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Abstract: A Paleoproterozoic 40Ar/39Ar age, interpreted as the gold metallogenic epoch of the Liji-
apuzi deposit in NE China, is reported in this paper. The ore body of this deposit is hosted in the
marbles and schists of the Paleoproterozoic Dashiqiao Formation and exhibits parallel development
to the foliation of the country rocks. Coexisting auriferous pyrite and tremolite can be observed both
in the field and under a microscope, revealing the presence of hydrothermal activity in the deposit.
The δ34S composition of the auriferous pyrite varies from +8‰ to +12.3‰, indicating a sedimentary
origin. The auriferous pyrite and host marble have similar Pb isotopic ratios, indicating the contribu-
tion of Paleoproterozoic sediments to gold mineralization. Furthermore, in situ S and trace element
analyses of the auriferous pyrite reveal that the main gold mineralization stage was Py2, which
coexists with radial tremolite. 40Ar/39Ar dating of these tremolite samples yields a plateau age of
~1851.23 Ma, with similar isochronal and inverse isochronal ages. The Paleoproterozoic gold met-
allogenesis, together with the contemporary Pb-Zn, boron, graphite, and magnetite mineralization,
constitute an important mineralogenetic series during the evolution of the Jiao-Liao-Ji orogeny in the
Liaodong Peninsula.

Keywords: 40Ar/39Ar dating; in situ analysis; S-Pb isotopes; gold mineralization; Jiao-Liao-Ji orogeny;
the Lijiapuzi deposit

1. Introduction

The Liaodong Peninsula in the northeastern part of the North China Craton (NCC) has
a long history of geological evolution. The peninsula consists of an Archean crystallized
basement, Paleoproterozoic meta-sedimentary rocks, and an orogenic belt (Figure 1a) [1–4].
Multiple mineral resources, including gold, lead, zinc, boron, magnesite, and graphite,
were formed during the early geological process, forming the important Liaodong-Ji’nan
metallogenetic belt [5–10]. Due to the significant gold reserves in the main gold orefields,
such as the Qingchengzi, Maoling, and Wulong orefields, the Liaodong Peninsula possesses
one of the most important gold producing areas in China. The Qingchengzi orefield, with
a total gold reserve of over 200 t [11,12], still has gold exploration potential. The Lijiapuzi
gold deposit to the north and the deep gold ore bodies in the Baiyun and Linjiasandaogou
deposits are newly discovered.

Many studies have focused on the metallogenesis of the Qingchengzi gold deposits;
however, their conclusions remain controversial. The model of metamorphic–sedimentary
processes imposed by late hydrothermal activities is preferred [14–18] since the gold
ore bodies often exhibit the same attributes as the Liaohe Group country rocks, and the
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geochemistry of the country rocks and ore-bearing minerals are similar. Others have
reported the presence of Mesozoic magmatism and some mineralized dykes within this
district [19–22]. They believe that the gold deposits are magmatic–hydrothermal-related-
type or decratonic-type deposits. Whether there is Paleoproterozoic gold mineralization
remains one of the critical issues due to the lack of robust geochronological evidence.
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showing major mineral deposits (modified after [13]). (c) Geological map of the Lijiapuzi gold deposit
showing sample locations.
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The newly discovered Lijiapuzi gold deposit was chosen as the object of this study.
After detailed field and laboratory observations, important tremolitization accompanied by
auriferous pyrite was identified, with euhedral radial tremolite. We conducted 40Ar-39Ar
dating of tremolite samples to precisely constrain the metallogenic epoch of the formation
of the deposit. The S and Pb isotopes of auriferous sulfides and in situ laser ablation induc-
tively coupled mass spectrometry (LA-ICP-MS) analyses of the S and trace element contents
of the auriferous minerals were also conducted. Paleoproterozoic metallogenic evidence
in the Lijiapuzi deposit and the related gold mineralization and ore material sources were
obtained. The results of this study also expand the Paleoproterozoic mineralogenetic series
in the Liaodong Peninsula.

2. Geologic Setting of the Qingchengzi Orefield

Located in the northeastern margin of the NCC (Figure 1a), the Liaodong Peninsula
consists of the Archean Longgang Block, the Archean Nangrim Block, the Paleoproterozoic
Jiao-Liao-Ji Belt (JLJB), and Mesozoic volcanic and granitic intrusions [1–4,23]. The JLJB
orogeny involved the deposition of voluminous Paleoproterozoic sediments, including the
Liaohe Group in the Liaoning Province, the Ji’an and Laoling groups in the Ji’lin Province,
and the Jingshan and Fenzishan groups in the Shandong Province [24,25], as well as igneous
and metamorphic rocks [26–29]. The marble and biotite schist of the Dashiqiao Formation
and the schist of the Gaixian Formation are both components of the Liaohe Group, and
they comprise the country rock in the Qingchengzi polymetallic orefield and nearby gold
deposits. The NCC experienced strong magmatism again in the Mesozoic, which is referred
to as the decratonic process [30].

The JLJB is NW–SE-trending and consists of intensely deformed geological units.
There is a giant E–W-trending anticline in the Baiyun–Qingchengzi area in the central
part of the JLJB. Other subordinate synclines and anticlines, including the Xinling and
Zhenzigou anticlines, have also been identified within the Qingchengzi orefield. The
fault structural framework is dominated by the NW-trending Jianshanzi Fault and the
NE trending Erdaogou and Lijiapuzi–Shihazhai faults, as well as their related secondary
faults. Almost all of the lead–zinc deposits are located to the south of the Erdaogou Fault,
and a series of gold deposits are distributed along or to the west of the Jianshanzi Fault
(Figure 1b).

The Paleoproterozoic magmatism in the Qingchengzi area resulted in widespread
granitoid intrusions and sporadically distributed gabbros and dolerites. The Simenzi
and Fangjiaweizi monzogranite plutons in the southeast intruded before ~2.16 Ga and
~1.89 Ga [31–33]. The Lanjiagou and Lanhualing Paleoproterozoic stocks are located in the
central part of the Qingchengzi orefield (Figure 1b). These granitoids are believed to have
intruded in an arc setting in the Paleoproterozoic [26]. The sporadic gabbro and/or dolerite
dykes have been interpreted to be related to a Paleoproterozoic back-arc basin geological
setting at ~2.11 Ga [34–36]. The Triassic Shuangdinggou and Xinling granite intrusions,
which have U-Pb ages of ~225 Ma [6,37], correspond with the sporadic lamprophyre dykes
in this area. Jurassic diorites and monzogranites with strong deformation have also been
identified [18,23]. The Mesozoic magmatism has often been interpreted as the result of the
subduction of the Yangtze Craton from the south [18,21].

A series of gold, Pb−Zn, B, and magnetite metallogenies are distributed within the JLJB
in the Liaodong Peninsula [7,8,15,37–39]. Among the three famous Qingchengzi, Maoling,
and Wulong gold orefields, only the Qingchengzi orefield hosts giant Au−Ag−Pb−Zn
polymetallic deposits. Neither the Paleoproterozoic granitoids nor the Mesozoic intrusions
exhibit gold mineralization in this area [40]. The marbles and schists of the Dashiqiao
Formation and the schist of the Gaixian Formation comprise the country rocks of the gold
ore bodies. The ore bodies often exhibit lens, stratiform, or irregular shapes, which are
controlled by the host rocks and/or faults. Silicification, sericitization, tremolitization, and
pyritization are the most common alterations within the gold deposits.
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3. Sampling and Analytical Methods

The Lijiapuzi gold deposit, which consists of one gold orebody, is a small-scale deposit
in the northern part of the Qingchengzi orefield. The gold ore body has an NW trend, which
is parallel to the foliation of the marbles of the Dashiqiao Formation (Figure 1c). Although
the ore body is distributed near the NE Shiha–Lijiapuzi Fault, the gold mineralization and
the ore-bearing pyrite in this ore body seem to be related to the marble country rock and the
tremolite alteration therein (Figure 2). The main ore minerals include pyrite, chalcopyrite,
sphalerite, and galena. Early-stage pyrite (Py1), which has a euhedral shape, is often
cracked when observed under a microscope. Late-stage pyrite (Py2), which has a relatively
high gold content, is the main ore phase (Figure 3). Minor chalcopyrite and sphalerite
are found in association with Py2 in the main mineralization stage. Tremolitization is
a common type of alteration in this deposit, along with weak silicification, sericitization, and
chloritization. Tremolite often cuts through the Py1 in the cracks (Figure 2f). Paragenesis of
the Py2 and radial tremolite were observed under a microscope (Figure 2c).

Minerals 2022, 12, x  4 of 14 
 

 

shapes, which are controlled by the host rocks and/or faults. Silicification, sericitization, 

tremolitization, and pyritization are the most common alterations within the gold deposits. 

3. Sampling and Analytical Methods 

The Lijiapuzi gold deposit, which consists of one gold orebody, is a small-scale de-

posit in the northern part of the Qingchengzi orefield. The gold ore body has an NW trend, 

which is parallel to the foliation of the marbles of the Dashiqiao Formation (Figure 1c). 

Although the ore body is distributed near the NE Shiha–Lijiapuzi Fault, the gold miner-

alization and the ore-bearing pyrite in this ore body seem to be related to the marble coun-

try rock and the tremolite alteration therein (Figure 2). The main ore minerals include 

pyrite, chalcopyrite, sphalerite, and galena. Early-stage pyrite (Py1), which has a euhedral 

shape, is often cracked when observed under a microscope. Late-stage pyrite (Py2), which 

has a relatively high gold content, is the main ore phase (Figure 3). Minor chalcopyrite 

and sphalerite are found in association with Py2 in the main mineralization stage. Trem-

olitization is a common type of alteration in this deposit, along with weak silicification, 

sericitization, and chloritization. Tremolite often cuts through the Py1 in the cracks  

(Figure 2f). Paragenesis of the Py2 and radial tremolite were observed under a microscope 

(Figure 2c). 

A tremolite sample (YP-9) that coexisted with the auriferous pyrite was collected for 
40Ar/39Ar dating. Detailed S and Pb isotopic analyses were conducted on Au-bearing pyrite 

(Py2 type) samples (YP-1–YP-8) to study the ore-forming materials. In contrast, for deter-

mining a country rock’s contribution to the mineralization process, marble samples (QC-

1–QC-3) were chosen for Pb isotope analysis. In situ analysis of the S and trace element 

contents of seven samples was also conducted to analyze the precise textures and contents 

of the ore-bearing pyrite. 

 

Figure 2. Representative outcrops and photomicrograph of ores from the Lijiapuzi gold deposit. (a)–

(b) Field photos of Au-bearing pyrites and radial tremolite in country rock marbles. (c) Photomicro-

graph of ore-bearing pyrite and tremolite under a transmission ray. (d–f) Reflected light photomi-

crograph of different stages of ore-bearing pyrite. Cal—calcite; Py1—early-stage pyrite; Py2—late-

stage pyrite; Tr—tremolite. 

Figure 2. Representative outcrops and photomicrograph of ores from the Lijiapuzi gold deposit.
(a,b) Field photos of Au-bearing pyrites and radial tremolite in country rock marbles. (c) Pho-
tomicrograph of ore-bearing pyrite and tremolite under a transmission ray. (d–f) Reflected light
photomicrograph of different stages of ore-bearing pyrite. Cal—calcite; Py1—early-stage pyrite;
Py2—late-stage pyrite; Tr—tremolite.

A tremolite sample (YP-9) that coexisted with the auriferous pyrite was collected for
40Ar/39Ar dating. Detailed S and Pb isotopic analyses were conducted on Au-bearing
pyrite (Py2 type) samples (YP-1–YP-8) to study the ore-forming materials. In contrast, for
determining a country rock’s contribution to the mineralization process, marble samples
(QC-1–QC-3) were chosen for Pb isotope analysis. In situ analysis of the S and trace element
contents of seven samples was also conducted to analyze the precise textures and contents
of the ore-bearing pyrite.
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3.1. Tremolite 40Ar-39Ar Dating

The 40Ar/39Ar dating of the tremolite was performed at the Isotope Geology Labo-
ratory, Institute of Geology Chinese Academy of Geological Sciences. For the tremolite
analyses, we followed the procedure of Liu et al. [41]. The samples were loaded in alu-
minum packets and degassed at low temperatures (250–300 ◦C) for 20–30 min before being
incrementally heated in a double-vacuum graphite furnace. The gases released during
each heating step were purified using Ti and Al-Zr getters. Once cleaned, the gas was
introduced into a GV Instruments HELIX-MC noble gas mass spectrometer and allowed to
stabilize for 4–5 min before the static analysis was conducted. The 40Ar, 39Ar, 38Ar, 37Ar,
and 36Ar isotope abundances at time zero were obtained through linear extrapolation of
the peak intensities. The data were corrected for system blanks, mass discrimination, Ca
interference, K-derived argon isotopes, and the decay of 37Ar since the time of irradiation.
The decay constant used throughout the calculations was λ = (5.543 ± 0.010) × 10−10 a−1.
All of the errors are reported as 2σ.

3.2. Pb isotope Analyses of Pyrite and Country Rock

Pyrite and country rock marble samples were collected from the Lijiapuzi deposit
and nearby for Pb isotope analysis. The pyrite grains were sorted to a purity of 99%
before applying the analysis procedures described by Zhang et al. [21]. The lead isotope
compositions were analyzed via thermal-ionization mass spectrometry (TIMS; MAT-261),
and standard sample NBS 981 was used for the calibration. The analyses were carried out
at the Beijing Research Institute of Uranium Geology. The analytical precision of the Pb
isotope ratios is better than ±0.09%.

3.3. In Situ LA-ICP-MS S and Trace Element Analyses

In situ LA-ICP-MS trace element analysis of pyrite was conducted at the Wuhan
Sample Solution Analytical Technology Co., Ltd., Wuhan, China. The laser sampling was
performed using a GeolasPro laser ablation system (Coherent, Santa Clara, CA, USA),
consisting of a COMPexPro 102 ArF excimer laser (wavelength of 193 nm and maximum
energy of 200 mJ) and a MicroLas optical system. The spot size and frequency of the laser
were set to 44 µm and 5 Hz, respectively. Detailed analysis procedures for determining the
trace element compositions of sulfides were calibrated against various reference materials
(NIST 610 and NIST 612) without using an internal standard [42]. Sulfide reference material
MASS-1 (United States Geological Survey) was used as the unknown sample to verify the
accuracy of the calibration method. Each analysis incorporated a background acquisition
of approximately 20–30 s followed by 50 s of data acquisition from the sample.
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4. Results

4.1. Tremolite 40Ar-39Ar Dating

The 40Ar-39Ar step-heating dating data for tremolite are presented in Table 1.
Thirteen heating steps were carried out on the sample. Eight heating steps, with
temperatures ranging from 1140 ◦C to 1400 ◦C, yielded a perfect plateau age of
1851.2 ± 12.8 Ma (Figure 4a). The data for the step heating from 1140 ◦C to 1400 ◦C
yielded an isochronal age of 1857.88 ± 12.3 Ma, with a mean standard weighted
deviation (MSWD) of 3.18 (Figure 4b), and an identical inverse isochronal age of
1858.44 ± 12.3 Ma, with an MSWD of 3.15 (Figure 4c). The plateau age of 1851.2 Ma
is thus interpreted as the crystallization age of tremolite.

Table 1. 40Ar-39Ar data of tremolite from the Lijiapuzi gold deposit.

T 36Ar[V] 37Ar[V] 38Ar[V] 39Ar[V] 40Ar[V] 40ArR% 39Ar(K)% Age/Ma 2σ

900 ◦C 47.310 0.000 9.185 7.748 17,939.35 22.07 0.53 1697.42 52.4
980 ◦C 19.591 0.000 4.136 15.393 13,359.54 56.67 1.05 1655.62 12.8

1040 ◦C 8.685 0.000 1.981 17.744 10,505.46 75.57 1.21 1555.05 7.7
1100 ◦C 3.625 19.219 1.701 25.299 15,020.56 92.88 1.73 1783.26 5.8
1140 ◦C 4.160 1001.696 4.544 95.651 56,828.54 97.96 6.47 1854.19 4.3
1170 ◦C 59.297 2617.420 19.292 216.178 141,105.48 87.71 14.61 1836.72 4.4
1200 ◦C 10.667 7530.800 24.868 573.805 337,662.80 99.22 38.74 1860.44 4.2
1230 ◦C 3.437 2467.695 8.135 192.399 112,562.07 99.25 12.99 1853.74 3.8
1250 ◦C 2.588 379.050 1.999 36.459 21,948.31 96.64 2.47 1853.62 5.0
1300 ◦C 10.647 855.654 5.222 75.926 47,304.14 93.48 5.13 1855.70 4.2
1350 ◦C 14.091 1662.685 8.132 135.668 82,704.71 95.11 9.17 1851.42 4.0
1400 ◦C 24.373 896.403 7.586 83.600 55,222.62 87.07 5.65 1840.72 4.9
1450 ◦C 35.321 0.000 6.190 3.828 11,291.97 7.57 0.26 938.41 119.1
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4.2. S Isotope Composition of Auriferous Pyrite

The S isotope compositions of the auriferous pyrite samples are presented in Table 2.
The δ34S values are +8.0‰ to +12.3‰, which are higher than those of the granites (Figure 5).
It is believed that the sulfur source of the metallogenic deposit was probably the nearby
meta-sedimentary rocks of the Liaohe Group [15,19].
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Table 2. Sulfur isotopic data of ore-bearing pyrite from the Lijiapuzi gold deposit.

Sample No. Mineral δ34S/‰

YP-1 Pyrite 9.8
YP-2 Pyrite 8.8
YP-3 Pyrite 12.3
YP-4 Pyrite 9.7
YP-5 Pyrite 11.3
YP-6 Pyrite 8.6
YP-7 Pyrite 8
YP-8 Pyrite 11
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4.3. Pb Isotope Results

The Pb isotopic ratios of the Au-bearing pyrite and country rock marble are pre-
sented in Table 3. The pyrite exhibits 206Pb/204Pb ratios of 18.155 to 18.886, 207Pb/204Pb
ratios of 15.594 to 15.687, and 208Pb/204Pb ratios of 38.26 to 39.695 (Figure 6). Meanwhile,
the widespread marble in the Qingchengzi orefield area exhibits 206Pb/204Pb ratios of
21.822 to 23.035, 207Pb/204Pb ratios of 16.092 to 16.146, and 208Pb/204Pb ratios of
37.472 to 37.668 (Figure 6). The lead isotope ratios of the ore-bearing pyrite data were also
plotted into the Liaohe Group country rock lead isotopic field, as previous studies have
suggested [6,8,17,37].

Table 3. Lead isotope ratios of ore-bearing pyrites and marbles from the Lijiapuzi gold deposit.

No. Target 206Pb/204Pb σ 207Pb/204Pb σ 208Pb/204Pb σ

YP-1 Pyrite 18.221 0.003 15.625 0.003 38.416 0.009
YP-2 Pyrite 18.717 0.003 15.668 0.003 38.832 0.006
YP-3 Pyrite 18.886 0.003 15.684 0.002 39.695 0.008
YP-4 Pyrite 18.287 0.002 15.614 0.002 38.588 0.006
YP-5 Pyrite 18.176 0.002 15.594 0.002 38.324 0.005
YP-6 Pyrite 18.565 0.002 15.646 0.002 38.53 0.004
YP-7 Pyrite 18.249 0.003 15.687 0.002 38.568 0.006
YP-8 Pyrite 18.155 0.002 15.597 0.002 38.26 0.005
QC-1 Marble 23.035 0.006 16.146 0.004 37.668 0.011
QC-2 Marble 21.822 0.009 16.092 0.006 37.472 0.016
QC-3 Marble 22.314 0.013 16.128 0.01 37.623 0.021
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4.4. S and Trace Element Compositions

A total of 37 spots on the two stages of pyrite from the Lijiapuzi gold deposit were
selected for in situ LA-ICP-MS analysis of the sulfur and trace element compositions. The
contents of the S and nine representative trace elements are presented in Supplementary
Table S1.

Early-stage pyrite Py1, which often exhibits a euhedral cubic shape, has similar or
slightly lower δ34S contents than late-stage subhedral pyrite Py2 (Figure 7). The Py1
analysis spots yielded δ34S values of +9.19‰ to +11.27‰, while the Py2 spots yielded δ34S
values of +9.49‰ to +11.49‰.
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Gold and eight other gold-related trace element contents are shown in Figure 7.
Compared to Py1, the Py2 shows higher Au, Sb, Cu, and Pb contents, slightly higher As
and Ag contents, and similar Co, Ni, and Mo contents.

5. Discussion
5.1. Gold Metallogenic Epoch in the Lijiapuzi Deposit

The gold metallogenic epoch is usually determined through the dating of coexisting
minerals, for instance, 40Ar/39Ar dating of biotite and muscovite, U−Pb zircon dating,
and Re−Os and Rb−Sr dating of auriferous pyrite. Compared to biotite and muscovite,
which have lower closure temperatures of ~350 ◦C, tremolite has an40Ar/39Ar dating
closure temperature of greater than 500 ◦C [42], so it can provide a much more reliable
crystallization age, which is also indicative of the age of the gold metallogenic epoch.

The tremolite samples collected from the gold ore body in the Lijiapuzi gold deposit
exhibit a paragenetic relationship with the auriferous pyrite (Py2) based on field and
microscope observations (Figure 2). Thus, dating the tremolite could provide a robust
constraint on the gold metallogenic epoch of the Lijiapuzi deposit. The 40Ar/39Ar dating of
the tremolite yielded a plateau age of 1851.23 ± 12.8 Ma (Figure 4a). The similar isochronal
line and inverse isochron ages of 1857.88 Ma and 1858.44 Ma, respectively, with an MSWD
of 3.1, are even more persuasive (Figure 4b,c). These consistent dating results of ~1851 Ma
could represent the crystallization age of tremolite, and thus, the gold metallogenic epoch
of the Lijiapuzi deposit. This is the first Paleoproterozoic gold mineralization 40Ar/39Ar
age reported for the Liaodong Peninsula.

5.2. Paleoproterozoic Gold Mineralization in the Lijiapuzi Deposit

Gold mineralization processes can be effectively constrained via the S-Pb isotope
analysis of auriferous minerals because gold is often transported by sulfur-bearing com-
plexes [44]. The sulfur isotope analyses of the auriferous pyrite yielded δ34S values of
+8.0‰ to +12.3‰, which differ from those of typical magmatic sulfur sources (Figure 5).
Taking the geological setting of the deposit into consideration, the Paleoproterozoic meta-
sedimentary country rocks of the Dashiqiao Formation are the most probable sulfur source
of the Lijiapuzi gold deposit. The auriferous pyrite also yields lead isotopic ratios similar to
those of the marbles of the Dashiqiao Formation and other Liaohe Group meta-sedimentary
rocks based on previous studies (Figure 6) [6,8,38]. The country rock marbles of the Paleo-
proterozoic Liaohe Group provide ore-forming materials for the Lijiapuzi deposit.

In situ LA-ICP-MS sulfur and trace element analyses provide a new method for
investigating the detailed mineralization processes of various mineral deposits [45–47].
Detailed observations under a microscope and EPMA studies revealed the presence of at
least two stages of Au-bearing pyrite (Py1 and Py2). The Py1 grains exhibit euhedral-cubic
or altered-cubic shapes, while the Py2 pyrite grains usually exhibit subhedral structures
and are crystallized on the rim and/or near relics of the Py1 grains (Figure 7). Furthermore,
the in situ S and trace element analyses of these types of pyrite revealed that they have
relatively diverse compositions. Py1 (early-stage pyrite) has slightly lower δ34S contents
(Figure 5), while Py2 has higher gold, Sb, Cu, and Pb contents, slightly higher As and Ag
contents, and similar Co, Ni, and Mo contents than Py1 (Figure 8). Thus, Py1 and Py2 could
represent two gold mineralization stages. Py2, which coexists with tremolite, represents
a main gold mineralization stage with high contents of Sb, Cu, and Pb.

5.3. Implications for Mineralization during the Jiao-Liao-Ji Orogeny

The JLJB in the NE NCC has a long and complex evolutionary history, consisting of
a series of geological processes, including subduction, collision, accretion, and extension
during the orogeny. The wide range of material exchange, water–rock reactions, and
metamorphism were all favorable for the development of mineralizations [48,49]. In
addition, the Paleoproterozoic sedimentary rocks of the Liaohe Group have relatively high
gold contents of several ppm [13]. A gold mineralization model for the Paleoproterozoic
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metamorphosed sedimentary rocks has been proposed by economic geologists [13–17], due
to the similar distributions of the gold ore bodies and the Paleoproterozoic country rocks,
as well as S and Pb isotope studies on the ore minerals and country rocks. The ~1851 Ma
40Ar/39Ar age and the related isotopic and geochemical data provide direct and robust
constraints on the Paleoproterozoic gold mineralization in this region.
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Figure 8. Box-and-whisker diagrams showing in situ Au, Co, Ni, Ag, As, Sb, Cu, Pb, and Mo from
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Light-grey bars show the Py1 spot data, while the dark-grey ones show the Py2 data.

Paleoproterozoic metallic mineralization in the Liaodong Peninsula was as remark-
able as the undisputed nonmetallic boron and graphite deposition. Ma et al. [8] reported
a sphalerite Rb-Sr age of 1798 ± 8 Ma from the Zhenzigou Pb−Zn deposit in the Qingchengzi
orefield. Archean-banded iron formation (BIF) deposits in the Gongchangling area were
also metamorphosed and experienced Fe enrichment at ~1860Ma [50,51]. Taking the gold
mineralization 40Ar/39Ar age of ~1851 Ma for the Lijiapuzi deposit into consideration,
a widespread Au−Pb−Zn−Fe polymetallic mineralogenetic series was formed in the
Qingchengzi–Liaoyang area in the central part of the JLJB. It is also noteworthy that the
~1860 to 1850 Ma metallogenic epoch was consistent with the regional retrograde meta-
morphism in the JLJB [27,33,52]. Extensive metamorphic fluids related to this large-scale
metamorphism may have extracted ore materials from the meta-sedimentary country rocks,
and then deposited them in the available spaces due to changes in the temperature and
pressure and the involvement of meteoric water.

6. Conclusions

The tremolite plateau age of ~1851 Ma implies that Paleoproterozoic gold mineral-
ization occurred in the Lijiapuzi gold deposit. Py2, coexisting with tremolite, represents
the main gold mineralization stage accompanied with high contents of Sb, Cu, and Pb.
A complex Paleoproterozoic mineralogenetic series of Au−Pb−Zn−Fe−B−graphite was
identified in the Liaodong Peninsula. Further studies on Paleoproterozoic mineraliza-
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tion and the evolutionary process of the JLJB orogeny could be a research highlight in
this region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min12080971/s1, Table S1: In situ LA-ICP-MS S isotope and trace element compositions of
pyrite from the Lijiapuzi gold deposit.
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