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Abstract: The Dongpuzi deposit is an epithermal gold deposit located in the southern margin of
the Shaozihe volcanic fault basin in the Liaodong Peninsula. On the basis of fluid inclusion and
C–H–O–S–Pb isotope data, a metallogenic model is established for the Dongpuzi deposit. The
mineralization at the Dongpuzi deposit has experienced quartz–pyrite (I), quartz–sulfide (II), and
quartz–calcite (III) stages. The quartz from ore stage II has liquid-dominated aqueous inclusions,
which have homogenization temperatures ranging from 113 to 162 ◦C and salinities varying from
3.2 to 9.6 wt% NaCl equiv. The quartz from the quartz–calcite stage has decreasing homogenization
temperatures (106~143 ◦C) and salinities (2.7~6.9 wt% NaCl equiv.). The fluid inclusion data indicate
that the gold ores were precipitated from low-temperature and low-salinity solutions, with an obvious
decrease in temperature and salinity from ore stages II to III. The calculated δ18Owater values for the
quartz of ore stage II range from −14.71‰ to −13.31‰, and the corresponding δDwater values range
from −103.3‰ to −96.1‰, indicating that the ore-forming fluids could be of a meteoric origin. The
calcite from ore stage III has δ13CV-PDB values of −4.5‰ to −4.2‰ and δ18OV-SMOW values of +7.0‰
to +7.4‰, indicating a mantle source for the carbon. The pyrite yielded δ34S values of +4.1‰ to
+6.6‰ and Pb isotopes consistent with those of the host trachyte porphyry and volcanic rocks of the
Xiaoling Formation, which suggests that the S and Pb in gold ores were dominantly derived from
the host trachyte porphyry and volcanic rocks of the Xiaoling Formation, with some combination of
Paleoproterozoic metamorphic rocks of the Gaixian Formation. These results, together with the ore
geology, indicate that the Dongpuzi deposit is a typical low-sulfidation epithermal gold deposit with
important ore-forming materials input from the host trachyte porphyry, volcanic rocks of the Xiaoling
Formation, and Paleoproterozoic metamorphic rocks of the Gaixian Formation. The Dongpuzi deposit
was formed under an extensional setting related to the Early Cretaceous lithospheric extension and
thinning of the eastern North China Craton.

Keywords: Dongpuzi gold deposit; C–H–O–S–Pb isotopes; fluid inclusions; low-sulfidation epithermal
deposit; Liaodong Peninsula

1. Introduction

The Liaodong Peninsula in the eastern North China Craton (NCC) is an important
gold province in China that hosts numerous medium- and large-scale gold deposits, such
as the Wulong, Baiyun, Sidaogou, Maoling, Wangjiaweizi, and Xiaotongjiapuzi deposits,
contributing a total gold reserve of >220 t [1]. The gold deposits are mostly hosted within
the Paleoproterozoic metamorphic rocks of the Liaohe Group, structurally controlled by
fault zones and associated with Mesozoic granitic intrusions [2–4]. The gold deposits have
been broadly classified into the quartz vein type, represented by the large-scale Wulong

Minerals 2022, 12, 1008. https://doi.org/10.3390/min12081008 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12081008
https://doi.org/10.3390/min12081008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-8101-9026
https://doi.org/10.3390/min12081008
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12081008?type=check_update&version=1


Minerals 2022, 12, 1008 2 of 17

deposit, and the fracture-controlled disseminated type, represented by the large-scale
Sidaogou deposit [2]. However, except for the Mesozoic intrusive magmatic-hydrothermal
gold deposits, the volcanic-hosted epithermal gold ore system is poorly mentioned in the
Liaodong Peninsula.

The Dongpuzi gold deposit is a gold vein deposit occurring within the Shaozi River vol-
canic fault basin in the Xiuyan area, the northern part of the Liaodong Peninsula. Chen [5]
first described the geology and ore-forming conditions of this deposit and proposed that it
belongs to an epithermal gold deposit related to the host trachyte porphyry. Zhang et al. [6]
recognized the mineralizing fluids with low temperatures (90~240 ◦C) and low salinities
(0.35~6.17 wt% NaCl equiv.) and proposed a mixed magmatic and meteoric origin based
on the limited fluid inclusion studies and H–O–S isotope data. Jiang [7] proposed that
the basement rocks of the Liaohe Group may provide some ore-forming components for
the Dongpuzi gold mineralization. However, the previous research lacked detailed inves-
tigations on petrography, mineralogy, and paragenesis, and the conclusions were based
on limited microthermometric and isotopic data. Thus, the characteristics and origins of
ore-forming fluids, sources of ore-forming materials, and genetic relationships between the
Dongpuzi gold mineralization and Early Cretaceous volcanic rocks remain poorly known.

Based on field observation and ore geology, this paper carries out systematic fluid
inclusion studies and presents new C–H–O–S–Pb isotopes for the Dongpuzi gold deposit.
These new data provide further constraints on the characteristics and sources of the ore-
forming fluids and materials, which allows a better understanding of the ore genesis of
the Dongpuzi gold deposit. Finally, a tectonic–metallogenic model is established for the
Dongpuzi gold mineralization.

2. Geological Background
2.1. Regional Geology

The Huanghuadianzi–Dayingzi–Shaozi River region is located in the eastern part
of the NCC, on the western margin of the Paleo-Pacific Plate (Figure 1a). The rocks
exposed in the area mainly comprise Paleoproterozoic metamorphic rocks of the Liaohe
Group and granitic and mafic intrusions, and a series of Mesozoic intrusive and volcanic
rocks, as well as minor Late Triassic epimetamorphic rocks of the Cuocaogou Formation
(Figure 1b). The Paleoproterozoic Liaohe Group includes the Lieryu, Gaojiayu, Dashiqiao,
and Gaixian formations in the area, which have been metamorphosed to the greenschist to
lower amphibolite facies and locally to the granulite facies [8]. The Lieryu and Gaojiayu
formations are composed dominantly of fine-grained felsic gneiss, amphibolite, and mica–
quartz schist. The Dashiqiao Formation consists of dolomitic marble intercalated with minor
carbonaceous slate and mica schist [9]. The uppermost Gaixian Formation mainly comprises
andalusite–cordierite–mica schist, phyllite, sillimanite–mica schist, and staurolite–mica
schist, with minor marble and quartzite. The Paleoproterozoic Liaoji granitoids are widely
developed in the area and mainly include deformed monzogranitic gneiss, undeformed
porphyritic monzogranite, granite, and alkaline syenite [10].
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Since the Late Triassic period, the area has experienced intensive tectonic and mag-
matic activities as an important part of the Circum-Pacific tectono-magmatic zone [12].
The Late Triassic Cuocaogou Formation occurs as erosion residue overlying the Paleopro-
terozoic metamorphosed sedimentary and volcanic successions of the Liaohe Group and
includes carbonaceous slate and phyllite. Intrusive rocks in the area are dominantly Late
Triassic diorite and monzogranite, Late Jurassic biotite monzogranite, and Early Cretaceous
porphyritic monzogranite and diorite [11,12] (Figure 1b). The tectonic structure in the area
is mainly dominated by the Huanghuadianzi–Dayingzi–Shaozi River extensional structure,
which is composed of three major units: the extensional fault basins (Huanghuadianzi,
Dayingzi, and Shaozi Rivers) in the hanging wall, detachment fault, and Early Cretaceous
granitic plutons in the lower plate [9,13]. The extensional fault basins are mainly filled with
the volcanic sedimentary rocks of the Early Cretaceous Xiaoling Formation, which include
basalt, andesitic basalt, andesite, rhyolite, conglomerate, tuffceous sandstone, and tuff.

The detachment fault extends from the Huanghuadianzi in the north, through the
Dayingzi, to Shaozi River in the south, with a length of about 70 km. The fault always dips
SW at 24◦ and develops a series of brittle high-angle normal faults and ductile shear zones
in the Mesozoic granitic plutons [11,13] (Figure 1b).

2.2. Geology of the Dongpuzi Orefield

The Dongpuzi gold deposit is located in the southernmost part of the Huanghuadianzi–
Dayingzi–Shaozi River extensional structure, in the south margin of the Shaozi River
volcanic fault basin (Figure 1b). Strata in the Dongpuzi gold field consist mostly of the
Gaixian Formation of the Paleoproterozoic Liaohe Group and Early Cretaceous Xiaoling
Formation (Figure 2). The Gaixian Formation is mainly composed of biotite schist, two-mica
schist, and sillimanite biotite schist [5]. The Xiaoling Formation comprises limestone, coarse
sandstone, and tuff. The Cenozoic stratigraphy is dominated by alluvial deposits.

The tectonic structures of the Dongpuzi orefield include a series of NE–SW- to NNE–
SSW-trending faults and minor NW–SE- to NNW–SSE-trending faults (Figure 2). The
NE–SW- to NNE–SSW-trending faults always dip NW at 50–70◦ and are characterized
by multi-periodic activities. The faults control the emplacement of ore-hosting trachyte
porphyry and post-ore andesitic porphyry and lead to the formation of several joints and
fractures. The joints and fractures are marked by intensive mineralization and alteration
and control the formation of the Dongpuzi gold-bearing quartz veins. The NW–SE- to
NNW–SSE-trending faults cut the mineralized alteration zones and gold orebodies.

The intrusive rocks are mainly Early Cretaceous trachyte porphyry and andesitic
porphyry, which are distributed in the middle part of the Dongpuzi orefield. The trachyte
porphyry was emplaced along the NE–SW- to NNE–SSW-trending faults and hosted the
mineralized alteration zones and gold orebodies. The andesitic porphyry intruded into the
Gaixian Formation and trachyte porphyry, as well as the gold orebodies (Figures 2 and 3).
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Figure 3. Geological cross section of the No.0 exploration line in the Dongpuzi gold deposit (modified
after [14]; the location of the No.0 exploration line is referred as A-A’ in Figure 2).

3. Ore Deposit Geology

The Dongpuzi gold deposit consists of 13 mineralized alteration zones (No. I, I-1, II, III,
V, V-1, VI, VI-1, VIII, IX, X, etc.; Figure 2), which contain 30 gold orebodies, with an average
grade of 5 gt−1 [14]. The gold orebodies are hosted within the Early Cretaceous trachyte
porphyry (Figures 2 and 3) and structurally controlled by NE–SW- to NNE–SSW-trending
faults and fracture zones. Gold mineralization occurs mainly as pyrite–sericite–quartz-
altered rocks and auriferous quartz–pyrite veins and veinlets. The major orebodies are No.
V and No. VI, which account for more than 77% of the total metal reserves of the Dongpuzi
deposit (Figure 3) [14].

The ore mineral assemblage is mainly pyrite, with minor chalcopyrite, sphalerite,
tetrahedrite, native gold, and electrum (Figure 4). The nonmetallic minerals observed in
the ores include quartz, sericite, calcite, kaolin, and chlorite (Figure 4). Native gold and
electrum generally occur as grains in inclusions or along fractures within pyrite and quartz
grains (Figure 4i). The ore minerals are characterized by subhedral to anhedral granular
(Figure 4d,e), metasomatic (Figure 4e,f), poikilitic, and cataclastic textures. They occur
either in veins (Figure 4a), veinlets, or stockworks (Figure 4b) or have veinlet-disseminated,
disseminated, or miarolitic structures (Figure 4b).
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Figure 4. Photographs and microphotographs of the Dongpuzi gold ores. (a): The quartz–pyrite-
vein-type ore. (b): The gold ores characterized by a miarolitic structure. (c): The quartz–calcite
vein cut through the altered trachyte porphyry. (d,e): The subhedral pyrite was metasomatized
by later chalcopyrite and sphalerite. (f): The sphalerite was metasomatized by later chalcopyrite.
(g,h): The anhedral pyrite within the quartz veinlet. (i): The gold mineral within the quartz veins.
Abbreviations: Ccp = chalcopyrite, Py = pyrite, Qz = quartz, and Sp = sphalerite.

The wall-rocks record various types of alterations, which include sericitization, silicifi-
cation, carbonatization, kaolinization, and chloritization. Silicification usually manifests
as quartz veins, veinlets, or stockwork. Carbonatization mainly occurs as quartz–calcite
veins and locally cut the early-stage gold-bearing quartz veins. In addition, the wall-rock
alteration displays clear spatial zonation, which can be classified into three zones from the
gold orebody to wall-rocks: an inner silicification–pyritization–sericitization zone, a middle
silicification–sericitization–kaolinization zone, and an external silicification–chloritization
zone [15].

On the basis of the paragenetic assemblages and crosscutting relationships, gold
mineralization in the Dongpuzi deposit can be divided into three hydrothermal stages: the
quartz–pyrite stage (I), the quartz–sulfide stage (II), and the quartz–calcite stage (III). The
quartz–pyrite stage forms large amounts of quartz and sericite and minor subhedral pyrite,
with little or no gold (Figure 4a). The quartz–sulfide stage represents the main metallogenic
stage of gold, which is characterized by quartz, pyrite, chalcopyrite, sphalerite, and minor
native gold and electrum (Figure 4b,d–f,i). The quartz is always smoky gray and occurs
as quartz veins, veinlets, or stockworks within the trachyte porphyry (Figure 4b,g,h). The
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eubhedral–subhedral pyrite grains are locally metasomatized by later chalcopyrite and
sphalerite (Figure 4d,e). The quartz–calcite stage is characterized by quartz and calcite
occurring as veins that crosscut the earlier quartz–sulfide veins (Figure 4c).

4. Sampling and Analytical Methods

The samples analyzed for fluid inclusion studies and C–H–O–S–Pb isotopes herein
were collected from the No.V gold orebody derived from the underground mine. The fresh
trachyte porphyry samples were collected in the mine dump for analysis of the Pb isotope.
Descriptions of the samples are presented in Table 1.

Table 1. Sample characteristics of the Dongpuzi gold deposit.

Sample Number Mineral/Sample Mineralization
Stage Sample Location and Characteristics Analysis

21dpl-1 Quartz Quartz–sulfide Quartz from intensely silicified trachyte
porphyry

Fluid inclusion
21dpl-2 Quartz Quartz–sulfide Quartz veins within the trachyte

porphyry, where sericitization and
silicification occur21dpl-3 Quartz Quartz–sulfide

21dpl-5 Quartz Quartz–calcite
Quartz–calcite veins cutting the trachyte

porphyry, where sericitization and
silicification occur

21DP-1 Quartz Quartz–calcite
Quartz–calcite vein cutting the trachyte

porphyry, where sericitization and
silicification occur

H–O isotopes21DP-2 Quartz Quartz–sulfide Quartz from intensely silicified trachyte
porphyry

21DP-3 Quartz Quartz–sulfide Quartz veins within the trachyte
porphyry, where sericitization and

silicification occur
21DP-4 Quartz Quartz–sulfide
21DP-5 Quartz Quartz–sulfide

21DP-6 Calcite Quartz–calcite Quartz–calcite vein cutting the trachyte
porphyry, where sericitization and

silicification occur
C–O isotopes21DP-7 Calcite Quartz–calcite

21DP-8 Calcite Quartz–calcite

DP-2 Pyrite Quartz–sulfide
Pyrite within intensely silicified trachyte

porphyry S–Pb isotopes
DP-3 Pyrite Quartz–sulfide
DP-4 Pyrite Quartz–sulfide

21DP-9 Pyrite Quartz–sulfide
21DP-10 Pyrite Quartz–sulfide Pyrite within the quartz veins

DPX-1 Trachyte porphyry -

Trachyte porphyry with little or no
alteration and mineralization

Pb isotope
DPX-2 Trachyte porphyry -
DPX-3 Trachyte porphyry -
DPX-4 Trachyte porphyry -
DPX-5 Trachyte porphyry -

Note: “-” in the list of “Mineralization stage” refers to no correspondence between the trachyte porphyry and the
mineralization stage.

4.1. Fluid Inclusion Petrography and Microthermometry

Quartz from intensely silicified trachyte porphyry (21dpl-1), quartz veins (21dpl-2, 3)
in the gold ores from the main metallogenic stage (II), and quartz from quartz–calcite veins
(21dpl-5) from the late ore stage (III) were chosen for fluid inclusion studies to determine
the characteristics of the ore-forming fluids of ore stages II and III.

The petrographic observation and microthermometry of fluid inclusions were per-
formed at the Analytical Laboratory of the Beijing Research Institute of Uranium Geology,
Beijing, China. Microthermometric measurements were conducted on a LINKAM THMS-
600 type heating–freezing stage, which has a temperature measurement range of −196 ◦C to
+600 ◦C. During the heating and freezing process, the temperature control rate was less than
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5 ◦C/min, and the rate decreased to less than 1 ◦C/min when the phase transformation
was about to occur.

4.2. Isotope Analysis

Quartz grains from quartz veins (21DP-1; ore stage II), silicified trachyte porphyry
(21DP-2; ore stage II), and quartz–calcite veins (21DP-3, -4, -5; ore stage III) were analyzed
for H–O isotopes; and calcite grains from quartz–calcite veins (21DP-6, -7, -8; ore stage
III) were analyzed for C–O isotopes to determine the source of the ore-forming fluids.
Pyrite grains from intensely silicified trachyte porphyry (DP-2, -3, -4) and quartz veins
(21DP-9, -10) of ore stage II were analyzed for S and Pb isotopes to constrain the source of
ore-forming materials. The trachyte porphyry samples with little or no alterations that host
the No.V gold orebody were analyzed for the Pb isotope to reveal the relationship between
the gold ores and host rocks.

C, H, O, S, and Pb isotopes were analyzed at the Analytical Laboratory of the Beijing
Research Institute of Uranium Geology, Beijing, China. The quartz, calcite, and pyrite
mineral grains from ore stages II and III with a purity of >98% were ground to 40~60 mesh
for analyses of C, H, and O isotopes. Furthermore, the fresh trachyte porphyry samples
were crushed to 200 mesh for analysis of the Pb isotope.

H and O isotopic compositions of fluid inclusions within the quartz crystals and C and
O isotopic compositions of those in calcite crystals were measured using a MAT-253 mass
spectrometer. The isotopic results were standardized by Vienna-Standard Mean Ocean
Water (V-SMOW) for H and O isotopes and the Vienna-Peedee Belemnite (V-PDB) standard
for the C isotope. The analytical precisions were better than ±1‰ for δD, ±0.2‰ for δ18O,
and ±0.2‰ for δ13C.

S isotopic compositions of five pyrite samples were determined using a Delta V Plus
mass spectrometer. The S isotopic results were standardized by Vienna-Canyon Diablo
Troilite (V-CDT), and analytical precision was estimated to be ±0.2‰.

Pb isotope analyses of five pyrite and five trachyte porphyry samples were conducted
using an ISOPROBE-T thermal ionization mass spectrometer. The Pb isotopic ratios were
corrected using NBS SRM 981 [16], and the Pb isotope uncertainties were reported as ±2σ.
The measurement accuracy was <0.05% for 204Pb/206Pb and <0.005% for 208Pb/206Pb with
1 µg of lead. The specific procedures for C, H, O, S, and Pb isotopic analyses are described
by Guo et al. [17].

5. Results
5.1. Fluid Inclusions

Fluid inclusions within the quartz crystals in gold ores formed during ore stages II
and III were analyzed. Petrographic observations indicate that fluid inclusions are common
in quartz crystals at room temperature and mainly include three types: (1) liquid-only
aqueous inclusions (L-only), (2) vapor-only aqueous inclusions (V-only), and (3) bi-phase
(liquid and vapor) aqueous inclusions dominated by liquid (L-dominated) and finally
homogenized to liquid (Figure 5). The three types of fluid inclusions occur in both ore
stages II and III.
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Ore stage II: L-dominated fluid inclusions are distributed in groups or scattered, and
they are subrounded or irregularly polygonal in shape, with sizes of 2~7 µm (Figure 5a,b).
They mostly contain a vapor phase that occupies 5~10 vol%. L-only fluid inclusions are
elliptical and irregular in shape, with sizes of 2~5 µm (Figure 5b). V-only fluid inclusions
generally exhibit obvious dark halos under the microscope and are dispersively distributed.
They are mostly round or elliptical in shape, with sizes of 3~5 µm (Figure 5a).

Ore stage III: L-dominated fluid inclusions are mostly rounded and subrounded in
shape, and their sizes ranges from 1 to 13 µm, most of which are 3~8 µm (Figure 5c,d). The
volume of vapor in the L-dominated fluid inclusions of ore stage III is 5~10%. L-only and
V-only fluid inclusions often coexist with the L-dominated fluid inclusions in the same
quartz crystal. L-only fluid inclusions are generally scattered in the quartz crystal and are
subrounded or irregular polygon in shape, with sizes of 2~8 µm (Figure 5c). V-only fluid
inclusions are distributed in groups or scattered, and most of them are elliptical in shape.
Their sizes usually vary from 1 to 6 µm (Figure 5c).

The primary L-dominated fluid inclusions occurring in ores of stages II and III were
chosen for microthermometry analysis. Due to their poor visibility or small sizes, few
ice-melting temperatures of L-dominated fluid inclusions have been measured in this
study. The homogenization and ice-melting temperatures of fluid inclusions and related
calculation equations are summarized in Table 2.
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Table 2. Microthermometric data of the L-dominated fluid inclusions for the Dongpuzi gold deposit.

Sample
Number Host Mineral Fluid Inclusion

Types
Homogeneous

Temperatures (Th/◦C)
Ice-Melting

Temperatures (Tice/◦C)
Salinity

(wt% NaCl)

21dpl-1 Quartz L-dominated 113~151 (17) 6.3~4 (8) 6.4~9.6 (8)
21dpl-2 Quartz L-dominated 109~162 (27) 5.3~1.9 (13) 3.2~8.3 (13)
21dpl-3 Quartz L-dominated 110~161 (24) 6~5.9 (5) 9~9.2 (5)
21dpl-5 Quartz L-dominated 106~143 (25) 4.3~1.6 (6) 2.7~6.9 (6)

Note: The number in the parentheses means the number of measurements; the equation for salinity calculations:
S = 0 + 1.76985 × Tice − 0.042384 × Tice

2 + 0.00052778 × Tice
3 ([18]).

L-dominated fluid inclusions within quartz crystals of ore stage II have homogeniza-
tion temperatures ranging from 113 to 162 ◦C, with an average of 134 ◦C (Figure 6a). The
salinities of these inclusions vary from 3.2 to 9.6 wt% NaCl equiv. based on the final
ice-melting temperatures of −6.3 to −1.9 ◦C.
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The homogenization temperatures of L-dominated fluid inclusions within quartz
crystals of ore stage III vary from 106 to 143 ◦C, with an average of 129 ◦C (Figure 6b). The
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salinities of these fluid inclusions vary from 2.7 to 6.9 wt% NaCl equiv. based on the final
ice-melting temperatures of −4.3 to −1.6 ◦C.

5.2. C–H–O Isotopic Compositions

The C–H–O isotopic data and relative fractionation equations of the Dongpuzi gold
deposit are presented in Table 3 and plotted in Figure 7. Four quartz samples of ore stage II
have δ18OV-SMOW and δDwater values of +2.9‰ to +4.3‰ and −103.3‰ to −96.1‰, respec-
tively, with corresponding δ18Owater values of −14.71‰ to −13.31‰. One quartz sample
of ore stage III has δ18OV-SMOW and δDwater values of +4.4‰, and −103.9‰, respectively,
with corresponding δ18Owater values of −13.62‰. Three calcite samples from ore stage III
have δ13CV-PDB values of −4.5‰ to −4.2‰ and δ18OV-SMOW values of +7.0‰ to +7.4‰.

Table 3. C–H–O isotope data of the Dongpuzi gold deposit.

Sample
Number Mineral T (◦C) δDV-SMOW (‰) δ13CV-PDB (‰) δ18OV-SMOW (‰) δ18OH2O-SMOW (‰)

21DP-1

Quartz

129 −103.9 - 4.4 −13.62
21DP-2

133

−94.2 - 4.3 −13.31
21DP-3 −94.9 - 4.2 −13.41
21DP-4 −103.3 - 3.7 −13.91
21DP-5 −96.1 - 2.9 −14.71
21DP-6

Calcite 129
- −4.2 7.4 -

21DP-7 - −4.5 7.2 -
21DP-8 - −4.3 7 -

Note: The equilibrium temperatures for each stage are based on the fluid inclusion studies in this paper. The
fractionation equation for δ18Owater calculation: 1000lnαquartz−water = 3.38 × 106/T2 − 2.9 ([19]). The “-” in the
table means no analytical results.
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Figure 7. Diagrams of δD—δ18O (a) and δC—δ18O (b) ((a) is modified from [20,21]; the fields for the
epithermal deposits and meteoric-hydrothermal mixed water are from [22] and [23], respectively;
(b): the carbonate fields of marine carbonate, sedimentary organic carbon, and magma-mantle
carbonate are from [24] and [25], respectively).

5.3. S Isotopic Compositions

The S isotopic data of the Dongpuzi gold deposit are presented in Table 4 and plotted
in Figure 8a,b. Five pyrite samples yield relatively homogeneous S isotopic compositions
with δ34SV-CDT values ranging from +4.1‰ to +6.6‰.
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Table 4. Pyrite S–Pb isotopic data of the Dongpuzi gold deposit.

Sample
Number δ34SV-CDT/‰ 208Pb/204Pb Std Err 207Pb/204Pb Std Err 206Pb/204Pb Std Err

DP-2 6.5 38.798 0.003 15.636 0.001 18.069 0.001
DP-3 5.5 38.827 0.004 15.638 0.002 18.039 0.002
DP-4 6.6 38.798 0.006 15.641 0.001 18.07 0.001

21DP-9 6 38.557 0.007 15.595 0.002 17.918 0.002
21DP-10 4.1 38.819 0.007 15.64 0.003 18.046 0.003
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Figure 8. Histogram of the S isotope in the Dongpuzi gold deposit (a) and comparison of δ34S values
between the Dongpuzi deposit and associated geological bodies (b). The S isotopic data of Dongpuzi
gold deposit are from this paper and [15]; data of the metamorphic rocks of the Gaixian Formation
and mantle or deep magma are from [26,27], respectively. The Pb evolution curves for Dongpuzi
gold ores (c). The data of intermediate-basic rocks of the Xiaoling Formation are from [28].

5.4. Pb Isotopic Compositions

The Pb isotopic compositions of pyrite and trachyte porphyry samples are given in
Tables 4 and 5 and plotted in Figure 8c. Five pyrite samples have 206Pb/204Pb ratios of
17.918–18.07, 207Pb/204Pb ratios of 15.595–15.641, and 208Pb/204Pb ratios of 38.557–38.827
(Table 4). Five trachyte porphyry samples have 206Pb/204Pb ratios of 17.955–17.848,
207Pb/204Pb ratios of 15.595–15.621, and 208Pb/204Pb ratios of 38.963–39.116 (Table 5).

Table 5. Pb isotopic data of trachyte porphyry in the Dongpuzi gold deposit.

Sample
Number Sample Age/Ma 208Pb/204Pb Std Err 207Pb/204Pb Std Err 206Pb/204Pb Std Err (208Pb/204Pb)i

(207Pb/204Pb)i
(206Pb/204Pb)i

DPX-1

Trachyte
porphyry 130

39.375 0.004 15.625 0.002 18.035 0.002 39.116 15.621 17.955
DPX-2 39.353 0.005 15.6 0.002 17.921 0.002 39.011 15.595 17.819
DPX-3 39.299 0.006 15.611 0.003 17.94 0.003 39.039 15.607 17.865
DPX-4 39.282 0.009 15.604 0.004 17.926 0.004 38.963 15.599 17.82
DPX-5 39.393 0.006 15.614 0.002 17.962 0.002 39.023 15.608 17.848

Note: The formation age of trachyte porphyry is from unpublished U–Pb data.

6. Discussion
6.1. Properties of Ore-Forming Fluids

The primary L-dominated fluid inclusions occurring in ores of stages II and III were
measured in this study. In the main ore stage, the homogenization temperatures of L-
dominated fluid inclusions range from 113 to 162 ◦C, which indicate that the main ore-
forming fluids belong to the low-temperature fluid system [29]. The homogenization
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temperatures of L-dominated fluid inclusions in the late quartz–calcite stage decrease
(106~143 ◦C), indicating the occurrence of fluid cooling, which is an important control on
ore deposition [30]. The salinities of fluids also decrease from the main ore stage (average
7.2 wt% NaCl equiv.) to the late stage (average 6.1 wt% NaCl equiv.), which is similar to
those of the low-sulfidation epithermal gold deposits worldwide (commonly <5 wt% NaCl
equiv.; [22]). Previous studies have indicated that the ore-forming fluids of the Dongpuzi
gold deposit are NaCl-H2O-dominated type [3]. Therefore, the ore-forming fluids of the
Dongpuzi gold deposit are a low-temperature (113 to 162 ◦C) and low-salinity (average
7.2 wt% NaCl equiv.) NaCl-H2O fluid system and fluid cooling may be an important factor
in the formation of this gold deposit.

6.2. Origin of Ore-Forming Fluids

The δDwater and calculated δ18Owater values of the fluid trapped in quartz from the
Dongpuzi ore stage II are −103.3‰ to −96.1‰ and −14.71‰ to −13.31‰, respectively,
which are consistent with corresponding values of the hydrothermal fluids from ore stage
III (Table 3). These data are plotted in or close to the meteoric water line in a δD—δ18OH2O
diagram, indicating that the ore-forming fluids of the Dongpuzi deposit were predomi-
nantly derived from meteoric water, with little indication of magmatic water (Figure 7a).
Furthermore, these data are compatible with those of fluids from low-sulfidation epithermal
systems worldwide (Figure 7a) [22].

Three calcite samples from stage III have measured δ13CV-PDB values, ranging from
−4.5‰ to −4.2‰, close to those of igneous- or mantle-derived CO2 (−2‰ to −7‰; [24])
and of mixed crustal sources (average −5‰; [27]), indicating that the carbon in the Dong-
puzi gold deposit was derived from either the mantle or a mixed crustal source. This is also
shown in the δ13C—δ18O diagram (Figure 7b). The variations in C–O isotope compositions
are likely affected by the fluid–rock interaction during the evolution of the ore-forming
fluids [31].

6.3. Sources of Sulfur and Lead

Under temperatures lower than 350 ◦C and reduced hydrothermal conditions where
H2S is the dominant sulfur species in the fluid, the δ34S values of sulfide minerals will repre-
sent the overall S isotope composition of the hydrothermal fluid (i.e., δ34S∑S ≈ δ34Ssulfide) [27].
The Dongpuzi gold mineralization is formed under low temperatures, as stated above. The
mineralogical observations indicate that the ores are mainly composed of pyrite, chalcopy-
rite, and sphalerite, which are generally formed in a reducing environment, and no sulfate
minerals were found. Therefore, the average δ34S values of sulfide minerals approximate
the sulfur isotopic compositions of hydrothermal fluid. Five pyrite samples from gold ores
yield δ34S values of +4.1‰ to +6.6‰ (Figure 8a and Table 4), basically consistent with the
δ34SV-CDT values of +2.39‰ to +7.99‰ reported by Zhang et al. [15]. These values are a
little higher than those of magmatic reservoirs (0‰ ± 3‰; [27]) but lower than those of the
schist and granulite of the Gaixian Formation (+10.0‰ to +17.0‰; [26]; Figure 8b). There-
fore, the sulfur in ores was predominantly derived from the magmatic system, with some
combination of metamorphic rocks of the Gaixian Formation for the Dongpuzi deposit.

The pyrite samples from the Dongpuzi ores yield homogeneous 206Pb/204Pb ratios of
17.918~18.07, 207Pb/204Pb ratios of 15.595~15.641, and 208Pb/204Pb ratios of 38.557~38.827
(Table 4). The Pb isotope data are all plotted adjacent to the orogen line on a 207Pb/204Pb–
206Pb/204Pb diagram (Figure 8b), suggesting a mixed crust–mantle source. Furthermore,
the Pb isotope compositions of pyrite are consistent with those of the ore-hosting trachyte
porphyry and intermediate–basic volcanic rocks of the Xiaoling Formation (Figure 8b).
Previous studies have demonstrated that the Early Cretaceous intermediate–basic volcanic
rocks of the Xiaoling Formation in the Xiuyan area were formed by partial melting of ancient
lithospheric mantle, metasomatized by subduction fluids [28]. Therefore, the volcanic rocks
of the Xiaoling Formation, especially the ore-hosting trachyte porphyry, are closely related
to the Dongpuzi gold mineralization.
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6.4. Ore genesis and the Metallogenic Model

As stated above, the Dongpuzi gold deposit is located in the southern margin of the
Shaozihe volcanic fault basin. The gold orebodies at the Dongpuzi deposit are hosted
within the trachyte porphyry and are structurally controlled by the NE–SW- to NNE–
SSW-trending faults and fracture alteration zones. The ores are characterized by quartz
veins, quartz veinlets, quartz stockworks, or miarolitic structures, indicating that the gold
mineralization occurred on the surface or near the surface [32]. The ore mineral assemblage
from the mineralogical observations is dominated by pyrite, chalcopyrite, and sphalerite,
indicating a low-sulfidation state [33]. The wall-rock alterations include sericitization,
silicification, carbonatization, kaolinization, and chloritization and display clear spatial
zonations similar to low-sulfidation epithermal deposits [15]. Fluid inclusion studies
indicate that the mineralizing fluid is characterized by a low temperature (average 134 ◦C,
<150 ◦C) and salinity (average 7.2 wt% NaCl equiv.) with a meteoric source (Figure 7a).
These characteristics are similar to those of typical low-sulfidation epithermal gold deposits
in China and worldwide [34–36]. Therefore, the Dongpuzi gold deposit belongs to a typical
low-sulfidation epithermal gold deposit in the Liaodong area.

During the Early Cretaceous period, the Paleo-Pacific Ocean Plate subducted beneath
the Eurasian plate [37,38] and subsequently underwent a transformation from compression–
subduction to slab rollback-extension in the east of the NCC [38,39], which triggered intense
magmatism and related mineralization, as well as a series of extensional structures, such
as metamorphic core complex (Liaonan–Wanfu), half graben basins (Benxi, Tongyuanpu,
and Dandong), and detachment fault systems (Huanghuadianzi–Dayingzi–Shaozihe) in
the Liaodong Peninsula [11,13,40–43]. The retreating of the subducted Paleo-Pacific Ocean
Plate induced the underplating of the asthenospheric mantle [38], which further triggered
partial melting of the ancient lithospheric mantle in the east of the NCC [28,40,44,45].
The produced mantle-derived magmas were metasomatized by subducting oceanic slab-
derived fluids [28]. Through fractional crystallization, the intermediate–basic volcanic
rocks of the Xiaoling Formation in the Shaozi River fault basin were thus generated in
the Xiuyan area [28], accompanied by intrusion of the ore-hosting trachyte porphyry. The
new hydrogen, oxygen, and carbon isotope data indicate that the ore-forming fluids were
derived from meteoric water, with important input of mantle-derived carbon. The sulfur
and lead isotopes suggest that the sulfur and lead were mainly leached from the ore-hosting
trachyte porphyry, with some contributions of the basement rocks (metamorphic rocks of
the Gaixian Formation). The trachyte porphyry supplied high heat flow, drove shallow
meteoric water, and remobilized metallogenic materials (sulfur, lead, and carbon) from the
volcanic rocks (mainly trachyte porphyry) and metamorphic rocks of the Gaixian Formation
(Figure 9). The episodic temperature and salinity drops in the mineralizing fluid perhaps
resulted in the formation of the Dongpuzi gold deposit.
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Figure 9. Schematic model explaining the formation of the Dongpuzi gold deposit (the geodynamic
setting of the Early Cretaceous in the eastern NCC is after [11,13,40–43]; the diagenesis of intermediate–
basic rocks of the Xiaoling Formation is after [28]; the age of ~130 Ma is taken from unpublished
U–Pb data of the trachyte porphyry).

7. Conclusions

(1) The Dongpuzi gold deposit was hosted within the Early Cretaceous trachyte porphyry
and controlled by the NE–SW- to NNE–SSW-trending faults and fracture zones, with
three mineralization stages, i.e., quartz–pyrite, quartz–sulfide, and quartz–calcite
stages.

(2) Fluid inclusion studies indicate that the Dongpuzi gold mineralization was precipi-
tated from an epithermal fluid system with low temperatures (113 to 162 ◦C) and low
salinity (average 7.2 wt% NaCl equiv.) and fluid cooling may be an important factor
in the formation of this gold deposit.

(3) The hydrogen, oxygen, and carbon isotopes indicate that the ore-forming fluids were
sourced from meteoric water and the carbon in fluids is mainly derived from the
magma. The sulfur and lead isotopic compositions suggest that the ore-forming
materials were mainly derived from the host trachyte porphyry and volcanic rocks of
the Xiaoling Formation, with some contributions of Paleoproterozoic metamorphic
rocks of the Gaixian Formation.

(4) The Dongpuzi deposit is a typical low-sulfidation epithermal gold deposit in the
Liaodong area, which was formed under an extensional setting related to the Early
Cretaceous lithospheric extension and thinning of the east of NCC, induced by sub-
duction and retreat of the Paleo-Pacific Ocean Plate.
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