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Abstract: Iron oxide-apatite (IOA) deposits are important sources of iron. The role of evaporite
layers in the formation of IOA ore deposits remains controversial. The Luohe deposit in eastern
China and the El Laco deposit in Chile are representative IOA deposits. In this study, the S isotope
characteristics of these two deposits are revisited. The formation of the Luohe ore deposit is closely
related to marine evaporite layers in the Middle Triassic Dongma’anshan Formation. At Luohe, most
of the sulfides and sulfates have high δ34SV-CDT values (concentrated from 6‰ to 10‰ and 16‰ to
20‰, respectively). The δ34SV-CDT values of sulfates are similar to those of marine evaporite layers
(28–30‰) in the Dongma’anshan Formation. Estimates show that 46–82% of sulfur in the Luohe
deposit is derived from marine evaporite layers. Unlike the Luohe deposit, the El Laco ore deposit
formed in close relation to terrestrial evaporite layers from the Cretaceous-Tertiary Salta Group. At El
Laco, the sulfides and sulfates have lower δ34SV-CDT values of −2.3‰ to −0.9‰ and 6.8‰ to 10.5‰,
respectively. The δ34SV-CDT values of sulfates from the El Laco deposit are similar to those of sulfates
from terrestrial evaporite layers (9.5‰) in the Salta Group. Estimates reveal that more than 70%
of sulfur comes from terrestrial evaporite layers. These results indicate that evaporite layers have
been involved in IOA ore-forming systems of both hydrothermal and magmatic deposits. Evaporite
layers are proposed to have played key roles in the ore-forming processes of the Luohe and the Laco
deposits and in other IOA deposits elsewhere.

Keywords: iron oxide-apatite deposit; evaporite layers; sulfur isotopes; Luohe deposit; El Laco deposit

1. Introduction

Iron oxide-apatite (IOA) deposits, also known as magnetite-apatite deposits or Kiruna-
type deposits, are an important type of porphyrite Fe deposits that occurred sporadically
over a considerable time span ranging from the Paleoproterozoic to the Pliocene; they are
mainly found at convergent boundaries, such as the Kiruna and Grängesberg districts in
Sweden, the Bafq and Zanjan districts in Iran, the Great Bear zone in Canada, the Adiron-
dack and Missouri districts in the United States, the High Andes and iron belt in Chile, and
the Ningwu and Luzong districts in eastern China [1–22]. IOA deposits are characterized by
massive and disseminated magnetite-apatite± actinolite ores with Na, Ca, and K alteration
and have a close spatial relationship with evaporite layers [2,4,18,23–29], which dominantly
comprise gypsum/anhydrite, halite, and carbonates [2,30–33]. However, whether the evap-
orite layers are involved and play an important role in the formation of IOA ore deposits
remains controversial. As the most important oxidation barrier, assimilation of evaporate
layers played a key role in the formation of IOA deposits [2,4,14,18,23,26,28,29], while other
researchers argue that evaporate layers are not needed to form IOA deposits [13].

The Luohe deposit in eastern China and the El Laco deposit in northern Chile are two
typical IOA deposits. The Luohe deposit has been described as a hydrothermal IOA deposit
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comprising massive, disseminated, and vein-type magnetite-apatite-diopside/actinolite
ores, with widespread anhydrite-diopside alteration [34–38]. At Luohe, marine evaporite
layers appear in the mining area and have a close spatial relationship with ore bodies [4,39].
The El Laco deposit is the youngest and best-preserved IOA deposit in the world and
contains typical magmatic Fe ores [40–43], with terrestrial evaporite layers occurring in
the region [44–46]. Sulfur isotopes are sensitive tracers of sulfur sources and ore-forming
processes [47–50]. In this study, the published sulfur isotope data of these two deposits
are reviewed and revisited. The proportions of sulfur from the evaporate layers in the
two deposits are calculated and discussed to reveal the involvement of evaporite layers
and provide new insights for understanding the formation of IOA deposits.

2. Deposit Geology
2.1. Luohe Deposit

The Luohe deposit is located in the western part of the Luzong ore district, which is
one of the major Fe ore districts in eastern China (Figure 1). The strata of the Luzong ore
district can be divided into three parts: (1) pre-Sinian metamorphic basement; (2) Sinian to
Early Triassic marine clastic and carbonate rocks; and (3) Middle-Late Triassic to Cretaceous
terrigenous clastic and volcanic rocks [36,51,52]. In the Early Cretaceous (135−127 Ma) [53],
intense volcanism developed, producing the Longmenyuan, Zhuanqiao, Shuangmiao, and
Fushan Formations. The IOA deposits are related to intrusions that occurred in the late
depositional interval of the volcanic Zhuanqiao Formation [35] at ca. 130 Ma [39,54–56].

At the Luohe deposit, lime dolomite, breccia limestone and anhydrite limestone of the
Middle Triassic Dongma’anshan Formation, trachyandensite and volcaniclastic rocks of the
Zhuanqiao Formation, and basaltic trachyandesite of the Shuangmiao Formation occur in
the mining area [13,34,57–59]. There are three types of ores. Anhydrite ores occur in the
upper part, while pyrite ores and magnetite ores occur in the middle and lower parts [34].
The Fe ore bodies are distributed in the volcanic rocks of the Zhuanqiao Formation, with
bedded and lenticular structures (Figure 2).

There are three vertical alteration/mineralization zones from top to bottom: (1) an up-
per, light-colored zone consists of silicate, kaolinite, chlorite-epidote, alunite, and anhydrate
alteration with pyrite mineralization with a thickness of 400 m; (2) a middle, dark-colored
zone consisting of diopside–garnet, chlorite–epidote, scapolite alteration, and Fe ores rep-
resents the main mineralization zone and has thicknesses of 300–500 m; and (3) a lower,
light-colored zone is characterized by strong alkaline alteration consisting of major albite or
K-feldspar alteration with retrograde alteration to sericite, carbonates, zeolites, and pyrite,
with thicknesses of 250–300 m [18]. The main ore types include vein, veinlet, massive
and disseminated types. Magnetite is one of the most important metallic minerals in the
deposit, with a prevalent assemblage of diopside–magnate–apatite, which can be divided
into disseminated and veined occurrences (Figure 3A). Pyrite ores are usually formed after
the crystallization of magnetite, mainly comprising anhydrite–pyrite, magnetite–pyrite and
anhydrite–pyroxene–pyrite assemblages (Figure 3B,C). Anhydrite is distributed widely,
occurring mainly in the middle and upper alteration zones, some of which form anhydrite
ore bodies (Figure 3D).

In addition, the Xiaobaozhuang skarn iron deposit has been found underneath the
Luohe deposit, near the contact zone between trachyandensite of the Zhuanqiao Formation
and evaporite layers of the Dongma’anshan Formation; this skarn deposit shows features
similar to those of the Luohe deposit (Figure 4).
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Chile on the slope of the Pliocene El Laco stratovolcano (5.3−1.6 Ma [62]), which consists 
of typical andesite flows (Figure 5) [63,64]. The El Laco deposit is underlain by thick 
sedimentary sequences, including limestones and sulfate evaporites of the Salta Group 
with a total thickness of 5000 m [31,44,64] and phosphatic siderite ironstones in the 
Paleozoic basement [43,65]. The Salta Group can be divided into three main units from 
base to top: (1) the Middle Cretaceous Pirgua Subgroup [66], which is composed of red 
beds; (2) the Maastrichtian to early Paleocene Balbuena Subgroup, which is composed of 
white sandstones (Lecho Formation), gray limestones with some layers of anhydrite and 

Figure 3. Photographs of Fe ore textures in the Luohe deposit. (A) Breccia apatite–magnetite–actinolite
ore, with coarse-grained purple gypsum and sporadic apatite and actinolite. (B) Disseminated pyrite in
magnetite ore with anhydrite. (C) Iron ore with anhydrite and pyrite replacements. (D) Anhydrite ore.
Abbreviations: Anh = anhydrite; Mt = magnetite; Py = pyrite; Ap = apatite; Act = actinolite.
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Figure 4. Geological section of the No. 3 prospecting line in the Luohe-Xiaobaozhuang system
(after [37,61]).

2.2. El Laco Deposit

The El Laco IOA deposit is located on the Pune Plateau of the Andes in northern
Chile on the slope of the Pliocene El Laco stratovolcano (5.3−1.6 Ma [62]), which consists
of typical andesite flows (Figure 5) [63,64]. The El Laco deposit is underlain by thick
sedimentary sequences, including limestones and sulfate evaporites of the Salta Group with
a total thickness of 5000 m [31,44,64] and phosphatic siderite ironstones in the Paleozoic
basement [43,65]. The Salta Group can be divided into three main units from base to
top: (1) the Middle Cretaceous Pirgua Subgroup [66], which is composed of red beds;
(2) the Maastrichtian to early Paleocene Balbuena Subgroup, which is composed of white
sandstones (Lecho Formation), gray limestones with some layers of anhydrite and gypsum
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(Yacoraite Formation) and dark pelites (Olmedo/Tunal Formations); and (3) the Paleogene
Santa Barbara Subgroup, which is dominated by red fine-grained sandstone and siltstone
and green mudstone. Several sulfate-rich units of the Yacoraite Formation are exposed to
the east and west of the complex and likely extend laterally beneath El Laco [44,46]. The
IOA deposits are closely related to the Yacoraite Formation, which formed in a carbonate
shallow sea to hypersaline lake environment and is mainly composed of limestone and
sandstone [31,64].
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The magmatic rocks in the El Laco deposit are mainly composed of andesite, ignimbrite,
pyroclastic andesite, dacite, and rhyolite and covered by Quaternary fluvial sediments in
Quaternary (Figure 5B) [62,67]. The ore bodies crop out around the El Laco volcanic plug.
Most mineralization occurs as strata-bound ore bodies interbedded with andesite flows
or subvertical veins [63,64], forming the two large Laco Norte and Laco Sur ore bodies,
with four other smaller ore bodies (Cristales Grandes, Rodados Negros, San Vicente Alto,
and San Vicente Bajo). The ore bodies show prominent volcanic features, including flow
banding, pipe vesicles, pahoehoe texture, and columnar jointing (Figure 6A,B) [63,64,68,69].

The alteration can be divided into three vertical zones from bottom to top: (1) an
earlier, deep zone of Na-Ca alteration; (2) a dominant K-Ca alteration assemblage with
diopside, magnetite, scapolite, pyroxene, garnet, apatite and anhydrate and small amounts
of pyrite and chalcopyrite mineralization; and (3) a later, shallow zone of acid-sulfate
alteration, characterized by abundant gypsum, montmorillonite, kaolinite, alunite, quartz
and hematite, together with deposition of sulfides (Figure 6C) [64]. Vast quantities of
anhydrite and gypsum occur as stockwork veins, mounds, and sulfate-rich zones in the
shallow zone of acid-sulfate alteration (Figure 6D) [64].

A brief comparison of geological characteristics between the Luohe IOA deposit in
eastern China and the El Laco IOA deposit in Chile is shown in Table 1.
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Table 1. A brief comparison of geological characteristics from Luohe and El Laco IOA deposits.

Geological Characteristics
Deposits

Luohe El Laco

Host rock Trachyandesite and diorite
porphyrite Andesite and rhyolite

Evaporite layers
Marine evaporite layers of

the Dongma’anshan
Formation

Terrestrial evaporite layers
of the Salta Group

Ore-controlling structure Rock fissures and fractures
near contact zone Diatreme

Ore body Nearly bedded and
lenticular shapes

Stratified upper part and
lower part with vertical

veins and domes

Ore structures
Veined, net-veined,

disseminated, breccia and
massive structures

Massive, vesicular, lava
flows, skeleton and
columnar structures

Essential minerals
Mag, (Hem), Py, Ccp, Ab,
Kfs, Di, Grt, Ap, Wo, Anh,

Chl, Cal, Qz

Mag, (Hem), Di, Scp, Ap,
Kfs, Anh, Act

Alteration

Deep dark zone with skarn
and anhydrite pyroxene

alteration and shallow light
zone with silicate and

kaolinite alteration

Seep alkali-calcic alteration
and shallow acid-sulfate

alteration

Main metallogenic age 131.0–129.1 Ma (5.3 ± 1.9)–(1.6 ± 0.5) Ma
(host volcanic rock)

Fluid temperature and salinity in early
mineralization

>830 ◦C,
~90% NaCl eq

>900 ◦C
(Magnetite–diopside oxygen

isotope temperature);
40%–60% NaCl eq

References [4,58] [42,64,70,71]
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consisting of gypsum with minor cristobalite and alunite, at Pasos Blancos (after [64,68]).

3. Discussion
3.1. Sulfur Source

Sulfur isotopes can provide important constraints on the origin of sulfur in ore de-
posits [47,50,72]. Sulfide (pyrite) and sulfates (gypsum/anhydrite), with unique diopside–
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gypsum–magnetite (gypsum–pyroxene) and garnet–gypsum–magnetite assemblages, are
developed in the Luohe and El Laco IOA deposits [2,4,18,38,64,73]. The relative 34S enrich-
ment in sulfates is much larger than that in sulfides [72]. If the sulfur in deposits is mainly
derived from magma, the δ34SV-CDT value of the total sulfur is approximately 0. Based on
mass balance calculations, the δ34SV-CDT values of sulfides should be significantly negative
in the presence of widespread sulfates and magnetite (or hematite) [74]. On the other hand,
if the sulfur comes mainly from evaporite layers, the δ34SV-CDT values of sulfides should be
higher in the high-temperature mineralization system.

3.1.1. Luohe Deposit

The sulfur isotope compositions of pyrite and gypsum at Luohe are shown in
Table 2 [18,38,61,73,75]. The results yield a range of δ34SV-CDT values from −14.0‰ to
11.1‰ (n = 174, average of 4.2) for pyrite and 13.6‰ to 24.4‰ (n = 126, average of 18.1)
for anhydrite. The pyrite and anhydrite δ34SV-CDT values are concentrated at 6‰ to 10‰
and 16‰ to 20‰, respectively (Figure 7). The sulfur isotope compositions of the Luohe
deposit and evaporite layers show the following trends. (1) The pyrite δ34SV-CDT values
are markedly positive, higher than that of mantle-derived magma and lower than that of
anhydrite in the ore body. (2) All anhydrite in the ore body is significantly enriched in
34S relative to pyrite, and the δ34S V-CDT values are similar to those of anhydrite from the
evaporite layers (n = 3, average of 29.7‰) in the Dongma’anshan Formation near the ore
district [18]. Therefore, sulfur in the Luohe IOA deposit is probably sourced from a mixture
of primitive magma and evaporite layers.

Table 2. Sulfur isotope compositions of pyrite and gypsum in the Luohe and El Laco IOA deposits
and gypsum from evaporite layers near the deposits.

Deposits/
Evaporite Layers

δ34SV-CDT (‰) of Pyrite δ34SV-CDT (‰) of Gypsum
∆34SSO4-S2-

(‰) ReferencesVariation
Range Average Variation

Range Average

Luohe deposit −14.0–11.1 4.2 (174) 13.6–24.4 18.1 (126) 13.9 [61,73,75];
this study

Xiaobaozhuang deposit 6.9–14.2 10.8 (17) 16.4–32.2 23.3 (17) 12.5 [38]
El Laco deposit −2.3–0.9 −1.8 (4) 6.8–10.5 8.45 (8) 10.25 [64,76]

Dongma’anshan
Formation

evaporite
layers 29.4–29.9 29.7 (3) [18]

Salta Group evaporite
layers 4.9–14.1 9.5 (12) [76]

The δ34SV-CDT values of pyrite in the Luohe IOA deposits vary widely. The δ34SV-CDT
values of pyrite in the magnetite mineralization stage are higher than those of pyrite
in the sulfide stage [77]. The δ34SV-CDT values of pyrite in the Luohe deposit gradually
decrease from deep to shallow levels, but the δ34SV-CDT values of anhydrite are relatively
stable (Figure 8) [34,77]. These results indicate that sulfate plays a dominant role in this
sulfur-containing magmatic–hydrothermal ore-forming system and governs the stable
δ34SV-CDT values of sulfates, while the changes in sulfur isotopes in pyrite are mainly
controlled by the sulfide-sulfate mineral equilibrium temperature [32,61,77]. Based on the
calculated isotopic fractionation factors between sulfide and sulfate (Table 2), the sulfide-
sulfate equilibrium temperatures are approximately 720–770 ◦C and 750–810 ◦C in the
Luohe and Xiaobaozhuang deposits, respectively [74]. The mineralization temperature
gradually decreases from deep to shallow levels, leading to decreases in the δ34SV-CDT
values of sulfides. The evaporite layers with high δ34SV-CDT values are the main sulfur
source endmember for the deposit.
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The origin of sulfur can be discussed on the basis of the isotopic composition of
total sulfur. In the region of high f O2 where sulfate species are significant, δ34Ssulfate ≈
δ34S∑S [72,74]. Therefore, the sulfur isotope value of sulfate represents the sulfur isotope
characteristic of total sulfur in the ore-forming fluid [61,77]. Assuming the δ34SV-CDT value
of the original magmatic sulfur to be 0‰ and the δ34SV-CDT value of the evaporite lay-
ers to be 29.7‰ [18], according to the δ34SV-CDT values of sulfates in the Luohe deposit
(from 13.6‰ to 24.4‰) [61,73,75] and binary mixing calculations (Equation (1)), an esti-
mated 46%–82% of the sulfur in the Luohe deposit comes from the evaporite layers in the
Dongma’anshan Formation.

δ34S∑S = δ34Smagma × X1 + δ34Sevaporite layers × (1 − X1) (1)

X1, 1−X1 are proportions of sulfur from the magma and evaporate layers, respectively.
The Xiaobaozhuang deposit is located underneath the Luohe deposit. Note that

pyrite and anhydrite from the deeper deposit have higher δ34SV-CDT values than those
from the Luohe deposit. The δ34SV-CDT values of pyrite decrease vertically from bottom to
top, ranging from 6.9‰ to 14.2‰, and δ34SV-CDT values of anhydrite are relatively stable
at approximately 20‰ (Figure 8) [38,73], indicating that the mineralization temperature
gradually decreases from deep to shallow levels and that the sulfur in the Xiaobaozhuang
deposit also comes mainly from evaporite layers in the Dongma’anshan Formation.

3.1.2. El Laco Deposit

As shown in Table 2 and Figure 9, most of the δ34SV-CDT values of pyrite in the El
Laco deposit are near zero, ranging from −2.3‰ to −0.9‰ (n = 4) [64]. However, the
average δ34SV-CDT value of anhydrite is 8.45‰, with a narrow range from 6.8‰ to 10.5‰
(n = 8) [64], which is similar to that of sulfates from the evaporite layers in the Salta Group
(average of 9.5‰, n = 12) [64,76]. Therefore, a possible source of sulfur for the 34S-enriched
anhydrite would be the evaporite layers in the Salta Group.

The El Laco deposit has widespread gypsum and includes some assemblages accom-
panied by large amounts of anhydrite and minor pyrite or chalcopyrite, indicating that
sulfates also play a dominant role in the sulfide-sulfate system and that the sulfur isotope
values of sulfates (from 6.8‰ to 10.5‰) represent the sulfur isotope characteristics of total
sulfur in the ore-forming fluid [72,74]. According to the sulfate δ34SV-CDT values in the El
Laco deposit and binary mixing calculations (Equation (1)), more than 70% of the sulfur
is estimated to originate from the evaporite layers of the Salta Group by assuming the
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δ34SV-CDT value of primitive magmatic sulfur to be 0‰ and the δ34SV-CDT value of sulfates
in evaporite layers from the Salta Group to be 9.5‰.

According to the equilibrium equation and the relative sulfur isotope enrichment
factor between sulfate and sulfide (Table 2) [74], the calculated sulfate-sulfide equilibrium
temperature is almost 820–900 ◦C. These results indicate that S2− and SO4

2− could have
formed at high temperatures when magmas assimilated and mixed with evaporite layers
during magmatic ascent. Meanwhile, the El Laco deposit could likely be a magmatic–
hydrothermal system in which the involvement of evaporite layers played a key role.
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In summary, the sulfur isotope composition of total sulfur in the ore-forming fluid
within the magmatic–hydrothermal system depends on the sulfur source, and is strongly
controlled by physicochemical conditions, including temperature, fO2 and pH [2,32,47,72,77].
As mentioned above, the calculated proportion of sulfur from the evaporite layers shows
that these layers are involved in the ore-forming process at both the Luohe and El Laco
IOA deposits. The difference is that the sulfur in the Luohe deposit is mainly sourced
from marine evaporite layers, while the sulfur in the El Laco deposit mostly originates
from terrestrial evaporite layers. The δ34SV-CDT values of sulfates from terrestrial evaporite
layers are lower than those of marine evaporite layers, resulting in lower δ34SV-CDT values
of sulfate and sulfide minerals in the El Laco IOA deposits. It is reasonable to conclude
that sulfur is derived only from magma when δ34SV-CDT values of total sulfur are near
zero in the mineralization system. However, δ34SV-CDT values of sulfides do not represent
the sulfur isotope composition of total sulfur in the presence of widespread sulfates and
Fe-oxides. Under the conditions of large-scale sulfates and Fe-oxides, if magmatic sulfur
is the signal sulfur source in the deposits, δ34S∑S ≈ 0 and δ34SV-CDT values of sulfides
will be significantly negative rather than 0. On the other hand, if δ34SV-CDT values of
sulfides are near zero, δ34SV-CDT values of total sulfur will be markedly positive. Therefore,
the sulfur source in the deposit cannot be determined simply based on the δ34SV-CDT
values of sulfides. The physicochemical conditions and the geological and geochemical
characteristics, especially whether sulfates and iron oxides exist on a large scale, need to be
considered when applying the sulfur isotopes in tracing ore-forming material sources of
IOA deposits.

3.2. The Participation of Evaporite Layers in the Process of Mineralization

As mentioned above, the evaporite layers are significantly involved in ore formation at
both the Luohe and El Laco IOA deposits. Questioning when involvement occurs is logical.

Li et al. (2015) [4] found fluid inclusions in garnet that formed at the stage before the
main mineralization and contain various daughter crystals such as anhydrite and halite;
these observations are quite consistent with the widespread albite and scapolite alteration
in the early mineralization within the Luohe deposit. The same authors also found that the
initial fluids are high-temperature (~780 ◦C and hypersaline (~90 wt.% NaCl eq) fluids with
high oxygen fugacity. Fluid and melt inclusions, especially the earliest and most primitive
melt inclusions, are valuable features that record the origin and evolution of ore-forming
fluids [78]. The compositions of fluid and melt inclusions imply that fluids evolved from
magmas and assimilated substantial amounts of evaporite layers during magmatic ascent
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and that the involvement of evaporite layers might have started in the initial stages of
Fe mineralization.

The involvement of evaporite layers in the mineralization system from the initial ore-
formation stage is also supported by the carbonate-sulfate Fe-rich fluid and melt inclusions
reported in the El Laco deposit in Chile; the Buena Vista and Iron Springs deposits in the
United States; and the Meishan, Nihe and Luohe IOA deposits in eastern China [4,29,79].
Moreover, igneous rocks associated with El Laco IOA systems show direct evidence of the
assimilation of evaporite layers in the form of sedimentary xenoliths from the Yacoraite
Formation [44].

The addition of evaporite layers (rich in Na+, K+, Ca2+, Cl−, CO3
2−, SO4

2−

and H2O) into an Fe-bearing magma is considered to be a key factor in IOA ore
formation [3,4,14,17,18,26,32]. Evaporite layers are important oxidation barriers that can
oxidize Fe2+ in the silicate melt to Fe3+ and prevent Fe from entering the lattice of Fe-rich
silicate minerals such as pyroxene and amphibole, forming Fe-poor diopside and tremo-
lite, while Fe oxides enter the melt (as shown in Equations (2) and (3)). This is proven
by the large-scale anhydrite–diopside and actinolite/tremolite alteration in the Ningwu
and Luzong districts and the extensive development of diopside alteration and anhydrite
alteration and iron ore magma in the El Laco deposits in Chile [4,42].

FeMgSi2O6 + CaSO4 → CaMgSi2O6 + Fe3O4 + FeS2 (2)

Ca2(Mg, Fe)5[Si4O11](OH)2 + CaSO4 → Ca2Mg5[Si4O11] (OH)2+ Fe3O4 + FeS2 (3)

On the other hand, evaporite layers could provide P, NaCl and volatiles, which
would promote the occurrence of liquid immiscibility in magma, forming an Fe oxide-
P-volatile-rich melt and a Si-rich melt [80–83]. These enrichment mechanisms of Fe for
IOA deposits have been proven by many natural phenomena and laboratory simulation
experiments [6,11,42,43,84–86]. Moreover, the addition of oxygen agents increases the
oxygen fugacity of the magmatic system, leading to the formation of numerous Fe oxides
above the solidification temperature of silicate liquids, which has been proven by previous
experiments [87,88]. Furthermore, Fe-volatile-rich melt evolves to an iron ore magma and
a high-temperature, high-salinity, iron-rich magmatic–hydrothermal fluid. During the
magmatic–hydrothermal process, hydrothermal fluid can activate the evaporate layers and
transfer materials to the upper part, leading to reprecipitation of gypsum/anhydrite [2,18].

In the hydrothermal stage, with the continuous pulsed addition of SO4
2−, NaCl and

H2O from evaporite layers, Fe2+ is oxidized to promote hydrothermal Fe-oxide precipi-
tation, SO4

2− itself is reduced to S2−, and S2− combines with Fe2+ to form hydrothermal
Fe-sulfide ores (Equation (4)). Evaporite layers can provide large numbers of agents such
as Na+ and Cl− and cause Fe2+ transport as complexes (e.g., Na-Fe-Cl), probably forming
hydrothermal-type ores in the distal zone from the evaporite layers [32].

Fe2 + + SO4
2− → Fe3O4 + FeS2 (4)

The coexistence of Fe oxides, Fe sulfides and sulfate in different stages of one IOA
deposit is often observed in the field. The close genetic relation of these ores is shown
in Equations (2)–(4). In IOA deposits, magma-type and hydrothermal-type ore bodies
coexist, showing a close vertical relationship in space where magma-type and skarn-like
ores occur in the deep contact zone between intrusive rocks and evaporite layers. IOA-type
and hydrothermal–metasomatic-type ores are located in the shallow part in intrusive rock-
related mineralization [2,32]. This is consistent with the Luohe IOA ores hosted in the upper
part in intrusions and Xiaobaozhuang skarn Fe ores in the deeper part of the contact zone
between intrusions and evaporites in this study. Therefore, Fe-oxide ores, Fe-sulfide ores
and sulfate ores have a close spatial relationship and are potential prospecting indicators
for each other in IOA deposits controlled by evaporite layers.
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4. Conclusions

Evaporite layers were involved in the ore-forming process at both the Luohe and El
Laco IOA deposits in the early mineralization stage. As the most important oxidation
barrier, evaporite layers are a critical factor in the formation of an IOA ore deposit. The
difference is that the sulfur in the Luohe deposit is derived mainly from marine evaporite
layers, while the sulfur in the El Laco deposit mostly originates from terrestrial evaporite
layers, resulting in higher δ34SV-CDT values of sulfate/sulfide in the Luohe deposit but
lower δ34SV-CDT values in the El Laco deposit. It is unreasonable to conclude that sulfur is
sourced only from magma based on the δ34SV-CDT values (~0‰) of sulfides (e.g., El Laco
deposit) and to ignore the involvement of evaporite layers. This study highlights that
evaporite layers are involved in the ore-forming process of IOA deposits related to both
marine and terrestrial evaporite layers. This implies that IOA ores and Fe-sulfide ores have
an intrinsic genetic relationship and belong to the same Fe mineralization system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12081043/s1, Table S1: Sulfur isotope values of pyrite and
sulfate from the Luohe and El Laco IOA deposits, and anhydrite from the Dongma’anshan Formation
and Salta Group.
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