditioned for 2 min.
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For individual mineral flotation, both the floated and unfloated particles were collected,
dried, and weighed to calculate the flotation recovery. Repeat tests were carried out for
each flotation 3 times, and the average results are reported as the final values.

2.3. Zeta Potential Measurements

The zeta potential of fluorite and calcite were measured at 25 ◦C using ZetaPlus Zeta
Potential Analyzer (Brookhaven Instruments, Austin, TX, USA). All mineral samples were
ground to −5 µm by an agate mortar. A total of 20 mg ground sample combined with 50 mL
DI water was stirred for 2 min. Then the given pH and reagents concentration was added to
the solution in the same order in the flotation test. After allowing the suspension to stir and
settle, the zeta potential measurement was performed after transferring the supernatant
liquor into a Tiselius cell in a ZetaPlus Unit. For each zeta potential measurement, three
tests were repeated, and the average zeta potential was reported.

2.4. Adsorption Experiments

In this study, total organic carbon (TOC) measurement was introduced to evaluate
the NaOL concentration before and after the adsorption in the solution. The adsorption
experiment of minerals without TA treatment was conducted as follows: Fluorite or calcite
sample (1 g) was added to 50 mL DI water at pH 9.0 in a beaker and agitated for 5 min
by a magnetic stirrer. Then NaOL solution of a known concentration was added and
conditioned for further 15 min. The solid particles were separated by centrifugation for
30 min at 3000 r/min. The concentration of reagents in the supernatant was measured
using Elementar liquid TOCII (Elementar Co., Hesse, Germany).

The adsorption experiment of minerals treated with TA was conducted as follows:
Fluorite or calcite (1 g) was placed in a beaker and dispersed in 50 mg/L TA solution at pH
9.0 for 30 min. Then, the TA-treated fluorite and calcite samples were obtained after filtering
and drying at room temperature. Next, those samples with various amounts of NaOL were
added to the DI water or 15 mg/L CaCl2 solution, and the suspension was agitated for
further 15 min. All other conditions were the same as those in the adsorption experiment
above. The adsorbed amount of collector was then calculated from the difference between
the initial (known) concentration and the equilibrium (measured) concentration.

1 g fluorite or calcite in 50 mL DI water at pH 9.0 was used as a blank sample. NaOL
dissolved in DI water at pH 9.0 was used to establish the calibration curve. Each adsorption
test was repeated three times, and the average was reported in this study.

3. Results and Discussion
3.1. Microflotation Tests
3.1.1. Effect of the NaOL and TA Concentration on the Fluorite and Calcite Flotation

The flotation behavior of fluorite and calcite with various NaOL concentrations at pH 9
is given in Figure 3. The flotation recovery of the two minerals increased gradually with
increasing the concentration of NaOL. In the absence of TA, fluorite and calcite exhibited
good flotation behavior with 94.8% and 92.6% recovery, respectively, at 150 mg/L NaOL.
In addition, the flotation recovery of fluorite was much higher than calcite when the NaOL
concentration was below 90 mg/L, and the gap between these two minerals decreases as
the NaOL concentration increases. There is no significant difference in flotation recovery
between fluorite and calcite at high NaOL concentrations. The results reveal that NaOL has
a good adsorption effect on both minerals in alkaline solution [10]. Further, the flotation
of fluorite can be achieved at low NaOL concentration due to the stronger chemisorption
and the monolayer coverage between RCOO− and Ca2+ on the fluorite surface [5,21]. At a
higher concentration of NaOL, the physical adsorption of calcium oleate colloids may play
a significant role in calcite flotation [22].
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Figure 3. Effect of NaOL concentration on the flotation recovery of fluorite and calcite.

Figure 4 shows the flotation recovery of fluorite and calcite with 150 mg/L NaOL as a
function of TA concentrations at pH 9. In the presence of TA, calcite recovery decreased
dramatically from 92.6% to 13.8%, and fluorite recovery decreased slightly from 94.8% to
72% as the TA concentration increased in the range from 0–50 mg/L, which is necessary for
their separation. From the literature, TA has little effect on the chemisorption of NaOL at the
fluorite surface while selectively depressing calcite via weakened the adsorption of NaOL
on the calcite surface [1]. However, the separation of fluorite and calcite could be changed
by the components dissolved from semi-soluble Ca-bearing minerals. Therefore, the effect
of calcium ions on the flotation of two minerals was further examined in this work.
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3.1.2. Effect of Calcium Ion on Fluorite and Calcite Flotation

Fluorite and calcite flotation were conducted in the presence and absence of 40 mg/L
TA as a function of CaCl2 concentration, and the results are shown in Figure 5. The flotation
recovery of the two minerals remains constant at approximately 93% without TA in the
CaCl2 concentration range of 0–15 mg/L with 150 mg/L NaOL at pH 9. In the presence of
TA, the flotation recovery of fluorite reduced from 72% to 16.2% when CaCl2 concentration
increased from 0 to 6.0 mg/L. with a further increase in CaCl2 concentration, this decrease



Minerals 2022, 12, 996 6 of 11

slowed down with a 3% recovery at 15 mg/L CaCl2 concentration. Meanwhile, the calcite
recovery was low, and the floatability of calcite was hardly affected by adding CaCl2 in the
presence of TA. Consequently, this phenomenon reveals that it is impossible to separate
fluorite from calcite using NaOL as a collector and TA as a depressant in the presence
of calcium ions. From this result, it is apparent that the adsorption of NaOL and TA on
the fluorite surface may be different in the presence of calcium ions. In DI water, the
preferential adsorption of NaOL takes place on the fluorite surface rather than TA, which
may explain the limited inhibition of fluorite flotation by TA [1]. With the addition of
CaCl2, NaOL was consumed to generate calcium oleate colloids with Ca2+ in the solution
instead of chemisorption on the fluorite surface [19,23]. The physical adsorption between
calcium oleate colloids and fluorite surface maintains the floatability of fluorite without TA.
However, the TA may have stronger competitive adsorption with fluorite surface than the
calcium oleate colloids, and the fluorite could be depressed by TA. This is supported by the
flotation test above.
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3.1.3. Eliminating the Negative Effect of Ca2+ by Increasing the Dosage of NaOL

The float abilities of fluorite and calcite with massive NaOL concentration in the
presence of 15 mg/L CaCl2 and 50 mg/L TA are shown in Figure 6. It is clear that
the fluorite recovery was remarkably improved from approximately 3% to 91.4%, with
increasing NaOL concentration from 150 mg/L to 300 mg/L. Thereafter, the recovery
increased slightly. This result indicates that TA adsorbed on the fluorite surface could be
replaced by the excessive NaOL after precipitating Ca2+ in solution due to the stronger
attractive interaction of NaOL on the fluorite than that of TA [11]. In the case of calcite
flotation, calcite recovery remains low with the increased NaOL concentration. This may
attribute to the high-concentration Ca2+ produced by the addition of CaCl2 and calcite
dissolution, thereby causing the formation of calcium oleate from NaOL in solution [5,24].
Thus, TA prevents the adsorption of calcium oleate on the calcite surface and inhibits calcite
flotation. Based on the flotation test, it suggests that the negative effect of Ca2+ on fluorite
flotation could be eliminated by increasing the dosage of NaOL. These findings have been
applied in the fifth cleaning flotation flowsheet of a fluorite mine in Guangxi, China. The
total consumption of NaOL increased by 7%, approximately, and the flotation recovery of
fluorite has improved by nearly 5%, which shows good economic benefits and industrial
application value. The interaction of TA and NaOL on the mineral surfaces in the presence
and absence of Ca2+ was investigated in the following section.
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3.2. Zeta Potential Measurements

In order to understand the adsorption mechanism of NaOL and TA on the mineral
surfaces in the presence of Ca2+, the zeta potential was measured, and the results are shown
in Figures 7 and 8. Figure 7 shows the zeta potential of fluorite treated and not treated
with TA and NaOL as a function of pH in the absence and presence of Ca2+. As can be
seen, the isoelectric point of fluorite without any reagents is around pH 6.5, which is close
to the reported values in previous studies [25]. The zeta potential of fluorite towards the
negative values in the presence of NaOL or TA. The reduced values of NaOL are much
larger than that of TA, demonstrating that strong adsorption of NaOL occurs on the fluorite
surface. Moreover, a similar zeta potential decrease was observed for fluorite treated with
TA followed by NaOL or just NaOL, so it is indicated that the adsorption of NaOL on
fluorite surfaces cannot be prevented by TA. This is consistent with the flotation test of
fluorite above. When calcium ion was added, the zeta potential of fluorite was close to that
with TA alone, suggesting that TA played a dominant role on the fluorite surface under
the condition of 15 mg/L CaCl2 and 150 mg/L NaOL. After increasing the concentration
of NaOL to 300 mg/L, the decrease in Zeta potential of fluorite occurred, and the values
trended the same with the NaOL alone in the range of pH from 3–10, illustrating that TA
is possible desorbed and replaced by excess NaOL from the fluorite surface due to strong
chemical adsorption between RCOO− and Ca2+ on the fluorite surface [16]. The results
are correlated well with the fluorite flotation, suggesting that the effect of Ca2+ on fluorite
flotation can be mitigated using a massive NaOL collector.

Figure 8 shows the modification of zeta potential on calcite treated with different
reagents as the function of pH. Obviously, calcite becomes highly negatively charged in the
presence of reagents. Moreover, a larger negative shift of the zeta potential values of calcite
was observed with TA than with just NaOL, indicating that the selective adsorption of TA
was generated on the calcite surface. When TA was added prior to NaOL, the zeta potential
of calcite was close to that of TA alone, which means the depressant TA can also adsorb on
the calcite surface in the presence of NaOL. This result is in accordance with Yuehua Hu [1].
With the addition of Ca2+, the zeta potential of calcite remains at the negative values, which
is similar to the TA alone. In addition, no evident change was observed in the zeta potential
of calcite with 150 mg/L NaOL or 300 mg/L NaOL. This result demonstrates that some
preferential adsorption sites for TA always exist on the calcite surface.
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3.3. Adsorption Mechanism Study

The adsorption of NaOL on the fluorite and calcite under different conditions is shown
in Figures 9 and 10. Figure 9 shows the adsorption isotherms of NaOL on fluorite treated
or not treated with TA in the absence and presence of Ca2+. As can be seen, the adsorbed
amount of NaOL on the fluorite surface increased gradually with its initial concentrations
increased. In the absence of Ca2+, the fluorite surface could be effectively coated with NaOL
species. In addition, only a small decrease in NaOL adsorption was found on the fluorite
surface with TA treatment, which demonstrates that the stronger chemisorption of NaOL
was bonded with the calcium site at the fluorite surface rather than TA. In the presence
of Ca2+, a reduction in NaOL adsorption amount on the TA-treated fluorite surface was
observed with the NaOL concentration below 150 mg/L, while the gradually increasing
trend occurred in the range of NaOL concentration from 200 mg/L to 300 mg/L. It is
documented that the calcium ion dominates the surfactant adsorption mechanism at the
Ca-bearing mineral surface [16]. In this study, the addition of Ca2+ interacts with the NaOL
by forming calcium oleate through carboxylate reactions in the bulk solution, which change
the NaOL adsorption mechanism from the chemisorption to the precipitation of calcium
oleate collides on the fluorite surface [20]. TA can prevent this physical adsorption of
calcium oleate and depress the fluorite with the NaOL concentration below 150 mg/L. With
the increase in NaOL centration, the excess NaOL reabsorb on the fluorite surface after
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consuming the Ca2+ in the solution and then improves the fluorite flotation. This result is
consistent with the flotation test shown in Figure 6.
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The adsorption isotherms of NaOL on calcite treated or not treated with TA in the
absence and presence of Ca2+ are given in Figure 10. The trend observed for the adsorption
of NaOL on calcite was similar to this for fluorite without TA and Ca2+, as the amount of
NaOL adsorbed on calcite was enhanced by increasing their initial concentration. The rela-
tively high NaOL adsorption on the calcite surface may be related to the high concentration
of Ca2+ dissolved from calcite, thereby causing the physical adsorption of calcium oleate
colloids and achieving calcite flotation [24]. Nevertheless, the amount of NaOL adsorbed
on the calcite surface after TA treatment was much less in the presence or absence of Ca2+

even at the high NaOL concentration, suggesting TA cannot be desorbed from the calcite
surface. Therefore, the separation of fluorite from calcite could be achieved under the
condition of high NaOL concentration using TA as a depressant.

4. Conclusions

In this study, calcium ion has been shown to exhibit a significant impact on fluorite
recovery. Flotation experiments illustrate that fluorite and calcite exhibit good floatability
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with NaOL. TA is an effective depressant for calcite but exerts little influence on fluorite
flotation in deionized water. With the addition of Ca2+, fluorite flotation recovery decreased
dramatically in the presence of TA. Then, the fluorite flotation can also be recovered by
increasing the NaOL concentration. Adsorption tests and zeta potential results consistently
showed that TA has little effect on the chemisorption of NaOL on the fluorite surface.
However, the adsorption of NaOL on the fluorite surface was strongly weakened in the
presence of Ca2+ and TA at the same time, which caused the problem of the separation
of fluorite from calcite. This negative effect of Ca2+ can be removed by raising the NaOL
concentration, suggesting that excessive NaOL can reabsorb on the fluorite surface and
then improve its flotation. On the other side, TA always occupies the site of the calcite
surface and depresses the calcite flotation in this study, which provides a possibility of
separating fluorite from calcite in a calcium species contained solution using high NaOL
concentration as a collector and TA as a depressant. These findings also emphasize that
it is necessary to consider the inhibition effects and selective adsorption mechanisms of
dissolved components from semi-soluble minerals on the mineral surfaces.
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