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Abstract: The Jinyang Basin is a typical volcanic-sedimentary basin, located in the southern periph-
eral area of the Songliao Basin. Hydrothermal activity is often closely related to the intrusion or
eruption of magma. It was recently suggested that dolomite in the Jurassic Beipiao Formation was
formed under the influence of magmatic-hydrothermal activity and magmatic-hydrothermal activity
might have impacts on the organic matter of the source rocks. No investigation has been aimed at
the effect of magmatic-hydrothermal activities on the accumulation of organic matter in the Beipiao
Formation source rocks and a comprehensive study is urgent, which would be indicative in unrav-
elling the accumulation mechanism of organic matter and useful in further petroleum exploration.
To provide important insights into these issues, we carried out a detailed investigation of geological
and geochemical analysis for Wolong (WL) and Dongkuntouyingzi (DK) outcrop shales from the
Lower Jurassic Beipiao Formation in the Jinyang Basin. The hydrothermal indicator discrimination
diagram (Zn-Ni-Co triangular plot) and rare earth element anomalies (δEu and δCe) indicate that
the formation of WL samples is associated with hydrothermal activity, but DK is not. The TOC
values suggest that most of the WL and DK samples are good to very good and fair to good source
rocks, respectively. The Ro values suggest that both WL (Ro = 1.17%) and DK (Ro = 1.01%) samples
have entered the oil-generating stage, and WL samples were influenced by the magmatic activity
with higher maturity. The biomarkers such as high steranes/hopanes, high 4-methyl steranes/C29

steranes, low Pr/Ph values and high gammacerane index suggest that WL samples were deposited
in an anoxic-prone saline environment with significant contributions of algal sources. Contrarily, the
DK samples were deposited in oxic-prone and freshwater paleolake with significant contributions
of terrigenous organic matter. The magmatic-hydrothermal activities in the Wolong area brought
numerous nutrients to the lake basin, which may facilitated the reproduction of aquatic organisms.
At the same time, the magmatic-hydrothermal activities increased the salinity of water and pro-
moted the formation of a water reducing environment, which provided an excellent environment for
the preservation and enrichment of organic matter. Therefore, the magmatic-hydrothermal activi-
ties in the Wolong area promoted the formation of organic-rich source rocks and the hydrocarbon
generation process.

Keywords: magmatic-hydrothermal activity; organic matter enrichment; hydrocarbon generation;
source rocks; Jinyang Basin

1. Introduction

Massive magmatic-hydrothermal activities are widely distributed in numerous sed-
imentary basins worldwide [1,2]. Numerous basins with a large volume of magmatic-
hydrothermal activities are petroliferous and targeted for hydrocarbon exploration, e.g.,
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the Vøring Basin in the Norwegian margin [3,4] and the Tunguska Basin in Siberia [5].
The interactions of magmatic activities with their organic-rich host rocks have significant
consequences for petroliferous systems [6]. The heating effect of organic-rich rocks by
magmatic activities can result in maturation and even overmaturation [1,4,7–11]. Large
quantities of hydrocarbons can be catastrophically released into the atmosphere, affecting
the global climate [4,12]. In addition, structures induced by the emplacement of intrusions
may generate fluid channels or fluid traps [13–16].

Thermal maturation effects of magmatic activities on source rocks have been well
described and exhibit a range of maturity that varies with the number of intrusions, spacing,
thickness, composition, length and distances between the intrusions and host rock [17,18].
The extent of the thermal aureole range mainly from 30% to 200% of the intrusion thick-
ness [7,9,19–22]. The following observations have been reported that total organic carbon
(TOC) and parameters derived from Rock-Eval pyrolysis (S1, S2 and HI) have a gradual
decrease, as the distance between the source rock and the intrusions decreases [9,22]. Re-
cently, Sydnes [23] and Spacapan [18] demonstrated that the timing of magmatic activities
emplacement is the controlling factor on host rock maturation.

Hydrothermal activity is often closely related to the intrusion or eruption of magma [24–26].
Magmatic hydrothermal plays an important role in the enrichment of organic matter, as
well as the formation and evolution of source rocks in sedimentary basins [27–29]. Magma
upwelling can release a large number of elements such as C, N, P, and Fe, which promotes
the prosperity of biological water and increases primary productivity. It provides rich
material basis for the formation of organic-rich source rocks [28–30]. The CO2 in the
magmatic hydrothermal reacted with the Ca+ and Mg2+ plasma in the seawater to form
carbonates, which increased water salinity and promoted the water stratification, creating
favorable water dynamic conditions and redox state for the enrichment and preservation
of organic matter [28,29]. Simultaneously, a large amount of CO2, CH4, SO2 and other
gases are released by magmatic hydrothermal activity form a reduced environment, which
is favorable for the preservation of organic matter. Reducing gases such as H2S and
CO dissolved in water can also promote the formation of a reducing environment in the
water [29,31].

Jurassic magmatic-hydrothermal activities were extensive and widespread in north-
eastern China [32]. The Jinyang Basin is a typical volcanic-sedimentary basin, located in
the southern peripheral area of the Songliao Basin. Preliminary studies indicated that
Jinyang Basin is a petroliferous basin with huge potential and the Lower Jurassic Beipiao
Formation shale has been proved to be the prime source rock [33–35]. There are many
magmatic rock bodies developed in the source rock series of the study area. Some mag-
matic intrusions were emplaced in Beipiao Formation outcrops, especially in the Wolong
and Dongkuntouyingzi areas [36]. Sun [37] proposed that the magmatic activity has a
significant influence on the maturity of Beipiao Formation source rocks. Recently, Mou [38]
suggested that dolomite in the Jurassic Beipiao Formation was formed under the influence
of magmatic-hydrothermal activity, and the magmatic-hydrothermal activity might im-
pact the organic matter of the source rocks. No investigation was aimed at the effect of
magmatic-hydrothermal activities on the accumulation of organic matter in the Beipiao
Formation source rocks and a comprehensive study is urgent, which would unravel the
accumulation mechanism of organic matter and prove valuable in further petroleum explo-
ration. Geological and geochemical analyses were conducted in the study for the purpose
of discussing the above issues.

2. Geological Settings

The Jinyang Basin, tectonically bounded by the Nantianmen thrust fault to the west
and the Songlingmen uplift to the east, is a recently discovered petroliferous basin located
in the peripheral area of the well-known Songliao Basin, Northeast China (Figure 1).
In the process of tectonic evolution, controlled by the tectonic sedimentary cycle of the
second stage of the Yanshan Movement [39], the basin began to stretch after the volcanic



Minerals 2022, 12, 947 3 of 19

eruption of the Lower Jurassic Xinglonggou Formation, forming an early synsedimentary
sag-controlling fault [36]. After the Beipiao-Haifanggou Formation was deposited, the
Tijishan Formation erupted and the basin continued to stretch [36]. When the Yixian
Formation volcanic erupted in the late Jurassic, the basin was strongly compressed and
twisted, forming the Nantianmen fault zone. The fault zone divided the large basin into
Beipiao and Jinyang Basins during the depositional period of the Upper Jurassic Beipiao
Formation, forming the present tectonic pattern [40,41]. The basin, characterized by its
northeastern elongated shape, is one of the Mesozoic volcano-sedimentary basins, which
are widely distributed in the northern part of the north China craton [40,42,43]. However,
according to studies in recent years, the shape of the basin during the Early Jurassic was an
E–W trend [44,45]. The Yanshanian orogeny reshaped the basin during the middle-to-late
Jurassic periods. The residual sedimentary strata in Jinyang Basin are mainly composed
of Jurassic strata (Figure 1), with a thickness of up to 5000 m, including the Proterozoic,
Carboniferous, Permian, Triassic, Jurassic and Cretaceous from the bottom to top.

Four geological survey wells (SZK01-04) were drilled on the western margin of the
Jinyang basin, where oil and gas were encountered [46]. The YD-1 well drilled in the
Zhangjiyingzi depression of the basin encountered oil spots in the fractures of volcanic
rocks. Based on biomarker and source rock correlation studies, crude oil was derived from
the Jurassic Beipiao Formation [47]. The total thickness of the Beipiao Formation in the core
ZK01 reaches 280 m. The sedimentary paleoenvironment of the lower Beipiao Formation
is composed of alluvial and lacustrine facies, which are characterized by coarse-grained,
weakly cemented conglomerate, conglomeratic sandstone, siltstone and dark claystone
interbedded with coal seams [33,48]. These sediments overlay directly on Lower Jurassic
andesite or Precambrian carbonates. The upper part is by sandstone, siltstone and dark
claystone interbedded with fine conglomerates [33,48]. However, only a few outcrops of
the Beipiao Formation can be found in the Jinyang basin, with the majority of the outcrops
occurring in the western area near the Nantianmen thrust fault, e.g., Wolong outcrop and
Dongkuntouyingzi outcrops. The source rocks of the Beipiao Formation were influenced
by magmatic-hydrothermal activities during the forming process [38]. A diorite porphyrite
dike (U-Pb age: 173.4 ± 0.65 Ma, unpublished data), with a surface outcropping width of
approximately 130 m, intruded into the bottom of the Wolong outcrop. A granite porphyry
dike (U-Pb age: 172.6 ± 1.3 Ma) [49] with a surface outcropping width of approximately
80 m intruded into the top of the Dongkuntouyingzi outcrop. The dike also intruded into
the middle of the Wolong outcrop, with a surface outcropping width of approximately
200 m (Figure 2). The sedimentary age of the Beipiao Formation is from the late Early
Jurassic to early Middle Jurassic [50,51]. The motley strata at the bottom of the Beipiao
Formation belong to the late Early Jurassic, and the dark coal-bearing strata at the middle-
upper part belong to the early Middle Jurassic [50]. Therefore, the diorite porphyrite
dike might intrude during the deposition of the dark coal-bearing strata in the Beipiao
Formation, affecting the primary productivity and the preservation conditions of organic
matter. Both outcrops provide a natural laboratory to study the interactive mechanism
between the magmatic-hydrothermal activities and the Beipiao source rocks.
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3. Samples and Methods

Twenty black shale samples in this study were collected from the Wolong (WL) outcrop
in the west of Jinyang Basin (10 samples) and the Dongkuntouyingzi (DK) outcrop in the
middle of Jinyang Basin (10 samples) (Figure 2). All samples are from the Beipiao Formation.
The samples of the Wolong outcrop were collected from the vicinity of the granite porphyry
dike, and gradually moved away from the dike at intervals of 20~50 m. All samples from
both outcrops were collected from fresh surfaces to avoid the effects of biodegradation
and weathering.

For total organic carbon (TOC) analysis, aliquots (~200 mg) of shale powders were first
treated with 6 mol/L hydrochloric acid (HCl) at 60 ◦C for 12 h twice to remove carbonate
minerals. Samples were then washed with distilled water to remove HCl, dried overnight
(50 ◦C), and weighed. They were then measured using a LECO CS230 apparatus. Rock–
Eval pyrolysis was performed with a Rock–Eval 6 instrument. The temperature program
started with an isothermal phase for 3 min at 300 ◦C, followed by a heating step up to
650 ◦C at a rate of 25 ◦C.

The GC/MS analyses were carried out with an Agilent Technologies 7890A gas chro-
matograph coupled with an Agilent Technologies 5975C mass spectrometer. For the
biomarker analysis, selected ions were chosen to analyze samples in single ion moni-
toring (SIM) or multiple ion detection (MID) mode. The ion source operated in the electron
impact mode with energy of 70 eV. The GC was equipped with a 30 m× 0.32 mm (i.d.) J&W
Scientific DB-5MS fused silica capillary column coated with a 0.25 µm liquid film. For the
saturate and aromatic compounds analysis, the ion source temperature was 200 ◦C, injector
temperature was at 300 ◦C, and transfer line temperature was 310 ◦C. The GC temperature
program started at 40 ◦C and was held for 1.5 min, before being increased to 300 ◦C at a
rate of 4 ◦C per minute and then held at 300 ◦C for 34 min (total run time of 100.5 min).

The trace elements and rare earth elements were analyzed and tested in the Yangtze
University, China, with a Thermo Scientific Element XR inductively coupled plasma mass
spectrometer. During the experiment, 10 ng Rh was used as the online internal standard,
and the repeated measurement of the laboratory rock standard sample was used to control
the analysis accuracy. The analysis error of trace elements is less than 5%, and the analysis
error of rare earth elements is less than 10%. To eliminate the odd-even effect of REE, we
adopted the Post-Archean Australian Shale (PAAS) for REE normalization.

Available data of vitrinite reflectance (%Ro) for some samples from this well were
available and provided by the Key Laboratory of Exploration Technologies for Oil and Gas
Resources at Yangtze University.

4. Results
4.1. Total Organic Carbon and Rock-Eval Pyrolysis

The WL samples have TOC values ranging from 0.61% to 3.20% (averaging 2.01%). A
total of 88% of samples have moderate-to-good TOC content (TOC > 1.0%) [52]. The free
hydrocarbon contents (S1) and pyrolysis hydrocarbon (S2) are generally low (averaging
0.05 mg/g and 0.11 mg/g, respectively). The Tmax values vary in a range of 427~573 ◦C
(averaging 589 ◦C). The Ro values are in the range of 0.84~1.51% (averaging 1.17%) (Table 1).

The DK samples have TOC values between 0.65% and 3.27% (averaging 1.63%). A
total of 70% of samples have moderate-to-good TOC content (TOC > 1.0%) [52]. The free
hydrocarbon contents (S1) and pyrolysis hydrocarbon (S2) are generally low (averaging
0.15 mg/g and 0.98 mg/g, respectively). The Tmax values are in the range of 444~470 ◦C
(averaging 449 ◦C). The Ro values range from 0.82 to 1.14% (averaging 1.01%) (Table 1).

4.2. Rare Earth Elements

In the WL samples, there is a positive correlation between the total rare earth element
content (∑REE) and TOC (Tables 1 and 2). The ∑REE decreased from 319.79 µg/g to
226.83 µg/g as the TOC content decreased. Chondrite normalized REEN distribution
patterns are uniformly light-REE (La-Nd) enriched, show a large positive Eu anomaly
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(δEu > 1) and negative Ce anomaly (δCe < 1) (Table 2). The data are consistent with REE
compositions previously reported for Vienna Woods hydrothermal fluids [53,54] and Tarim
Basin hydrothermal fluids [55]. In the DK samples, most of them exhibit a negative Eu
anomaly (δEu < 1) and positive Ce anomaly (δCe > 1) (Table 2).

Table 1. Experimental results of Rock-Eval analysis and TOC measurement for source rocks.

Sample
No. Fm. Lithology Distance

(m)
TOC
(%)

S1
(mg/g)

S2
(mg/g)

Tmax
(◦C)

HI
(mg/g)

OI
(mg/g)

Ro
(%)

WL-1 J1b Shale 29.00 2.18 0.09 0.19 573.00 8.72 216.06 1.45
WL-2 J1b Shale 46.00 3.20 0.05 0.12 558.00 3.75 184.38 1.51
WL-3 J1b Shale 94.00 2.90 0.03 0.08 531.00 2.76 160.34 1.43
WL-4 J1b Shale 114.00 2.57 0.06 0.15 447.00 5.84 163.04 0.97
WL-5 J1b Shale 150.00 1.29 0.11 0.19 471.00 14.73 430.23 1.13
WL-6 J1b Shale 250.00 1.63 0.03 0.04 427.00 2.45 142.94 0.84
WL-7 J1b Shale 300.00 1.68 0.04 0.10 430.00 5.95 110.71 0.86
WL-8 J1b Shale 335.00 0.61 0.02 0.03 472.00 4.96 345.45 1.14
WL-9 J1b Shale 380.00 - - - - - - -

WL-10 J1b Shale 396.00 - - - - - - -
DK-1 J1b Shale 280.00 0.87 0.13 0.61 444.00 70.36 144.18 1.11
DK-2 J1b Shale 310.00 0.65 0.06 0.28 444.00 43.28 194.74 1.14
DK-3 J1b Shale 340.00 0.95 0.25 1.08 447.00 114.04 180.57 1.14
DK-4 J1b Shale 370.00 1.66 0.20 1.16 450.00 69.88 80.12 1.09
DK-5 J1b Shale 390.00 1.44 0.04 0.19 470.00 13.19 106.25 1.08
DK-6 J1b Shale 450.00 2.39 0.16 1.22 446.00 51.05 66.95 1.02
DK-7 J1b Shale 520.00 1.39 0.12 0.35 444.00 25.18 87.05 0.97
DK-8 J1b Shale 570.00 1.56 0.09 0.97 447.00 62.18 123.08 0.86
DK-9 J1b Shale 620.00 3.27 0.30 2.69 448.00 82.26 47.09 0.86

DK-10 J1b Shale 740.00 2.17 0.14 1.23 446.00 56.68 86.18 0.82

Table 2. Rare earth elements of the Beipiao samples, in µg/g.

Sample
No.

Distance
(m) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE/

HREE δEu δCe

WL-1 29 60.11 117.66 14.36 54.89 10.72 2.33 7.99 1.13 6.38 1.20 3.35 0.49 3.02 0.42 284.03 10.85 1.19 0.92
WL-2 46 55.41 110.59 13.34 51.55 9.97 2.18 7.08 0.98 5.50 1.01 2.70 0.38 2.55 0.36 263.59 11.82 1.22 0.94
WL-3 94 57.09 113.47 13.88 54.39 10.57 2.23 8.46 1.12 6.52 1.17 3.25 0.46 2.82 0.44 275.85 10.38 1.11 0.93
WL-4 114 67.59 129.06 15.90 62.36 12.13 2.57 9.96 1.37 7.81 1.52 4.30 0.62 4.01 0.59 319.79 9.60 1.10 0.91
WL-5 150 59.23 124.87 14.07 54.21 10.45 2.21 7.94 1.15 6.92 1.34 3.66 0.56 3.61 0.49 290.70 10.32 1.14 1.00
WL-6 250 57.72 123.64 14.59 56.39 11.08 2.08 7.71 1.03 5.92 1.10 2.96 0.44 2.86 0.40 287.92 11.84 1.06 0.98
WL-7 300 52.07 97.74 11.94 45.00 8.12 1.84 6.28 0.86 5.11 0.93 2.59 0.38 2.58 0.35 235.80 11.35 1.21 0.90
WL-8 335 46.68 92.84 11.25 43.44 8.26 2.04 6.90 0.99 5.97 1.17 3.24 0.46 3.13 0.46 226.83 9.16 1.27 0.93
WL-9 380 70.25 148.08 17.41 65.30 11.22 2.11 7.13 0.94 5.44 0.94 2.63 0.37 2.59 0.33 334.73 15.43 1.11 0.98

WL-10 396 36.07 56.87 6.19 19.38 3.24 0.70 2.63 0.51 3.20 0.63 1.77 0.28 1.73 0.22 133.40 11.18 1.13 0.88
DK-1 280 34.21 68.99 4.23 33.09 9.93 1.92 10.83 0.53 9.45 1.60 7.81 0.29 9.62 0.13 192.64 3.78 0.87 1.32
DK-2 310 30.61 85.54 6.96 36.01 6.97 1.73 6.87 0.51 4.22 0.39 1.80 0.24 1.83 0.20 183.87 10.46 1.17 1.35
DK-3 340 27.03 54.34 5.92 31.08 6.33 1.02 6.35 0.43 4.39 0.48 2.31 0.10 2.47 0.12 142.38 7.55 0.76 0.99
DK-4 370 43.87 118.08 9.53 49.21 9.68 2.05 9.74 0.76 6.31 0.70 2.99 0.34 3.19 0.31 256.76 9.55 0.99 1.33
DK-5 390 20.13 61.92 3.86 33.70 10.95 1.77 12.19 0.66 10.46 1.74 8.37 0.23 10.14 0.19 176.32 3.01 0.72 1.62
DK-6 450 18.01 58.88 3.44 30.43 10.19 1.84 11.34 0.61 9.78 1.65 7.94 0.26 9.62 0.15 164.13 2.97 0.80 1.73
DK-7 520 38.08 104.58 8.02 42.91 9.69 1.58 10.62 0.81 7.52 0.97 4.46 0.37 5.43 0.44 235.47 6.69 0.73 1.38
DK-8 570 29.45 67.52 6.49 32.69 6.24 1.30 6.07 0.43 3.80 0.36 1.70 0.16 1.85 0.13 158.17 9.92 0.99 1.13
DK-9 620 32.80 64.19 6.86 35.85 7.37 1.27 7.35 0.52 5.06 0.56 2.63 0.18 2.99 0.19 167.81 7.62 0.81 0.99
DK-10 740 39.39 106.43 9.10 51.75 12.19 2.81 13.23 1.05 8.12 0.89 3.47 0.34 3.35 0.29 252.41 7.21 1.04 1.30

Note: ∑REE: Total concentration of rare earth elements; LREE/HREE: Concentration of light rare earth ele-
ment/concentration of heavy rare earth element; δEu = Eu/

√
Sm ∗Gd N; δCe = Ce/

√
La ∗ Pr N; N: normalized

value by PAAS.

4.3. Biomarkers

Fourteen representative samples were selected for GC/MS analyses. The TIC and
m/z 191 of WL-1, WL-2 and WL-4 samples indicate that the samples were subjected to
secondary alteration (Figure 3a,c), which may include not only thermal alteration but also
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degradation. The n-alkanes of WL samples were damaged and displayed a significant
UCM (unresolved complex mixture) signal, indicating the samples experienced slight
biodegradation. The WL samples have Pr/Ph values ranging from 0.62 to 0.92 (averaging
0.76), the DK samples have Pr/Ph values ranging from 1.93 to 3.93 (averaging 2.85). The
WL samples display a “V-shaped” C27, C28 and C29 regular sterane relative abundances
(Figure 3c). The DK samples are different to the WL samples, which display a “anti-L
shape” of sterane. The WL and DK samples distinctly display the difference in the relative
abundances of C19, C20 and C23 tricyclic terpanes, regular steranes, gammacerane and
4-methylsteranes (Figure 3b, Table 3), suggesting obvious changes in organic matter origins
and depositional environments [56].
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Table 3. Biomarker parameters of the Beipiao samples.

Sample
no. Fm. Lithology Distance

(m) Pr/Ph 20S αββ 22S Ts M/H C27
(%)

C28
(%)

C29
(%)

C19+20
TT(%)

C21TT
(%)

C23TT
(%) C19/C23 C27/C29 S/H GI 4MSI

WL-1 J1b Shale 29.00 - 0.49 0.43 0.65 0.54 0.13 35.64 30.55 33.81 16.40 30.39 53.21 0.08 1.05 0.81 0.43 0.23
WL-2 J1b Shale 46.00 - 0.45 0.40 0.65 0.52 0.14 41.89 27.74 30.37 11.82 34.21 53.97 0.05 1.38 0.89 0.42 0.26
WL-3 J1b Shale 94.00 0.81 0.43 0.36 0.68 0.55 0.15 38.16 26.58 35.26 28.18 28.51 43.31 0.22 1.08 0.90 0.36 0.28
WL-4 J1b Shale 114.00 0.62 0.47 0.43 0.66 0.54 0.13 45.26 26.34 28.41 16.35 28.61 55.03 0.09 1.59 1.18 0.48 0.23
WL-5 J1b Shale 150.00 0.71 0.46 0.42 0.59 0.52 0.13 37.82 29.60 32.58 17.15 28.38 54.47 0.07 1.16 0.91 0.50 0.22
WL-6 J1b Shale 250.00 0.79 0.48 0.42 0.65 0.54 0.13 35.55 31.60 32.85 19.42 32.69 47.89 0.12 1.08 0.80 0.38 0.29
WL-7 J1b Shale 300.00 0.92 0.50 0.43 0.60 0.51 0.13 38.89 30.38 30.74 21.29 28.38 50.33 0.10 1.27 0.73 0.46 0.26
WL-8 J1b Shale 335.00 0.87 0.45 0.40 0.68 0.51 0.13 39.83 28.71 31.46 17.00 30.62 52.38 0.16 1.27 0.92 0.38 0.26
WL-9 J1b Shale 380.00 0.70 0.48 0.41 0.71 0.53 0.12 39.04 30.79 30.17 20.50 30.53 48.96 0.09 1.29 1.18 0.36 0.25
WL-10 J1b Shale 396.00 0.63 0.48 0.40 0.66 0.53 0.14 33.83 32.58 33.59 14.69 33.34 51.97 0.07 1.01 0.80 0.74 0.16
DK-4 J1b Shale 370.00 2.95 0.50 0.52 0.59 0.69 0.12 26.55 27.30 46.15 56.13 20.55 23.32 0.95 0.73 0.49 0.16 0.05
DK-5 J1b Shale 390.00 2.57 0.48 0.43 0.60 0.40 0.13 26.91 22.27 50.82 63.59 17.62 18.79 1.65 0.89 0.16 0.08 0.04
DK-9 J1b Shale 620.00 3.93 0.45 0.38 0.59 0.26 0.13 25.48 20.11 54.41 68.66 16.48 14.87 2.31 0.66 0.12 0.05 0.04

DK-10 J1b Shale 740.00 1.93 0.52 0.49 0.61 0.89 0.09 32.29 25.12 42.59 63.04 16.97 19.98 1.02 1.01 0.70 0.46 0.04

Note: Pr/Ph: pristane/phytane; 20S: 20S/(20S + 20R) ratio for C29-ααα steranes; αββ: αββ/(ααα + αββ) ratio for C29-steranes; 22S: 22S/(22S + 22R) ratio for C32 hopanes;
Ts/Tm: 18α(H)-/(17α(H) + 18α(H))-trisnorhopane ratio; M/H: C30 moretane/C30 hopane; C27, C28, C29: Relative abundance of C27, C28, C29 -ααα 20R among C27-C29 -ααα 20R
steranes; C19+20TT, C21TT, C23TT: Relative abundance of C19+20, C21, C23 tricyclic terpane; C19/C23 = C19 tricyclic terpane/C23 tricyclic terpane; C27/C29 = C27 sterane/C29 sterane;
S/H = steranes/hopanes; GI = gammacerane index (gammacerane/C31 hopane); 4MSI = 4-methylsterane index (4-methylsterane/C29 sterane). “-” represents no data or not determined.
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GC/MS of the saturated hydrocarbons show a noticeable loss of n-alkanes adjacent to
the magmatic activity, as well as a shift in the carbon number distribution to a predominance
of the shorter chain-length homologues (Figure 3a). The thermal cracking of hopanes in the
WL samples with higher maturity, the content of C33 and C34 hopanes are lower. The ratios
of 22S/(22R + 22R) for the C32 hopanes are considered as excellent indicators of thermal
maturation [56]. The 22S/(22R + 22R) values of WL samples are distinctly higher than that
of DK samples. Other maturity indicators reach equilibrium or are even reversed due to
their high maturity (Table 3). The above phenomena of WL samples are typical features of
thermal stress closest to the granite porphyry dike [22,57].

5. Discussion
5.1. Evidence of Magmatic-Hydrothermal Activities

Previous studies have suggested that hydrothermal activity is often closely related
to the intrusion or eruption of magma [24–26]. According to the U-Pb dating data and
previous studies [50,51], it is indicated that the diorite porphyrite dike might intrude
during the deposition of the dark coal-bearing strata in the Beipiao Formation. The Ni-
CO-Zn ternary diagram [58] shows that all the WL samples plot in the hydrothermal
deposition area (Figure 4 and Table 4), indicating that hydrothermal activity occurred
during the deposition of the WL samples. Rare earth elements are often used as tracers of
hydrothermal activity [59–61]. The WL samples generally display the higher total rare earth
content and higher LREE/HREE ratios, with significant positive Eu anomalies (averaging
1.15) and negative Ce anomalies (averaging 0.94). On the contrary, the DK samples generally
display the lower total rare earth content and lower LREE/HREE ratios, with significant
negative Eu anomalies (averaging 0.89) and positive Ce anomalies (averaging 1.31). The
positive Eu anomalies and negative Ce anomalies indicate that the formation of WL samples
is associated with hydrothermal activity (Table 2 and Figure 5) [29,59–62].
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Table 4. Trace elements of the Beipiao samples, in µg/g.

Sample No. Fm. Lithology Co Ni Zn

WL-1 J1b Shale 21.96 150.22 118.74
WL-2 J1b Shale 20.99 145.05 115.84
WL-3 J1b Shale 26.81 171.63 99.55
WL-4 J1b Shale 21.40 160.33 112.85
WL-5 J1b Shale 24.39 115.97 105.27
WL-6 J1b Shale 27.88 145.31 96.17
WL-7 J1b Shale 10.05 100.50 79.33
WL-8 J1b Shale 9.92 105.82 58.54
WL-9 J1b Shale 9.44 96.46 67.21

WL-10 J1b Shale 4.16 35.34 40.03
DK-1 J1b Shale 24.85 70.87 165.80
DK-2 J1b Shale 31.27 53.41 116.73
DK-3 J1b Shale 18.74 69.26 127.86
DK-4 J1b Shale 25.41 110.08 200.36
DK-5 J1b Shale 26.71 141.51 133.05
DK-6 J1b Shale 37.37 197.21 163.98
DK-7 J1b Shale 35.41 58.50 302.34
DK-8 J1b Shale 21.82 74.29 135.88
DK-9 J1b Shale 24.53 104.40 156.69
DK-10 J1b Shale 33.02 110.92 185.75
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5.2. Influence of Magmatism on Organic Matter Abundance

S2 and TOC are commonly combined to evaluate the hydrocarbon-generating potential
of source rock, and better petroleum source rocks are characterized by relatively higher
S2 and TOC values [63–65]. According to the evaluation criteria of source rock [52], the
TOC values suggest that most of the WL and DK samples are good to very good and fair
to good source rocks, respectively (Figure 6). However, both WL and DK samples have a
relatively low amount of free hydrocarbons (S1) and hydrocarbons generated by pyrolytic
degradation of the kerogen in the rock (S2), indicating that the remaining hydrocarbon
potential for the samples is low (Table 1), which maybe related to the higher maturity.
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Figure 6. Cross-plot of S2 and TOC for determining the quality of source rocks.

The relationship between the TOC and distance from the granite porphyry dike
shows a progressive decrease in TOC toward the magmatic intrusion, before undergoing
a reversal (Figure 7a). A significant decrease in TOC values in source rocks heated by
magmatic intrusions is common in other examples due to the destructive effect on the
organic matter by the intrusive heating, as in the DK samples [9,66,67]. By contrast, the
TOC values, in which WL samples increase with the distance to the granite porphyry dike,
decrease. This phenomenon may be related to the fact that the magmatic-hydrothermal
activities in the Wolong area is conducive to the enrichment and preservation of organic
matter. According to the relationship between the Rock-Eval pyrolysis parameters and the
distance to the granite porphyry dike, when the distance from the source rock to the granite
porphyry dike decreases, the hydrocarbon generation potential and HI decrease gradually
(Figure 7b,c). The phenomenon is consistent with previous reports [18,22]. Rock-Eval
results support the assumption of the high thermal stress and destruction of hydrocarbons
within the thermal aureole, especially for WL samples, which are closer to the granite
porphyry dike.

Minerals 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

5.2. Influence of Magmatism on Organic Matter Abundance 
S2 and TOC are commonly combined to evaluate the hydrocarbon-generating 

potential of source rock, and better petroleum source rocks are characterized by relatively 
higher S2 and TOC values [63–65]. According to the evaluation criteria of source rock [52], 
the TOC values suggest that most of the WL and DK samples are good to very good and 
fair to good source rocks, respectively (Figure 6). However, both WL and DK samples 
have a relatively low amount of free hydrocarbons (S1) and hydrocarbons generated by 
pyrolytic degradation of the kerogen in the rock (S2), indicating that the remaining 
hydrocarbon potential for the samples is low (Table 1), which maybe related to the higher 
maturity. 

 
Figure 6. Cross-plot of S2 and TOC for determining the quality of source rocks. 

The relationship between the TOC and distance from the granite porphyry dike 
shows a progressive decrease in TOC toward the magmatic intrusion, before undergoing 
a reversal (Figure 7a). A significant decrease in TOC values in source rocks heated by 
magmatic intrusions is common in other examples due to the destructive effect on the 
organic matter by the intrusive heating, as in the DK samples [9,66,67]. By contrast, the 
TOC values, in which WL samples increase with the distance to the granite porphyry dike, 
decrease. This phenomenon may be related to the fact that the magmatic-hydrothermal 
activities in the Wolong area is conducive to the enrichment and preservation of organic 
matter. According to the relationship between the Rock-Eval pyrolysis parameters and 
the distance to the granite porphyry dike, when the distance from the source rock to the 
granite porphyry dike decreases, the hydrocarbon generation potential and HI decrease 
gradually (Figure 7b,c). The phenomenon is consistent with previous reports [18,22]. 
Rock-Eval results support the assumption of the high thermal stress and destruction of 
hydrocarbons within the thermal aureole, especially for WL samples, which are closer to 
the granite porphyry dike. 

 
Figure 7. Cross plot of TOC (a), S1 + S2 (b) and HI (c) versus distance from the granite porphyry dike. 

  

Figure 7. Cross plot of TOC (a), S1 + S2 (b) and HI (c) versus distance from the granite porphyry dike.

5.3. Influence of Magmatism on Hydrocarbon Evolution Stage of Source Rocks

The heat source associated with magmatic intrusion had a significant effect on the
transformation of organic matter in the organic-rich host rock and could also promote
the hydrocarbon generation process. In most cases studied, the thermal effect of igneous
bodies intruded into sedimentary rocks is expected to be one to two times the thickness of
the igneous body [9,22,68,69]. The Ro values suggest that both WL (Ro = 1.17%) and DK
(Ro = 1.01%) samples have entered the oil-generating stage, and WL samples were influ-
enced by the intrusive body with higher maturity (Table 1). According to the relationship
between the maturity and distance from the granite porphyry dike, the maturity of the
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samples with a distance of less than 100 m (the average Ro is 1.46%) is significantly higher
than others (Figure 8). When the distance between the sample and the granite porphyry
dike is more than 100 m, the maturity (the average Ro is 1.00%) is gradually stable and
decreases to the regional background values [37]. Therefore, the baking of the intrusive
body significantly affected the maturity of WL samples, but had little influence on DK
samples. Thermal maturation effects of igneous bodies on source rocks have been well
described and show different ranges of maturity that vary with the number of sills, spacing,
thickness, emplacement time, temperature of magma, length and distances between the
igneous bodies and host rock [6,17,18,69,70]. However, the causes of the heat effect are not
fully understood at this stage, and further research is required.
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5.4. Influence of Magmatic-Hydrothermal Activities on the Sedimentary Environment and Organic
Matter Input

The tricyclic terpane results are further used for the evaluation of the organic matter
origin and source input [71–75]. C19 and C20 tricyclic terpenes are mainly derived from
terrestrial higher plants [76], while C23 tricyclic terpenes are mainly derived from algae [77].
Among the samples analyzed in this study, the WL samples generally display the lower
C19/C23TT ratios (averaging 0.10), indicating a relatively high contribution from algae
sources. The DK samples display high C19/C23TT values (averaging 1.48), suggesting
relatively high terrestrial organic matter input (Figure 9a).

Higher plants and algae are the source of sterols, which are believed to be the origin of
steranes [78]. It is generally believed that C27 steranes derive mainly from phytoplankton
and metazoa, and C28 steranes are associated with specific phytoplankton types (e.g.,
diatoms) [79,80] that contain chlorophyll-c [81], whereas C29 steranes mainly originate
from terrigenous higher plants [78,82]. The regular steranes’ (C27, C28, and C29) relative
proportions can vary dramatically between samples and are influenced by the type of OM
source [78,82]. C27-C28-C29 ααα-20R regular sterane ternary plot shows that the organic
matter source of the WL sample is mainly aquatic organisms, while that of the DK sample
has more terrigenous organic matter input (Figure 10a). In addition, the value of the
C27/C29 steranes show similar characteristics (Figure 9a).

The ratios of steranes to hopanes is used to determine the relative contributions of
eukaryotic (mainly algae and higher plants) versus prokaryotic (bacterial) organic matter of
the source rocks [56,83,84]. The Steranes/Hopanes ratios increase as the abundance of C27
sterane increase and decrease as the abundance of C29 sterane increase (Figure 9c), indicat-
ing that high Steranes/Hopanes ratios were caused by the contribution from phytoplankton
rather than that of terrigenous higher plants [81]. The relatively high Steranes/Hopanes
ratios of WL samples (averaging 0.91) indicate a relatively higher contribution of phyto-
plankton, whereas the relatively low Steranes/Hopanes ratios of DK samples (averaging
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0.37) suggest higher terrigenous plant input (Figure 9b), which is consistent with the
tricyclic terpanes result.
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A high abundance of 4-methyl steranes is associated with the input of dinoflagel-
lates [85,86]. These dinoflagellates mostly exist in marine sedimentary rocks with immature
organic matter or in lacustrine sedimentary rocks with high water salinity due to trans-
gression [87,88]. The higher 4-methyl steranes/C29 steranes ratios of WL samples may
suggest a higher input of saltwater algal organic matter (Figure 9b). By contrast, the DK
samples display relatively low 4-methyl steranes/C29 steranes ratios, suggesting limited
contributions from the algae.

A ternary plot on the relative abundance of C19+20-C21-C23 tricyclic terpane has been
successfully applied to differentiate the depositional environments of the source rocks and
crude oils [89]. The diagram shows that the depositional environment of the WL samples
is mainly saline lacustrine, while that of the DK samples is mainly swamp (Figure 10b).
Biomarkers are also useful proxies for paleoenvironmental reconstruction. Pristane (Pr)
and phytane (Ph) are generated from phytol [90], which can be converted to Ph and Pr
under reducing environments and oxic conditions, respectively [90]. Therefore, the Pr/Ph
values correlate with the redox condition during sediment deposition. Generally, Pr/Ph
values less than one suggest suboxic-anoxic conditions, whereas Pr/Ph values greater
than one are associated with oxic conditions in sediments [90]. The Pr/Ph value of WL
samples is significantly lower than that of DK samples (Figure 9d). Although the origin of
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gammacerane is unclear, it can be used to characterize stratified water in the sedimentary
environment of source rocks, which results in high salinity and/or anoxic conditions in
bottom waters [91,92]. Therefore, the gammacerane index is frequently used as a specific
biomarker for water-column stratification and/or hypersaline conditions [92]. Overall, the
WL samples had higher gammacerane index values than DK samples (Figure 9d). WL
samples generally show the homohopane tail-raising phenomenon (Figure 3), indicating
the original sedimentary environment of reducing reductive salt water [56]. The above
biomarkers reveal that WL and DK samples were formed in anoxic saline and aerobic
freshwater sedimentary environments, respectively.
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6. Conclusions

(1) The hydrothermal indicator discrimination diagram (Zn-Ni-Co triangular plot) and
rare earth element anomalies (δEu and δCe) indicate hydrothermal activity occurred
during the deposition of the WL samples, but not for the DK samples.

(2) The TOC values indicate that the organic matter abundance of the WL samples was
higher than that of the DK samples.

(3) The WL samples were influenced by the magmatic intrusion with higher maturity,
demonstrating the magmatic-hydrothermal activities promoted a hydrocarbon gener-
ation process.

(4) The magmatic-hydrothermal activities brought abundant nutrients to the lake basin,
increased the salinity of water and promoted the formation of a water reducing
environment, resulting in the formation of organic-rich source rocks.
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