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Abstract: The Shuangwang gold deposit, with more than 70 tons of Au, is located in the Fengxian-
Taibai ore concentration area in the Qinling Orogen of central China, hosted in a Northwest-trending
breccia belt. Fragments of the breccia body are cemented by ankerite, albite, quartz, calcite, and pyrite.
Four metallogenic stages are identified in mineral paragenesis: quartz-albite, ankerite-pyrite-albite,
pyrite-quartz-calcite, and fluorite-anhydrite. Pyrite, as the main gold-bearing mineral, was formed
in the syn-ore and post-ore stages, which are analyzed for trace elements. The experimental results
show that Au (0.02 to 11.68 ppm), As (198.45 to 5502.86 ppm), Ag (0.00 to 1.56 ppm), Co (0.02 to
1002.75 ppm), Ni (0.15 to 646.30 ppm), Cu (0.00 to 64.76 ppm), Sb (0.00 to 4.67 ppm), Zn (0.23 to
260.59 ppm), Pb (0.00 to 10.42 ppm), Se (0.00 to 386.24 ppm), and Bi (0.00 to 47.72 ppm) are enriched
in syn-ore pyrite much more than in post-ore pyrite, especially arsenic. The high arsenic content and
rapid crystallization of pyrite may be the main reasons for precipitation of gold. δ34SV-CDT values of
pyrite formed in stage II (PyII) vary from 11.1 to 15.2‰ (mean = 12.9‰), while those for pyrite formed
in stage III (PyIII) vary from 11.1 to 13.5‰ (mean = 12.0‰). In situ sulfur isotope analysis indicates
that sulfur of the Shuangwang deposit comes from the wallrock, mixed with sulfur from magma.

Keywords: pyrite; trace element; sulfur isotope; Shuangwang; Qinling Orogen

1. Introduction

The Qinling Orogenic Belt (QOB), as one of the most important gold regions in China,
hosts more than 50 gold deposits. In recent years, Chinese geologists have reviewed
the Western Qinling gold deposits, including their distribution, classification, geological
characteristics, and ore-forming process [1–3].

For the Shuangwang gold deposit, located in the Fengxian-Taibai (Feng-Tai) ore con-
centration area, gold is mainly produced in the cement of the breccia body. The boundaries
between orebodies and breccia bodies are usually delineated by assay results. For this
reason, scholars have carried out a lot of related research, including ore-forming fluid and
stable isotopes [4–7], Iron and Magnesium isotopes [8], He-Ar isotopes [9], and mineral
characteristics [10–12]. Due to its particularity, there is still a great controversy regarding
the genetic type, including the orogenic type [1], Carlin-like type [3], Carlin or Carlin-like
type [2], cryptoexplosive breccia type [4], and so on.

This paper identifies two generations of pyrite, which is consistent with previous stud-
ies, indicating that there is still one pyrite crystallization in the later stage of mineralization,
which does not contain gold. We study the trace element composition and sulfur isotopes
in the two generations of pyrite, as well as distinguishing differences in their elemental
compositions and discuss the possible causes for them. Our results provide insights into the
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ore-forming fluid and allows for assessment of the source of sulfur, providing geochemical
evidence for study of the genesis of the Shuangwang gold deposit.

2. Geological Setting

The Qinling Orogenic Belt (QOB) is located between the North China Craton and
Yangtze Craton and has undergone complex tectonic evolution [13–15]. It can be divided
into the North Qinling Block (NQB) and South Qinling Block (SQB) by the Shangdan
suture. The Feng-Tai ore concentration area is located in the north margin of the SQB
(Figure 1), and is rich in mineral resources of lead, zinc, gold, copper, and so on. The
proven gold reserves are over 125 tons, while lead and zinc metal reserves are nearly
5 million tons in the area [16]. The Feng-tai ore concentration area is mainly exposed in
the Devonian unit, which is a set of low-grade metamorphic littoral-neritic clastic rock–
carbonate formations, followed by a small amount of Carboniferous–Triassic unit. The
Devonian unit, from bottom to top, includes the Middle Devonian Macaogou Formation,
the Middle Devonian Gudaoling Formation, the Upper Devonian Xinghongpu Formation,
and the Upper Devonian Jiuliping Formation. Pb–Zn deposits are mainly in the contact
zone of the Xinghongpu and Gudaoling Formations, and gold deposits in the area are
mainly in the Xinghongpu Formation (Figure 2). The overall structure of the area is a
complex fold, mainly in the axial direction of NWW. There are many faults in the area. The
intrusive rocks in the area include Baoji pluton, Taibai pluton, and Ningshan composite
pluton, which have the characteristics of multiple periods and types. The Xiba pluton is the
northwestern part of the Ningshan composite pluton.

Minerals 2022, 12, 995 2 of 13 
 

 

This paper identifies two generations of pyrite, which is consistent with previous 
studies, indicating that there is still one pyrite crystallization in the later stage of mineral-
ization, which does not contain gold. We study the trace element composition and sulfur 
isotopes in the two generations of pyrite, as well as distinguishing differences in their 
elemental compositions and discuss the possible causes for them. Our results provide in-
sights into the ore-forming fluid and allows for assessment of the source of sulfur, provid-
ing geochemical evidence for study of the genesis of the Shuangwang gold deposit. 

2. Geological Setting 
The Qinling Orogenic Belt (QOB) is located between the North China Craton and 

Yangtze Craton and has undergone complex tectonic evolution [13–15]. It can be divided 
into the North Qinling Block (NQB) and South Qinling Block (SQB) by the Shangdan su-
ture. The Feng-Tai ore concentration area is located in the north margin of the SQB (Figure 
1), and is rich in mineral resources of lead, zinc, gold, copper, and so on. The proven gold 
reserves are over 125 tons, while lead and zinc metal reserves are nearly 5 million tons in 
the area [16]. The Feng-tai ore concentration area is mainly exposed in the Devonian unit, 
which is a set of low-grade metamorphic littoral-neritic clastic rock–carbonate formations, 
followed by a small amount of Carboniferous–Triassic unit. The Devonian unit, from bot-
tom to top, includes the Middle Devonian Macaogou Formation, the Middle Devonian 
Gudaoling Formation, the Upper Devonian Xinghongpu Formation, and the Upper De-
vonian Jiuliping Formation. Pb–Zn deposits are mainly in the contact zone of the Xing-
hongpu and Gudaoling Formations, and gold deposits in the area are mainly in the Xing-
hongpu Formation (Figure 2). The overall structure of the area is a complex fold, mainly 
in the axial direction of NWW. There are many faults in the area. The intrusive rocks in 
the area include Baoji pluton, Taibai pluton, and Ningshan composite pluton, which have 
the characteristics of multiple periods and types. The Xiba pluton is the northwestern part 
of the Ningshan composite pluton. 

 
Figure 1. Simplified geological map of the western Qinling Orogen with the location of gold de-
posits (modified from [2,17]). Figure 1. Simplified geological map of the western Qinling Orogen with the location of gold deposits

(modified from [2,17]).
Minerals 2022, 12, 995 3 of 13 
 

 

 
Figure 2. Sketch map of geology and deposits in the Feng-Tai ore concentration area (modified 
after [18,19]). 

3. Ore Deposit Geology 
The Devonian unit are exposed in the mining area, including the Gudaoling Fm., 

Xinghongpu Fm., and Jiuliping Fm. The Xinghongpu Fm. is main ore-bearing stratum, 
which is composed of meta-siltstone, silty sericite slate, siltstone, and sodic rock. NW di-
rection faults include the Wangjialeng and Xiushiya faults, which are in the south and 
north of the ore district, respectively (Figure 3). Strata and orebodies were staggered by 
NE direction faults, which are formed after the mineralized period (Figure 3). The fold in 
the ore district is the Shiziling anticline, with the axis direction of NW. The Gudaoling Fm. 
exists in the core of the anticline, and the Xinghongpu Fm. exists in the north flank of the 
anticline. The pluton of Xiba intruded into the southern wing of the anticline, resulting in 
an absence of strata. The Xiba pluton, the largest intrusive rock, was formed through two 
stages of magmatism, forming granodiorite and monzonitic granite. According to previ-
ous research results, the pluton invaded in 214–222 Ma [9,20–22]. Dykes, including granite 
porphyry, imandrite, and lamprophyre, formed in 213–219 Ma [9,23]. 

 
Figure 3. Simplified geological map of the Shuangwang gold deposit (modified from [24]). 

Figure 2. Sketch map of geology and deposits in the Feng-Tai ore concentration area (modified
after [18,19]).



Minerals 2022, 12, 995 3 of 13

3. Ore Deposit Geology

The Devonian unit are exposed in the mining area, including the Gudaoling Fm.,
Xinghongpu Fm., and Jiuliping Fm. The Xinghongpu Fm. is main ore-bearing stratum,
which is composed of meta-siltstone, silty sericite slate, siltstone, and sodic rock. NW
direction faults include the Wangjialeng and Xiushiya faults, which are in the south and
north of the ore district, respectively (Figure 3). Strata and orebodies were staggered by
NE direction faults, which are formed after the mineralized period (Figure 3). The fold in
the ore district is the Shiziling anticline, with the axis direction of NW. The Gudaoling Fm.
exists in the core of the anticline, and the Xinghongpu Fm. exists in the north flank of the
anticline. The pluton of Xiba intruded into the southern wing of the anticline, resulting in
an absence of strata. The Xiba pluton, the largest intrusive rock, was formed through two
stages of magmatism, forming granodiorite and monzonitic granite. According to previous
research results, the pluton invaded in 214–222 Ma [9,20–22]. Dykes, including granite
porphyry, imandrite, and lamprophyre, formed in 213–219 Ma [9,23].
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Orebodies of the Shuangwang Gold deposit are mainly hosted in the breccia body
of the Upper Devonian Xinghongpu Fm. Breccia bodies occur as lenticular form in plane,
with sac-like or thick-plate form in section. Breccia is mainly albitized silty slate, with a
small amount of marble and cements including ankerite, albite, quartz, calcite, and pyrite.
There are differences in cements between different positions or orebodies. When the gold in
the breccia body reaches industrial grade, the breccia body is the orebody. Eight orebodies,
including KT2, KT6, KT6-1, KT5, KT7, KT9, KT8, and KT10, are delineated from west to east
(Figure 3), and the gold reserves have reached 70 t. The ore of KT8 and KT9 showed ankerite
cemented breccia, KT6 showed albite cemented breccia, and KT6-1 and KT2 showed pyrite
cemented breccia. Au mainly occurs in pyrite in cement. The main alteration types in
the Shuangwang gold ore district are albitization, dolomitization, and carbonatization,
followed by silicification.

Based on the spatial relationship between orebody and wallrock, mineralization
characteristics, ore fabric, wallrock alteration, and microscopic observations (see Figures 4
and 5), four metallogenic stages can be identified.
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Stage I (pre-ore stage) is characterized by yellowish alteration (albitization) in the
strata. This stage formed before the breccia body without mineralization and presents fine
veins of quartz and albite entering into albitite (Figure 5A,B).

Stage II (syn-ore stage) shows an ankerite–pyrite–albite assemblage (Figure 5C,D).
Gold-bearing pyrite occurs as fine grains, disseminated (Figure 5E,F) in euhedral or subhe-
dral ankerite. Breccia fragments were cemented by ankerite. This is the main ore-forming
stage of the mine.

Stage III (post-ore stage) is defined by a pyrite–quartz–calcite stage assemblage
(Figure 5G–I). Pyrite without gold occurs as euhedral, medium-coarse grains (Figure 5J) in
pyrite aggregates and quartz–calcite veins which cut through the breccia body.

Stage IV (post-ore stage) shows a fluorite–anhydrite assemblage. Mineral filling in the
breccia fragments (Figure 5K,L) is formed by low-temperature hydrothermal fluid.
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Figure 4. (A) Outcrop of the breccia body; (B,C) Transition zone of wallrock alteration; (D) Quartz
albitite dike intruding into albitization slate; (E–G) Slate accompanied by partial albitization; (H) Lam-
prophyre intruding into breccia body; (I,J) Breccia body; (K) Granodiorite of the Xiba pluton.
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Figure 5. Metallogenic stages and characteristics of the Shuangwang gold deposit. (A–D) Fine veins
of quartz and albite entered into albitite in stage I and ankerite–pyrite–albite assemblage formed
in stage II; (E,F) Gold-bearing pyrite occurs as fine grains, disseminated in euhedral or subhedral
ankerite formed in stage II; (G–I) Pyrite–quartz–calcite stage assemblage formed in stage III; (J) Pyrite
without gold occurs as euhedral, medium-coarse grain in quartz-calcite veins; (K,L) fluorite-anhydrite
assemblage formed in stage IV.

4. Sampling and Analytical Methods
4.1. Samples Description

Samples for experiments were collected from the orebodies of KT5 and KT8. Samples
from stage II (syn-ore stage) and stage III (post-ore stage) were selected to make thin sections
and were observed by microscope. Two different generations of pyrite were identified,
marked as PyII and PyIII.

4.2. In Situ Trace Element Analysis of Pyrite

Trace element analysis of pyrite was conducted by LA-ICP-MS at the Wuhan Sample
Solution Analytical Technology Co., Ltd., Wuhan, China. Detailed operating conditions for
the laser ablation system, the ICP-MS instrument, and data reduction have been previously
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described by Zong et al. [25]. Laser sampling was performed using a GeolasPro laser
ablation system consisting of a COMPexPro 102 ArF (Coherent, Santa Clara, CA, USA)
excimer laser (wavelength, 193 nm; maximum energy, 200 mJ) and a MicroLas optical
system. An Agilent 7700e ICP-MS (Agilent, Santa Clara, CA, USA) instrument was used
to acquire ion-signal intensities. Helium was applied as a carrier gas. Argon was used as
the make-up gas, which was mixed with the carrier gas by a T-connector before entering
the ICP. A “wire” signal smoothing device is included in this laser ablation system [26].
The spot size and frequency of the laser were set to 32 µm and 5 Hz, respectively. Trace
element compositions of minerals were calibrated against various reference materials
(NIST 610, NIST 612) without use of an internal standard [27]. The sulfide reference
material of MASS-1 (USGS) was used as the unknown sample in order to verify the
accuracy of the calibration method. Each analysis incorporated a background acquisition
of approximately 20–30 s, followed by 50 s of data acquisition from the sample. The Excel-
based software ICPMSDataCal (Yongsheng Liu, v11.8, Wuhan, China) was used to perform
off-line selection and integration of background and analyzed signals, time-drift correction,
and quantitative calibration for trace element analysis [27].

4.3. In Situ Sulfur Isotope Analysis of Pyrite

In situ sulfur isotope analysis of pyrite was carried out at Beijing Createch Testing
Technology Co., Ltd., Beijing, China. The instrument was equipped with Photon Machine
Analyte G2 laser probe and Nu Plasam HR MC-ICP-MS high-resolution multi-acceptance
plasma mass spectrometer. The laser spot beam diameter of the measured element was
30 µm, the frequency was 4 Hz, and the laser energy density was 3.4 mJ/cm3 for spot
ablation. With helium as the carrier gas, the gas was transported to the ICP-MS at a flow
rate of 0.41 L/min. The analysis time for each sample point included 20 s background
analysis and 50–60 s continuous laser ablation. The precision of δ34S was found to be
better than 0.4‰. The δ34S parameter was normalized to the Vienna Cañon Diablo Troilite
(V-CDT) scale [28,29].

5. Analytical Results
5.1. Pyrite Types

The type of pyrite is closely related to the metallogenic stage. In stage II (syn-ore stage),
pyrite (marked as PyII) is mostly µm-sized (100–500 µm), occurs as euhedral or subhedral
with pentagonal dodecahedron and octahedron, and is intergrown with ankerite. In stage
III (post-ore stage), pyrite (marked as PyIII) coexists with quartz and calcite. The euhedral
pyrite, medium-coarse grain (500–2000 µm), occurs as cube, pentagonal dodecahedron,
and octahedron. Compared with PyII, the pyrite in stage III has larger grains, and low gold
content. No growth zone was found in the two generations of pyrite, the most obvious
difference between them mainly being the size of grains (Figure 5F,J).

5.2. In Situ Trace Element

A total of 35 spots were analyzed in the pyrite, including PyII (n = 25) and PyIII (n = 10).
Eleven elements were analyzed: Au, As, Ag, Co, Ni, Cu, Sb, Zn, Pb, Se, and Bi. The obtained
data are given in Table 1 and illustrated in Figure 6.

Among the analyzed elements in PyII, the elements had highly variable concentrations,
ranging from 0.02 to 11.68 ppm for Au, 198.45 to 5502.86 ppm for As, 0.00 to 1.56 ppm for
Ag, 0.02 to 1002.75 ppm for Co, 0.15 to 646.30 ppm for Ni, 0.00 to 64.76 ppm for Cu, 0.00 to
4.67 ppm for Sb, 0.23 to 260.59 ppm for Zn, 0.00 to 10.42 ppm for Pb, 0.00 to 386.24 ppm for
Se, and 0.00 to 47.72 ppm for Bi. The elemental concentrations in PyIII ranged from 0.20
to 2.33 ppm for Au, 0.34 to 16.98 ppm for As, 0.00 to 0.04 ppm for Ag, 0.02 to 79.21 ppm
for Co, 0.89 to 686.35 ppm for Ni, 0.00 to 0.42 ppm for Cu, 0.00 to 0.03 ppm for Sb, 0.28 to
1.59 ppm for Zn, 0.00 to 0.07 ppm for Pb, 0.00 to 86.45 ppm for Se, and 0.00 to 0.01 ppm for
Bi (see Table 1).
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Table 1. Trace elements (ppm) in different types of pyrite from the Shuangwang gold deposit.

Mineral No. Au As Ag Co Ni Cu Sb Zn Pb Se Bi

PyII 11-1-01 3.28 5502.86 0.00 270.70 262.73 0.21 0.00 1.14 0.00 62.06 0.75
PyII 11-1-02 3.75 3312.97 0.00 143.22 126.10 0.19 0.00 0.74 0.00 80.38 10.23
PyII 11-1-03 5.03 1354.64 0.02 1002.75 283.44 0.00 0.00 0.74 0.00 30.53 0.09
PyII 11-1-04 2.84 918.54 0.00 80.67 103.31 0.14 0.02 0.55 0.00 13.40 0.88
PyII 11-1-05 6.99 989.06 0.00 187.83 101.49 0.09 0.00 0.66 0.00 29.49 0.81
PyII 11-2-01 9.01 1338.67 0.92 0.02 0.45 0.25 4.67 0.48 5.11 32.24 2.71
PyII 11-2-02 3.21 1139.99 0.20 0.24 0.15 0.15 1.21 0.62 2.20 62.07 0.56
PyII 11-2-03 1.02 3840.34 0.00 0.02 0.81 0.06 0.01 0.76 0.00 73.13 27.74
PyII 11-2-04 0.44 683.97 0.37 7.91 2.66 0.32 0.79 0.40 3.27 70.24 1.64
PyII 11-2-05 0.73 2138.59 0.01 0.03 0.45 0.08 0.12 0.38 0.26 1.27 0.14
PyII 2-1-01 11.68 1659.42 0.01 28.42 312.66 0.00 0.01 0.23 0.08 28.67 4.56
PyII 2-1-02 0.03 1395.53 0.03 12.64 327.93 0.27 0.35 0.53 0.93 9.29 0.32
PyII 2-1-03 1.94 634.29 0.00 3.67 223.35 0.00 0.00 0.26 0.00 6.02 47.72
PyII 2-1-04 1.32 356.84 0.08 8.09 195.97 64.76 0.07 134.84 0.19 50.08 11.73
PyII 2-1-05 0.02 1931.58 0.02 86.38 521.21 9.33 0.12 260.59 0.18 26.33 0.93
PyII 2-2-01 0.33 272.19 0.07 2.35 181.68 0.09 0.05 0.58 0.53 60.51 0.00
PyII 2-2-02 0.21 1732.37 0.02 0.92 174.65 0.63 0.01 1.17 0.61 14.42 0.00
PyII 2-2-03 2.66 406.49 0.32 3.08 308.84 0.19 0.52 0.84 3.64 92.19 0.00
PyII 2-2-04 0.55 198.45 0.01 0.35 113.94 2.05 0.62 1.48 1.29 101.22 0.00
PyII 2-2-05 1.88 1286.46 0.06 19.26 646.30 0.28 0.01 1.63 0.67 21.31 0.01
PyII 2-3-01 0.80 1731.12 0.09 753.73 382.41 0.08 0.18 0.99 0.72 127.57 2.96
PyII 2-3-02 0.88 3383.32 0.06 452.63 602.86 0.00 0.04 1.34 0.72 296.39 3.73
PyII 2-3-03 9.42 1139.36 1.56 103.24 145.12 1.11 3.96 5.88 10.42 386.24 0.00
PyII 2-3-04 2.30 929.25 0.37 20.32 159.79 0.37 0.35 2.30 2.13 0.00 11.51
PyII 2-3-05 0.16 2134.92 0.04 52.06 26.37 0.00 0.10 0.87 0.26 105.92 0.13

PyIII 13-1-01 1.96 0.76 0.00 0.04 0.89 0.00 0.00 0.39 0.02 0.00 0.00
PyIII 13-1-02 1.42 0.34 0.00 0.02 1.65 0.06 0.00 0.28 0.05 1.96 0.00
PyIII 13-1-03 0.32 16.98 0.00 0.18 1.70 0.00 0.02 0.72 0.02 13.12 0.00
PyIII 13-1-04 1.11 2.71 0.00 16.55 225.61 0.24 0.00 0.87 0.07 20.42 0.00
PyIII 13-1-05 0.50 1.65 0.01 20.80 222.52 0.09 0.00 0.58 0.00 25.45 0.00
PyIII 13-2-01 0.83 0.53 0.01 0.06 2.08 0.42 0.00 0.68 0.00 0.00 0.00
PyIII 13-2-02 0.44 1.20 0.00 0.60 13.26 0.00 0.00 1.21 0.00 0.69 0.00
PyIII 13-2-03 0.20 0.70 0.04 0.24 4.21 0.00 0.00 1.27 0.00 59.66 0.00
PyIII 13-2-04 2.33 1.36 0.00 0.20 5.00 0.00 0.03 1.21 0.00 86.45 0.00
PyIII 13-2-05 0.33 7.34 0.01 79.21 686.35 0.04 0.00 1.59 0.00 33.12 0.01
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5.3. In Situ Sulfur Isotope

The analysis results for the in situ sulfur isotopes are provided in Table 2. The δ34SV-CDT
values of pyrite from the stage II (PyII) varied from 11.1 to 15.2‰ (mean = 12.9‰, n = 7),
while those in PyIII varied from 11.1 to 13.5‰ (mean = 12.0‰, n = 3).

Table 2. Summary of sulfur isotope results from the Shuangwang gold deposit.

Sample
No. Lithology Mineral δ34SV-CDT

(‰) Reference Sample No. Lithology Mineral δ34SV-CDT
(‰) Reference

14-221 Lamprophyre Py 4.5 [23] 14-202 Cement Py 14.9 [23]

T16 Xiba
pluton Py 5.3 [24] 14-232 Cement Py 9.8 [23]

T17 Xiba
pluton Py 6.1 [24] SH-90 Cement Py 10.0 [23]

T52 Xiba
pluton Py 3.8 [24] 14-158 Cement Py 11.1 [23]

YDZ18 Xiba
pluton Py 4.84 [24] 14-91 Cement Py 12.1 [23]

T13 Wallrock Py 10.3 [24] 14-151 Cement Py 12.9 [23]
T54 Wallrock Py 5.7 [24] 1100CM32-1 Ore Py 9.68 [7]
T65 Wallrock Py 13.5 [24] 1420CM43-1 Ore Py 13.51 [7]

T66 Wallrock Py 13.8 [24] 1600CM141-
4 Ore Py 11.93 [7]

T67 Wallrock Py 9.9 [24] 1600CM75-1 Ore Py 12.97 [7]
14-57 Pyrite vein Py 12.7 [23] 2-1550-129-4 Ore Py 13.94 [7]

14-20 Sericite
slate Py 11.5 [23] 2-1600-187-2 Ore Py 11.44 [7]

T15 Breccia of
albitite Py 11.6 [24] 2-1600-73-1 Ore Py 12.86 [7]

T18 Breccia of
albitite Py 8.7 [24] 2-1600-75-1 Ore Py 12.00 [7]

T53 Breccia of
albitite Py 4.78 [24] 2-3-20-1 Ore Py 10.77 [7]

T72 Breccia of
albitite Py 9.25 [24] 1330CM13-1 Ore Py 11.97 [7]

T64 Breccia of
albitite Py 10.78 [24] 4CM18-3 Ore Py 11.51 [7]

4CM38-2 Ore Py 9.82 [7] T71 Ore Py 9.63 [24]
AHG-5 Ore Py 14.87 [7] YDZl Ore Py 10.48 [24]
MGN-2 Ore Py 9.25 [7] YDZ2 Ore Py 7.93 [24]
XMG-3 Ore Py 13.75 [7] YDZ3 Ore Py 11.26 [24]

V-1 Ore Py 10.83 [7] YDZ4 Ore Py 11.54 [24]
V-9 Ore Py 8.29 [7] YDZ20 Ore Py 8.48 [24]
T12 Ore Py 8.0 [24] YDZ35 Ore Py 10.53 [24]
T19 Ore Py 8.8 [24] Xishi Ore Py 12.91 [24]
T20 Ore Py 8.3 [24] Xishi Ore Py 12.21 [24]
T24 Ore Py 14.81 [24] Xishi Ore Py 10.47 [24]

T49 Ore Py 9.47 [24] shw-02-DT2-
1 Ore PyII 11.5 This study

T51 Ore Py 9.47 [24] shw-02-DT2-
2 Ore PyII 14.5 This study

T57 Ore Py 2.6 [24] shw-02-DT2-
4 Ore PyII 12.7 This study

T60 Ore Py 12.3 [24] shw-02-DT2-
5 Ore PyII 11.7 This study

T63 Ore Py 4.4 [24] shw-02-DT2-
5 Ore PyII 11.1 This study

T68 Ore Py 10.84 [24] shw-08-
DT11-1 Ore PyII 15.2 This study

T69 Ore Py 8.75 [24] shw-08-
DT11-2 Ore PyII 13.4 This study

T70 Ore Py 10.03 [24] shw-10-
DT13-1 Cement PyIII 11.1 This study

14-42 Cement Anh 26.2 [23] shw-10-
DT13-1 Cement PyIII 13.5 This study

14-43 Cement Anh 24.2 [23] shw-10-
DT13-1 Cement PyIII 11.5 This study

14-46 Cement Anh 25.2 [23]
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6. Discussion
6.1. Implications of Element Variations

Pyrite is ubiquitous in hydrothermal deposits, especially in gold deposits. As one of
the most important gold-bearing minerals, its microstructure and trace element composition
are subject to fluid physicochemical conditions and can provide important information
about the mineralization process (see, e.g., [30–34]). The trace element characteristics of the
Shuangwang gold deposit indicate that the most obvious difference between the two stages
of pyrite is the arsenic content (Figure 6, Table 1). The arsenic content in pyrite is closely
related to temperature, where low temperatures are more conducive to the enrichment of
arsenic [35]. Fluid inclusion data have shown that the temperature of ore-forming fluid
decreases gradually (e.g., [4,5,23,36]). If the content of arsenic is sufficient, the pyrite formed
in the third stage (i.e., post-ore stage) should be enriched with arsenic as the temperature
decreases; this obviously contradicts our experimental results, indicating that the depletion
of arsenic in the ore-forming fluid and more stable crystallization environment may be
important reasons for the failure of mineralization in the later stage.

There was a visible abundance of microscale inclusions within pyrite (Figure 5F,J).
The concentrations of Cu, Pb, and Zn ranged from zero to hundreds of ppm (Table 1).
Thus, we may interpret that Cu, Pb, and Zn are distributed in pyrite as (visible or invisible)
chalcopyrite, galena, and sphalerite inclusions. These minerals also appear in the mining
area [24]. We found that gold has a good correlation with silver (Figure 7), but poor
correlations with other elements, indicating that the pyrite contains electrum inclusions.
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6.2. Source of Sulfur

Sulfur isotopes are often used to indicate the sources of sulfur or metallogenic elements
in a deposit [37–40]. The sulfur isotopes in a metal sulfide are controlled by the original
material and physical–chemical conditions, including the pH, f (O2), and the temperature
of the hydrothermal fluid [37].

From Table 2, we can see the δ34SV-CDT values of pyrite in the magmatic rock ranged
from 3.8 to 6.1‰ (avg. 4.9‰), demonstrating the characteristics of magmatic sulfur isotope
composition (±3‰, [41]), while that the pyrite in the wallrock near the mine ranged from
4.8 to 13.8‰ (avg. 10.2‰), that in pyrite in the ore ranged from 2.6 to 15.2‰ (avg. 11.1‰),
and that in anhydrite in the final stage of mineralization ranged from 24.2 to 26.2‰
(avg. 25.2‰). Overall, the sulfur isotope distribution of pyrite in the ore showed similar
characteristics as that in the wallrock near the ore (Figure 8). Therefore, the sulfur in the
Shuangwang gold deposit mainly derived from the wall rocks, mixed with the sulfur
from magma.
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6.3. Discussion on the Genesis of Deposit

Previous studies considering ore-forming fluid have shown that magnesium originated
from the wallrock, iron mainly derived from magma [8], the lead isotopic composition
has characteristics of the crust and mantle [6,42,43], carbon comes from the strata at great
depth [4,6,43], and helium is dominated by crustal fluids [9]. Through this isotope evidence,
we can determine that the formation of the considered deposit is related to the strata, deep
materials, and even the mantle.

The Xinghonhpu Formation has wall rocks with high gold content [23]. The hydrother-
mal fluid, separated from the magma, extracts elements in the strata during the upward
process. Ore-forming elements and sulfur are mainly from the wall rocks. Hydrothermal
pressure at the near-surface causes the wallrock to break and to eventually form breccia bod-
ies. Conditional mutation results in the rapid crystallization of pyrite. As− often replaces
S− in pyrite, in the form of isomorphism, which promotes gold in the ore-forming fluid
to enter the pyrite lattice in the form of solid solution Au+ [44]. Gold enters fine-grained
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pyrite as invisible gold in a background of high arsenic content. In the later stage, the
environment tends to be stable, and the crystal size of pyrite becomes larger; however,
there is no gold enrichment, and the arsenic content is also significantly reduced. High
arsenic content and rapid crystallization of pyrite may be related to gold mineralization.

7. Conclusions

1. Sulfur of the Shuangwang deposit comes from the wallrock, mixed with sulfur
from magma.

2. Trace elements were enriched in the syn-ore pyrite much more than in post-ore pyrite.
3. High arsenic content and the rapid crystallization of pyrite are related to

gold mineralization.
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