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Abstract: Rock materials are often affected by water in underground engineering. In this study,
the mechanical and failure characteristics of tuff under different moisture content were studied
using laboratory tests. The moisture content variation of tuff was studied in water absorption
tests, and the mechanical and failure characteristics of tuff under different moisture contents were
studied through uniaxial compression tests with a Micro-II acoustic emission (AE) control acquisition
system. The results showed that the moisture content of tuff increases rapidly at the initial stage of
water absorption tests and stabilizes after 180 h of immersion. According to the results of uniaxial
compression tests, both uniaxial compressive strength and elasticity modulus decreased with the
increase in moisture content. The AE parameters analyses showed that, when the moisture content
increased, the accumulated AE counts and energy gradually decreased, and the “quiet period” at
the initial stage of uniaxial compression tests lasted longer, and the RA (rise time⁄amplitude)–AF
(AE counts⁄duration) distribution and the failure characteristics verified that the failure patterns
evolved from shear failure to tensile failure. Scanning electron microscopy was used to observe the
morphology of the fracture surface and analyze the influence of moisture content on the fracture
characteristics of the tuff at the mesoscopic level. The results of this research can be used as a basis
for studying the influence of water on tuff.

Keywords: moisture content; uniaxial compression test; rock acoustic emission; SEM; rock failure
mode

1. Introduction

As underground projects such as tunnels, mining, and underground chambers are
built in deeper and more complex geological environments, surrounding rocks will be more
significantly affected by groundwater. The presence of groundwater increases the moisture
content of rocks, and a large number of experiments and studies have shown that the
increase in moisture content leads to a decrease in the strength and deformation properties
of rocks, which will cause many rock engineering disasters [1–3]. Under the influence of
groundwater, the engineering properties of the surrounding rock will be degraded to a
certain extent, which will greatly affect the stability and safety of the projects [4]. Therefore,
it is quite essential for the safety evaluation of underground engineering to carry out
in-depth research on the deterioration of rock properties and failure characteristics under
different moisture content.

Tuff is a common volcanic clastic rock, formed by the transport, scattering, cementation,
and deposition of volcanic ash from volcanic eruptions, and it is widely distributed in
southeastern China. Tuff is a widely existing rock in underground engineering, which often
endangers the stability and safety of engineering under the influence of water. Therefore, it
is of great meaning to study the influence of moisture content on the properties of tuff.

In recent years, acoustic emission (AE) technology has been widely used in geotechni-
cal engineering monitoring as a nondestructive testing technology [5]. The AE phenomenon
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refers to the elastic wave phenomenon generated by the rapid release of the local stress
energy that propagates through the material. The AE signals collected by the AE collection
device contain a large amount of information about the material cracks, and the amplitude,
frequency, count, and energy obtained are widely used in the material failure process
and failure characteristic analysis [6–9]. As a kind of brittle material, a large number of
microcracks and fracture extensions will be generated inside the specimens during the
process from initial loading to damage, and several AE events will be generated along
with this process. By analyzing the AE characteristics parameters of rocks during the
damage process, the failure characteristics of rocks under different moisture content can be
effectively analyzed.

Previously, many scholars conducted numerous studies on the failure characteristics
of rocks under different moisture content. Yao et al. [10] conducted uniaxial compression
tests on coal, mudstone, and siltstone under different water absorption times, and they
found that the uniaxial compressive strength, elastic modulus, and peak strain of coal
and rock specimens all decreased to a certain extent as the moisture content increasing.
Zhou et al. [11] analyzed the water influence on the mechanical behavior of rock in satu-
ration and drying processes under static and dynamic tests. Vasarhelyi [12] studied the
variations of porosity, uniaxial compressive strength, elastic modulus, and tensile strength
of limestone at different water content. Yilmaz [13] studied the degradation of gypsum rock
mechanical property parameters by uniaxial compression test under moisture content and
obtained the law that the uniaxial compressive strength and elastic modulus of gypsum
rock decreased with the growth of water content. Vishal et al. [14] studied the strength
characteristics of saturated coal and rock mass and the initiation of internal micro-cracks
under high-stress conditions. Yu et al. [15] studied the influence of moisture content on
the mechanical properties and crack propagation of siltstone through uniaxial compres-
sion tests, and they proved that the moisture content was negatively linearly correlated
with peak stress and elastic modulus. Roy et al. [16] conducted experimental research on
the fracture and mechanical properties of saturated sedimentary rocks, and the results
showed that saturability had a significant effect on the peak stress and fracture properties of
sedimentary rocks. In addition, the Brazilian split strength and fracture toughness de-
creased with the increase in saturation.

AE technology can monitor the initiation and development of microcracks in the
failure process of rock specimens, thereby revealing the evolution of internal damage and
failure of the rock. In view of the advantage, AE technology has been used to conduct
several studies on rock failure mechanism [17–23]. Liu et al. [8] studied the influence
of strain rate on AE characteristic parameters and rock failure characteristics through
experiments, and they obtained the law that the cumulative AE counts decreased as a
power function with increasing strain rate. Chen et al. [24] used AE technology to study
the law of fracture development during the hydraulic fracturing tests process, thereby
revealing the fracture mechanism of fluid–solid interaction during hydraulic fracturing.
Chen et al. [25] conducted uniaxial compression tests and AE monitoring on siltstones
under different water saturation levels, and they studied the relationship between AE
characteristic parameters and siltstone crack propagation with different moisture content.
The results of the tests showed that the AE count rate decreased gradually during the
compaction process as the moisture content of siltstone increased. Carpinteri et al. [26]
conducted uniaxial compression tests with AE monitoring on concrete and rock specimens,
revealing the law of energy absorption and release during the compression process of brittle
materials. According to the study of AE parameters, it was proven that the heterogeneity
of various properties of partly soaked coal specimens was more distinct than that of
completely soaked and non-soaked coal specimens. Amann et al. [27] studied the brittle
failure characteristics of clay using uniaxial compression tests and AE technology. The test
results showed that the crack initiation threshold was about 30% of the peak stress, and
the crack damage threshold was about 70% of the peak stress. Xiao et al. [28] used AE and
infrared characterization methods to monitor coal samples with different moisture content
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under uniaxial compression tests, revealing the overall and surface damage variables and
their evolution. The test results showed that the internal damage of the coal specimens
preceded the external damage, and the appearance of the AE signal was earlier than
the abnormal infrared point. Rodriguez and Celestino [29] conducted splitting tests and
AE monitoring on marble and granite, and the results showed that the internal cracks
development processes and cracking types of the rock were mainly determined by the rock
mineral composition.

In this article, tuff specimens with different moisture content were prepared and used
to study the variation of mechanical and acoustic emission characteristics of tuff with
moisture content through a uniaxial compression test and acoustic emission monitoring
system. Then, scanning electron microscopy (SEM) was used to study the mesoscopic
characteristics of tuff under different moisture content and verified the macroscopic failure
characteristics at the micro level.

2. Materials and Methods
2.1. Specimen Preparation

The tuff specimens used in this study were taken from the Luohe Iron Mine located in
Hefei, Anhui Province, China. In order to satisfy the requirements of uniaxial compression
tests, the rock specimens were made into a cylinder of ϕ50 mm × H100 mm in accordance
with the recommended standards of the International Society for Rock Mechanics (ISRM).
Both ends of all specimens were ground to obtain a flat surface. There were 27 specimens
in total, which required drying before testing. All specimens were placed in the oven and
dried at 110 ◦C for 24 h, before being placed into a desiccator and weighed. The specimens
were divided into nine groups of three specimens each and subjected to water absorption
tests through free absorption. In order to obtain specimens with different moisture contents,
the immersion time was set to 0 h, 6 h, 12 h, 24 h, 60 h, 180 h, 450 h, and 960 h, and the last
group of specimens was forcibly saturated.

2.2. Experimental Equipment and Procedure

An MTS-816 electrohydraulic servomechanical test system was employed to carry
out the uniaxial compression tests, with the loading rate set to 0.1 mm/min. Vaseline was
applied to both ends of the specimens to eliminate the influence of end face constraints.
A Micro-II AE acquisition system was used to monitor AE signals (seen in Figure 1), and
the AE parameters were acquired by the AE sensor affixed on the surface of the specimens.
A DH3816N static strain collection system was used to acquire strain data, as shown in
Figure 2.
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Figure 2. Sensor layout on the surface of specimen.

The acquisition parameters of the AE system for this study were set as shown in
Table 1.

Table 1. Acquisition parameters of the AE system.

Parameter MSPS Threshold
(dB)

HLT
(µs)

HDT
(µs)

PDT
(µs)

Resonant Frequency
(kHz)

Pre-Amplified
(dB)

Value 1 40 1000 800 200 300 40

MSPS is the sampling rate; HLT, HDT, and PDT denote the hit lockout time, hit definition time, and peak definition
time, respectively.

3. Experimental Results and Discussion
3.1. Relationship between Moisture Content and Immersion Time

The specimens were subjected to water absorption tests, and the moisture contents
varied with the time of immersion. The saturated specimens were prepared by boiling the
specimens for 6 h after immersion. The moisture content and average moisture content
data of the specimens are shown in Table 2.

The relative relationship between average moisture content and immersion time is
shown in Figure 3. With the increase in immersion time, the average moisture content
showed an upward trend. During the immersion time from 0 h to 24 h, the moisture content
increased rapidly, which was mainly due to the rapid water absorption on the surface of
the specimens at the initial stage of immersion. From 24 h to 180 h, the moisture content
still showed an upward trend with the accumulation of immersion time, but the rising
rate dropped rapidly. This was mainly due to the slower rate of water infiltration into the
interior of rock after the surfaces of the specimens were soaked by water. From 180 h to
960 h, the moisture content of the tuff specimens continued to increase with immersion
time, but the rising rate was very small, and the moisture content was close to the saturation
state in value. This was mainly because the pores that allow water to penetrate freely were
basically occupied by water; thus, the water absorption rate of the rock became very slow.
Accordingly, it was difficult for water to penetrate into the rock specimens during this stage.
After being immersed in water for 960 h, the average moisture content of the specimens
was 1.02%, and the average saturated moisture content was 1.05%, which were very close
to each other.
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Table 2. Results of water absorption test.

No. Immersion
Time

Dry Weight
(g)

Wet Weight
(g)

Moisture
Content (%)

Average Moisture
Content (%)

A-1
0 h

667.28 0
0A-2 658.17 0

A-3 649.84 0
B-1

6 h
669.93 671.87 0.30

0.28B-2 662.31 664.10 0.27
B-3 652.79 654.55 0.26
C-1

12 h
663.80 666.39 0.39

0.40C-2 671.15 673.90 0.41
C-3 661.26 663.91 0.4
D-1

24 h
646.68 650.69 0.62

0.60D-2 647.25 651.07 0.59
D-3 658.74 662.69 0.6
E-1

60 h
660.41 665.63 0.79

0.81E-2 656.28 661.60 0.81
E-3 644.91 650.20 0.82
F-1

180 h
655.21 661.04 0.88

0.90F-2 647.26 653.02 0.90
F-3 655.95 661.92 0.91
G-1

450 h
649.58 655.82 0.96

0.97G-2 644.32 650.63 0.99
G-3 656.28 662.71 0.97
H-1

960 h
651.79 658.37 1.01

1.02H-2 647.66 654.27 1.02
H-3 649.57 656.33 1.04
I-1

Saturated
649.39 656.21 1.05

1.05I-2 654.92 661.73 1.04
I-3 651.74 658.71 1.07
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The relationship between the average moisture content and the immersion time ob-
tained in the tests revealed the relationship of the sample moisture content with the immer-
sion time, which could be fitted using Equation (1).

ω = 1.03336−0.757e−x/16 − 0.269e−x/287, (1)
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where ω denotes the average moisture content, and x represents the specimen immersion
time. The correlation coefficient of the fitted function was R2 = 0.99848, proving that the
formula could accurately characterized the relationship.

3.2. Mechanical Behavior of Tuff under Different Moisture Content

The results of the uniaxial compression tests are listed in Table 3. As shown in Figure 4,
the peak stress gradually declined with the increase in moisture content. The stress–strain
curves of all specimens showed a concave upward trend in the initial loading stage, which
was mainly due to the nonlinear deformation caused by the crack closure in the rock
specimens. With the increase in load, the stress–strain curves showed an approximately
linear growth, with a lower moisture content resulting in a higher growth rate. With
continued loading, the stress–strain curve reached the peak stress after going through a
downward concave section. In addition, both the peak stress and the corresponding strain
gradually decreased as the moisture content increased.

Table 3. Results of uniaxial compression tests.

No. Immersion
Time

UCS
(MPa)

Average
UCS

(MPa)

Elasticity
Modulus

(GPa)

Average Elasticity
Modulus

(GPa)

Poisson’s
Ratio

Average
Poisson’s

Ratio

A-1
0 h

170.01 18.06 0.20
A-2 170.53 170.05 17.96 17.95 0.18 0.19
A-3 169.61 17.82 0.19
B-1

6 h
158.09 17.07 0.21

B-2 157.57 157.59 16.93 16.97 0.24 0.23
B-3 157.11 16.90 0.23
C-1

12 h
144.85 16.26 0.23

C-2 148.10 146.39 16.56 16.41 0.26 0.25
C-3 146.22 16.41 0.27
D-1

24 h
128.96 16.30 0.27

D-2 127.36 127.84 16.11 16.05 0.26 0.27
D-3 127.20 15.73 0.27
E-1

60 h
120.78 15.81 0.27

E-2 119.89 119.83 15.66 15.69 0.29 0.27
E-3 118.82 15.60 0.26
F-1

180 h
112.26 15.42 0.28

F-2 111.35 112.16 15.48 15.39 0.30 0.28
F-3 112.88 15.26 0.26
G-1

450 h
108.22 15.00 0.27

G-2 107.73 107.27 15.22 15.19 0.30 0.29
G-3 105.87 15.34 0.30
H-1

960 h
105.41 15.12 0.30

H-2 105.16 104.88 14.94 15.09 0.29 0.30
H-3 104.07 15.20 0.31
I-1

Saturated
103.14 15.01 0.29

I-2 103.02 103.03 14.99 15.01 0.31 0.30
I-3 102.93 15.02 0.31

The UCS refers to the uniaxial compressive strength.

In addition, the stress–strain curve presented different development trends under
different moisture contents after peak stress. For the dry specimens, the peak stress obtained
by the tests reached the maximum value, and the stress–strain curve had no obvious post-
peak segment, indicating a brittle failure mode. The peak stress gradually decreased
with the increase in moisture content, and the post-peak segments gradually emerged.
Furthermore, a greater moisture content led to a more obvious post-peak segment. It can be
seen from the results that, when the moisture content increased, the tuff specimen showed a
certain bearing capacity after failure, which presented an obvious enhancement of plasticity
and toughness.
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The variation law of peak stress and average UCS with moisture content is shown
in Figure 5. The peak stress of the specimens showed a downward trend as the moisture
content increased, but the decline rate was not maintained at a constant value. The peak
stress decline rate was maintained at a relatively high level during the initial stage of
increasing moisture content. However, as the moisture content continued to increase, the
decline rate of the peak stress gradually dropped. The results indicate that the weakening
effect of water on the strength of the tuff gradually decreased after the moisture content
reached a certain level. The relative relationship between peak stress and moisture content
could be fitted using Equation (2).

y = 17.128 + 158.365e−0.564x, (2)

where y is the uniaxial compressive strength, and x denotes the moisture content. The
correlation coefficient of the fitted function was R2 = 0.98242.
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As shown in Figure 6, the average elastic modulus showed a downward trend as the
moisture content increased, but the decline rate of the elastic modulus gradually dropped.
When the specimens were dry, the average value of elastic modulus was 17.95 GPa, whereas,
when the specimen was saturated, the average value of elastic modulus decreased to
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15.01 GPa, with a decrease of 16.38%. This demonstrated that water produced an obvious
decrease in the elastic modulus of the tuff. The relationship between the average value of
the elastic modulus and the moisture content could be fitted using Equation (3).

y = 12.766 + 5.161e−0.767x, (3)

where y is the elastic modulus, and x denotes the moisture content. The correlation
coefficient of the fitted function was R2 = 0.99331.
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The Poisson’s ratio of the tuff specimens gradually increased with the increase in
moisture content (Figure 7). The average Poisson’s ratio of the dry specimens was 0.19,
whereas the average Poisson’s ratio of the saturated specimens was 0.30, showing an
increase of 57.89%. The results proved that the increase in moisture content caused a large
increase in the Poisson’s ratio of the tuff specimens. In addition, the Poisson’s ratio was
more affected by moisture content than the elastic modulus. The relationship between the
average Poisson’s ratio and the moisture content could be fitted using Equation (4).

y = 0.342 − 0.152e−1.126x, (4)

where y represents Poisson’s ratio, and x denotes the moisture content. The correlation
coefficient of the fitted function is R2 = 0.97451.
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Many scholars have studied the influence of moisture content on the mechanical char-
acteristics of other types of rocks, such as sandstone, red sandstone, marble, and siltstone,
and found that the weakening effect of water will make the mechanical parameters such as
uniaxial compressive strength and elastic modulus show similar change trends [25,30–32].

3.3. AE Counts and Energy Characteristics of Tuff with Different Moisture Content

The stress and AE parameter results with time under different moisture content in
uniaxial compression tests are demonstrated in Figure 8, representing the nine different
moisture states. The AE parameters collected during the tests included AE counts, am-
plitude, and energy, which showed a good correlation with stress evolution as a function
of loading. During the uniaxial compression tests, the stress of the specimens was low at
the initial loading stage, and the AE signals were rarely collected. With the increase in
stress, the AE energy and accumulated counts increased gradually and showed a signifi-
cant growth when the specimens were about to fail. This proved that the AE energy and
accumulated counts had a good correlation with the crack propagation and failure of the
specimens during loading.

During the initial loading period of uniaxial compression tests, there was a “quiet
period” with few cracks being generated and expanding within the rock. AE events hardly
occurred at this stage. When the moisture content of the specimens was 0, as shown in
Figure 8a, the AE counts started to accumulate at about 151 s, and the AE events occurred
earlier compared with the other specimens. As the moisture content increased, the AE
events occurred later. When the specimens were saturated, as shown in Figure 8i, the AE
counts started to accumulate at 246 s. The test results showed that the duration of the “quiet
period” increased significantly with the moisture content during the uniaxial compression
tests, which further confirmed that the initiation time of cracks within the tuff became later
and later with the increase in moisture content.

The AE signals began to accumulate after the “quiet period”. The AE counts basically
rose steadily according to a certain slope before the peak stress, and the AE energy was also
collected with the generation of AE events. However, both the growth rate of accumulated
AE counts and the AE energy value were kept at a low level. When the stress reached the
peak value, the accumulated AE counts and energy showed a very significant increase,
which indicated that a large number of fracture events with high energy release occurred
in the specimens when destroyed.

The information of AE parameters during the tests of the specimens with different
moisture content showed different characteristics. With the increase in moisture content,
the accumulated AE counts and energy value both presented a gradually decreasing trend.
When the moisture content was low, the AE energy appeared more frequently with a
higher value. However, as the moisture content increased, the occurrence of AE events
became sparse, and the value of AE energy was relatively reduced, as shown in Figure 8.
The analysis of AE parameters also revealed that a higher moisture content resulted in a
lower AE energy and fewer accumulated AE counts at the peak stress. Compared with dry
specimens, the accumulated AE counts of saturated specimens decreased by an order of
magnitude, and the maximum AE energy also decreased by 32.86%. This was mainly due
to the softening effect on the tuff specimens caused by water. Higher moisture content of
the specimens led to less internal fracture generation, expansion, and penetration during
the loading process, and less energy was released at the same time. Although the overall
energy value showed a downward trend when the moisture content increased, this did not
affect the phenomenon of sudden energy bursts when the specimens were destroyed.
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3.4. RA–AF Distribution and Tuff Failure Characteristics under Different Moisture Content

The ratio of the rise time to the amplitude of an AE event was recorded as the RA
value, and the ratio of the AE counts to the duration time was recorded as the AF value.
The RA value and AF value are very important AE parameters to analyze the rock failure
process. The combined analysis of RA and AF is often used to determine the fracture type
in the analysis of rock fracture generation mechanisms [33–35]. Their definitions are shown
in Equations (5) and (6).

RA = Rise time/Amplitude. (5)

AF = AE counts/Duration. (6)

The RA–AF distribution analysis was implemented in a rectangular coordinate system
with RA value as the horizontal axis and AF value as the vertical axis. During the uniaxial
compression tests, a lower RA value and a higher AF value are generated when tensile
cracks occurred. In contrast, the generation of shear cracks results in a higher RA value and
a lower AF value. A diagonal line was used to divide the rectangular coordinate system
into a tensile crack region and a shear crack region, as shown in Figure 9.

Minerals 2022, 12, x  12 of 19 
 

 

 

 

(i)  

Figure 8. The evolution of stress, AE energy, accumulated AE counts, and amplitude with time un-

der different moisture content. (a–i) Specimens under different moisture content. 

3.4. RA–AF Distribution and Tuff Failure Characteristics under Different Moisture Content 

The ratio of the rise time to the amplitude of an AE event was recorded as the RA 

value, and the ratio of the AE counts to the duration time was recorded as the AF value. 

The RA value and AF value are very important AE parameters to analyze the rock failure 

process. The combined analysis of RA and AF is often used to determine the fracture type 

in the analysis of rock fracture generation mechanisms [33–35]. Their definitions are 

shown in Equations (5) and (6). 

RA = Rise time ⁄Amplitude. (5) 

AF = AE counts Duration⁄ . (6) 

The RA–AF distribution analysis was implemented in a rectangular coordinate sys-

tem with RA value as the horizontal axis and AF value as the vertical axis. During the 

uniaxial compression tests, a lower RA value and a higher AF value are generated when 

tensile cracks occurred. In contrast, the generation of shear cracks results in a higher RA 

value and a lower AF value. A diagonal line was used to divide the rectangular coordinate 

system into a tensile crack region and a shear crack region, as shown in Figure 9. 

 

Figure 9. Relationship between crack types and RA–AF distribution. 

The RA value and AF value were normalized and then drawn in the coordinate sys-

tem, as shown in Figure 10. It can be seen from the RA–AF distribution that the RA–AF 

Figure 9. Relationship between crack types and RA–AF distribution.

The RA value and AF value were normalized and then drawn in the coordinate system,
as shown in Figure 10. It can be seen from the RA–AF distribution that the RA–AF values
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were mainly distributed along the horizontal axis when the moisture content was 0. The
RA values were higher, and the AF values were lower, being mainly distributed in the
shear crack region, as shown in Figure 10a. This phenomenon revealed that the cracks
generated within the rock were mainly shear cracks when the rock specimens were dry.
When the moisture content increased, the distribution of RA–AF values gradually transited
from the shear crack region to the tension crack region. As shown in Figure 10c, when the
moisture content reached 0.41%, RA–AF values were evenly distributed in the tensile and
shear crack region. Therefore, both shear cracks and tension cracks were generated under
this moisture content, and these two types of cracks were relatively close in number. For
saturated specimens, the RA–AF values were mainly distributed along the longitudinal
axis. The RA values were lower, and the AF values were higher, being mainly distributed
in the tensile crack region, as shown in Figure 10i. This means that the majority of cracks
generated inside the specimens were tension cracks when saturated.

The variation of RA–AF distribution was very significant at the initial stage of the
rising process of moisture content. When the moisture content was higher than 0.6%, as
shown in Figure 10e–i, the RA–AF distribution tended to be stable and mainly concentrated
in the tensile crack region. The results showed that the cracks generated during the uniaxial
compression tests were mainly tensile cracks when the moisture content of the specimens
reached a certain level, and the crack type no longer changed with the continued increase
in moisture content.
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Figure 10. RA–AF distribution of tuff specimens with different moisture content. (a–i) Specimens
under different moisture content.

The failure patterns of the tuff specimens after the tests are shown in Figure 11. The
failure characteristics demonstrated that the crack types were mainly diagonal shear cracks
when the moisture content of the specimens was low. The failure pattern was mainly
manifested as shear slip along the oblique cracks, as shown in Figure 11a–c. During the
process of increasing moisture content, the type of cracks gradually changed from shear
cracks along the diagonal to tensile cracks along the longitudinal. As shown in Figure 11h,i,
the cracks produced were mainly tensile cracks when the specimens failed under high
moisture content, and the failure pattern was mainly manifested as splitting tensile failure.
In addition, through the comparison of the test results, it was found that the tuff specimens
had a higher level of fragmentation under high moisture content, and more fragments were
produced when they were broken.
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These experimental phenomena showed that the level of moisture content affected the
failure patterns of the tuff specimens. As the moisture content increased, the tuff specimens
gradually transitioned from shear failure to tensile failure, and the level of fragmentation
gradually increased. This was mainly because of the increased infiltration of water into
the rock with the increase in moisture content. Furthermore, the cementation between the
mineral particles inside the specimens was weakened, which in turn caused a change in
failure pattern and more severe damage when the rock specimens failed.

The fracture characteristics of the tuff specimens in the uniaxial compression tests
under different moisture content were basically consistent with the fracture types obtained
via the analysis of RA–AF distribution. This further proved that the RA–AF distribution
could successfully determine the failure types of tuff specimens under different moisture
content in the uniaxial compression test.

3.5. Mesoscopic Analysis of Failure Fracture under Different Moisture Content

In order to study the mesoscopic characteristics of tuff under different moisture
content, scanning electron microscopy (SEM) was used to analyze the fracture mesoscopic
morphology of the samples.

The damaged samples with 0% (A3), 0.62% (D1), and 1.04% (I2) moisture content were
selected for SEM detection of the fracture surface, and the magnification was 2000×. As
shown in Figure 12a–c, when the sample was dry, the failure section was relatively neat,
and there were fewer fractures of holes and step zones. With the increase in moisture
content, the failure mode tended to be complex, and the failure degree was higher, with
more holes and cracks appearing. In addition, a higher moisture content led to more step
zone cracks.

This is mainly because, with the increase in moisture content, water weakens the
cementation of rock, resulting in a higher failure degree of tuff, and more holes and
crack zones appear at the fracture surface at the mesoscopic level. This also explains
the more serious macroscopic damage of tuff in the case of high moisture content at the
microscopic level.
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4. Conclusions

In this article, water absorption tests and uniaxial compression tests were carried out
on tuff specimens to study the influence of moisture content on their mechanical and failure
characteristics. The AE parameters obtained by the AE monitoring system were applied to
analyze the characteristics of crack propagation and failure types in the rock under different
moisture contents. The key findings obtained from this study are as follows:

(1) The moisture content increased with immersion time. At the initial stage of immersion,
the moisture content rose rapidly (0–24 h). After 24 h of immersion, the increasing
rate of moisture content dropped significantly. After 180 h of immersion, the moisture
content gradually stabilized and approached saturation in numerical terms.

(2) The uniaxial compressive strength and elastic modulus of the tuff specimens both
decreased with the increase in moisture content, reaching the lowest values when the
specimens were saturated. The uniaxial compressive strength decreased rapidly at
the initial stage of immersion, and the decrease rate slowed down as the moisture
content increased. The variation of elastic modulus also showed a similar trend. When
the moisture content increased, the stress–strain curves showed obvious post-peak
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segments, which proved that the increase in moisture content led to an improvement
in plasticity and toughness of the tuff. In addition, the Poisson’s ratio increased with
moisture content.

(3) Higher moisture content of the tuff specimens led to a longer “quiet period” experi-
enced during the initial loading stage. In addition, the increase in moisture content
also led to a decrease in the accumulated AE counts and energy. This proved that the
generation and expansion of tuff rock cracks were delayed by the softening effect of
water, and the number of internal crack events in the rock was relatively decreased.
Furthermore, the energy release generated by internal crack events of the tuff was
also reduced.

(4) When the moisture content of the rock was low (lower than 0.41%), the RA–AF values
were mainly distributed along the horizontal axis, indicating that the crack type was
dominated by shear crack, whereas, when the rock moisture content was high (higher
than 0.41%), the RA–AF values became distributed along the vertical axis, indicating
that the crack type was mainly tension crack. The failure morphology of the tuff
specimens also further verified that the dominant crack type changed from shear
crack to tensile crack with the increase in moisture content, while the disruption at
the microscopic level was also more intense.
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