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Abstract: A Messinian and lithified horizon enriched in volcanic particles with thicknesses of
170–180 cm crops in the Camporotondo (CR) section (Marche, Italy). This volcanic-rich layer
(VRL) was investigated by field plus mesoscopic observations, X-ray powder diffraction (XRPD),
scanning electron microscopy (SEM), bulk composition methods and electron-microprobe analy-
sis (EMPA). The quantitative textural features of volcanic and sedimentary components were
determined by 2D image analysis. The lowermost massive 70–80 cm portion is free of sedi-
mentary structure or characterised only by plane-parallel ones, whereas the uppermost one is
undulated and cross-laminated. The XRPD and SEM outcomes unveil that the VRL of CR is
mainly composed of glassy shards (≥80 area%), a variable amount of sedimentary minerals
(<20 area%) and a very low content of magmatic minerals (few area%). The bulk and micro-
chemical attributes of volcanic and glassy materials are rhyolitic and almost identical to previous
VRLs dated at 5.5 Ma (VRL-5.5). The signatures of immobile elements and the high amount of
H2O present in the glass fraction suggest a provenance from a convergent geodynamic setting.
The 2D image analysis on SEM observations show that the VRL-5.5 of CR is composed of very
fine and sorted (averages of MZ of 5,72 and σi of 0,70), scarcely vesicular, glass shards, with
similar long and short size dimensions, shape and roundness. The VRL-5.5 of CR is free of large
minerals and fossils. The coupling of mesoscopic and microscopic determinations indicates that
the lowermost interval was deposited such as a primary tephra, i.e., fallout pyroclasts sinking in
seawater. Instead, the uppermost interval derives from local, low-energy and sin-depositional
remobilisation of the same VRL-5.5. The textural attributes of the volcanic fractions, the sedi-
mentological features and the thickness of the VRL at CR correspond to the westward deposit of
a still unknown eruption likely occurred at 5.5 Ma.

Keywords: volcanic glass; XRPD; image analysis; petrography; sedimentation; eruption

1. Introduction

Pyroclastic fall and flow materials are deposited in an instantaneous geological
time and are thus useful for chronostratigraphy; the airfall deposits from high magni-
tude eruptions are the most suitable geological markers since they cover regional to
continental areas [1–3]. In distal areas, such tephra fallout deposits are generally loose,
sorted and tiny (<2 mm) [4,5]. Conversely, pyroclastic flows tend to form un-sorted
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thick deposits (ignimbrites) up to distances ranging from few to tens of km from the
vent [6–10]. Tephras, i.e., loose pyroclastic materials of any origin [9,11,12] and lithi-
fied tephras labelled here volcanic-rich layers (VRL), can be the unique witnesses of
dismantled volcanoes, erased by tectonic or erosive processes [9,13–19]. Finally, there
are cryptotephras, i.e., sedimentary levels hosting volcanic materials [9,20].

Pyroclastic horizons can be either primary and secondary, if remobilized or altered
after a first depositional process [1,6,20–24]. Thereby, both fall and flow deposits after
their original sedimentation can remain undisturbed (primary tephra), or be subject to
gravity or flow remobilization or may be affected by chemical alteration processes by
exogenous sedimentary mechanisms, i.e., secondary tephras [25–35]. Under subaerial
conditions these deposits are easily eroded, whereas in submarine settings they are
frequently buried and preserved [8,16,36–38].

Commonly, a tephra is primary if it preserves its original thickness and structure
after deposition [39,40] and is also characterized by an internal stratigraphy and sharp
contacts at the top and at the bottom with the encasing sediments; however, some
primary deposits are massive, unstratified and isotropic. A primary tephra can be also
incomplete if partially eroded. Secondary deposits may have greater thicknesses than
their primary equivalents at the same distance from the vent [39]. All these character-
istics are really and straightforward useful when a direct comparison of the deposit
from proximal to distal areas is observable, otherwise it is not an easy task to under-
stand if a tephra or volcanic rich layer is primary or not [20,27,37]. Furthermore, the
remobilization process can leave traces such as: (i) changes in grain size distribution
(GSD), (ii) change in grains shape, (iii) load-, flux and/or gravity-driven sedimentary
structures, (iv) soft-sediment deformation and (v) presence of bioturbation and fos-
sils [27–30,38,41–43]. Finally, the terms pyroclastic and epiclastic (or volcanoclastic) are
commonly used to refer those materials deposited directly after magma fragmentation
and after weathering, erosion and/or secondary deposition, respectively [10,42,44,45].

To shed new light on these volcanic and sedimentary processes, as well as on
its petrological features, here we focus on a VRL located in the Marche region (Italy)
(Figure 1). The Camporotondo outcrop hosts this VRL, within the same stratigraphic
interval of other VRLs exposed in the eastern side (Adriatic part) of the Apennines,
along the NNW-SSE direction [46–57]. All the other VRL-hosting sites are Messinian,
specifically they represent the post-evaporitic interval pev1 unit [58,59] and are dated
at ca. 5.5 Ma [48,49,52,54,57]. The other VRL-5.5 were recently interpreted to be
a turbiditic deposit originated from a unique primary pyroclastic deposit [48,56],
alternatively similar to a primary fallout in seawater [45]; both origins have been also
proposed as a function of location [53,54].

The VRL-bearing section of CR (Figure 1, Table S1) has been here extensively
characterised by field and mesoscopic rock observations, bulk chemical composition,
X-ray powder diffraction (XRPD), transmission optical microscopy (TOM), scanning
electron microscopy (SEM) and micro-chemical characterisation by electron probe
micro-analysis (EPMA). The outcomes attained here provide new insights on the origin
and deposition of the VRL of CR and in parallel proposes an analytical protocol to
characterise lithified and ancient tephras worldwide.
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Figure 1. (a) Location of the samples of the VRL-5.5 deposits from previous studies (Table S2) and 

the Camporotondo section (CR) investigated in this study (Table S1). (b) Schematic structural model 

of Abruzzo-Marche area (dashed rectangle in a) with the principal sedimentary units and tectonic 

elements. (c) Representative stratigraphic columns of the Messinian post-evaporitic deposit in the 

Marche area. From North to South: (1) Maccarone (Potenza-Esino sector), (2) Camporotondo 

(Fiastrella-Potenza sector) and (3) Force (Aso-Fiastrella sector). The acronyms are: A Amandola; B 

Bisenti; C Campea; CA Calcinelli; CAC Castiglione a’ Casauria; CG Colle Gallo; CM Casteldimezzo; 

CR Camporotondo; CV Civitella del Tronto; M Maccarone; P Piavola; SQ Serredi quarry; SM 

Santamarina; SVT San Vittorino. 
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thrust belt (Figure 1a,b); this area developed ahead of the growing Apennines and was 

infilled by siliciclastic turbidites sourced from the north [31,60]. The analysed area is 

placed in the northern apex of the triangular-shaped foredeep basin (Figure 1), where the 

general thickness of the Messinian turbiditic succession is reduced with respect to the 
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Figure 1. (a) Location of the samples of the VRL-5.5 deposits from previous studies (Table S2)
and the Camporotondo section (CR) investigated in this study (Table S1). (b) Schematic structural
model of Abruzzo-Marche area (dashed rectangle in a) with the principal sedimentary units and
tectonic elements. (c) Representative stratigraphic columns of the Messinian post-evaporitic deposit
in the Marche area. From North to South: (1) Maccarone (Potenza-Esino sector), (2) Camporotondo
(Fiastrella-Potenza sector) and (3) Force (Aso-Fiastrella sector). The acronyms are: A Amandola;
B Bisenti; C Campea; CA Calcinelli; CAC Castiglione a’ Casauria; CG Colle Gallo; CM Casteldimezzo;
CR Camporotondo; CV Civitella del Tronto; M Maccarone; P Piavola; SQ Serredi quarry; SM Santa-
marina; SVT San Vittorino.
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2. Geological Setting and Sampling

The study area is located in the eastern sector of the central Apennines fold-and-thrust
belt (Figure 1a,b); this area developed ahead of the growing Apennines and was infilled by
siliciclastic turbidites sourced from the north [31,60]. The analysed area is placed in the northern
apex of the triangular-shaped foredeep basin (Figure 1), where the general thickness of the
Messinian turbiditic succession is reduced with respect to the southern foredeep depocenter
(about 400 m vs. up to 3000 m) (Figure 1b) [61–64]. The marine Messinian deposits are deep-
water siliciclastic turbidites intercalated by gypsum and gypsum arenites [64]. Moving from
the bottom, the Messinian section comprises: (i) few hundred meters of evaporitic deposits and
organic-rich shales, (ii) a main interval of turbiditic sandstones and shales and (iii) a brackish
shale with limestone levels and locally conglomerates and sandstones (Colombacci Fm. [65]).
This post-evaporitic succession shows longitudinal (i.e., down-current) thickness variations
ranging from ca. 300 m in the north (Maccarone and Camporotondo sections in Figure 1b,c)
to ca. 1300 m in the south (Force section in Figure 1b,c). The differences in thickness and
facies have been related to the paleo-physiography of this foredeep basin and its tectonics
(Fiastrone-Fiastrella line [65,66]).

The VRL horizon is intercalated in the post-evaporitic turbiditic interval (peV1 [67,68])
and extensively crops-out in the western limb of an NNW-SSE striking syncline with beds
gently dipping (10–20◦) to ENE. The layer is sandwiched in a prevalently shaly sequence
(100–200 m thick), intercalated in the intermediate portion of the turbiditic post-evaporitic
succession (Camporotondo section in Figure 1c). The analysed outcrop coincides with a N-S
trending cliff, about 200 m long and 80 m high, located close to the Camporotondo village. The
exposed succession is made up prevalently of shales with sporadic very thin bedded sandstones
and with the VRL sited in the upper part of the section. The layer, even if locally affected
by tectonics, is well preserved and continuous (Figures 2 and S1), with a thickness of about
170–180 cm. At the base of the VRL, the contact with the underlaying shales is sharp whereas at
the top the boundary is more gradual and less pronounced, also due to the weathered exposure
(Figures 2 and S1). At the field scale, it is composed by at least five mesoscopically differentiable
beds from which 15 macroscopic (i.e., about 10 cm × 10 cm × 5–10 cm) oriented samples have
been extracted (Figure S1). Eight of these ones were subsequently half cut in laboratory along
planes parallel to the N-S trending field outcrop (Figure 2) and finely polished also producing
thin sections (Figure 3).
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Figure 2. Stratigraphy of the CR section (Camporotondo di Fiastrone, see Figure 1 for location) with 
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Figure 2. Stratigraphy of the CR section (Camporotondo di Fiastrone, see Figure 1 for location) with
the position of the collected oriented samples (centre) used to prepare the mesoscopic and microscopic
polished and coaxial to the field samples (left and right); black rectangles indicate the positions of
the oriented thin sections (displayed in Figure 3). The red and blue bars correspond to 1 and 10 cm,
respectively. White numbers are samples labels, as reported in Table S1.
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salient textural features. Red and black bars are 1 cm and 50 µm, respectively. Blue arrow (cb) and 

red arrow (gl) indicates carbonates and glassy components. The glass shards show blocky shapes 

with some curvilinear edges corresponding to bubble walls and rare pumice-like shapes. 

3. Analytical Methods 
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Figure 3. (left column) Camporotondo (CR) polished thin sections (black rectangles in Figure 2) with
representative BS-SEM microphotographs (200× in middle and 400× in right columns), showing the
salient textural features. Red and black bars are 1 cm and 50 µm, respectively. Blue arrow (cb) and
red arrow (gl) indicates carbonates and glassy components. The glass shards show blocky shapes
with some curvilinear edges corresponding to bubble walls and rare pumice-like shapes.

3. Analytical Methods

XRPD. The 15 CR samples were first analysed by X-ray powder diffraction, in order
to recognize the presence of both, amorphous and crystalline phases [69,70]. After a
first sample preparation in Chieti, analyses were conducted at the Istituto Nazionale di
Geofisica e Vulcanologia in Naples (Osservatorio Vesuviano) after a first sample preparation
in Chieti. About 100 g per sample was first comminuted with an electric grinder to produce
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a homogeneous coarse powder with grains of hundreds of µm. A homogeneous portion
of about 20/30 mg per powder was milled by hand in an agate mortar for a few minutes
under acetone, to obtain a homogeneous powder with particle sizes of few µm. Each fine
powder was gently mounted in a cylindrical hole made of a low-background sample holder
of oriented Si wafer, avoiding as much as possible preferential orientation of crystallites.
The Si sample-holder highlights the presence of non-crystalline phases [71,72].

The XRPD patterns were collected with an X’PERT PRO PANalitycal diffractometer with
a Bragg-Brentano parafocusing geometry, equipped with Cu anticathode (CuKα = 1.5406 Å)
and a detector of the latest generation X ‘PIXEL. The stripping of the Kβ radiation was
obtained by a pyrolytic graphite monochromator and a Ni filter. All XRPD spectra were
recorded between 4◦ and 83◦ of 2θ, with a scan speed of 0.04◦/s with a step of 0.01◦. The
obtained XRPD patterns were analysed with the software X’Pert Data collector®. The
measured Bragg reflections were assigned to the crystalline standards that better reproduce
the position and intensity of them.

Bulk chemical composition. Based on the XRPD results and BS-SEM evidence, three
representatives and richest in the amorphous phase (the poorest in crystalline phases
samples) were chosen to determine their bulk chemical composition. All analyses were
performed in the Activation Laboratories LTD (Ontario, Canada), following the analytical
protocols code 4B1 total Digestion ICP, code 4F-CaCO3 IR, code 4F-FeO titration, code
4F-H2O+− gravimetric and code 4LITHO packages (for a more detailed description of all
these analysis package with a description of the instrumentation and protocols used visit
the ACTLABS web-site: https://actlabs.com/geochemistry/lithogeochemistry-and-whole-
rock-analysis/lithogeochemistry/ (accessed on 30 May 2022) and https://actlabs.com/
geochemistry/lithogeochemistry-and-whole-rock-analysis/carbon-and-sulphur/ (ac-
cessed on 30 May 2022) [73,74]. The aim of these analyses was the quantification of the
number of major oxides, principal volatile species (H2O, CO2 and S), the Fe2+/Fe3+ ratio
and the LOI (amount of material loss on ignition).

SEM and EPMA. The selected eight samples of the CR section mounted in thin sections
(Figure 3) were used to acquire a total of 120 digital micro-photographs, 15 per sample,
using a JSM6500F from JEOL Field Emission Gun-SEM (installed at the Istituto Nazionale
di Geofisica e Vulcanologia of Rome), equipped with an EDS detector. The operating
parameters were electric voltage of 15 kV, a current of 1 nA, a working distance of 10 mm
for each sample were acquired three series (up, centre and down along the Z-axis of
the outcrop) of images at successive magnifications of the same area, from 100 to 1600×
(Figure 3) in back scattered mode (BS-SEM). The same eight thin sections were used for
microchemical determinations still in Rome, using a Jeol-JXA8200 EPMA, equipped with
both EDS and five WDS. The operating parameters were electric voltage of 15 kV, a current
of 10 nA, a working distance of 11 mm and a defocused electron beam with a diameter of 5
to 10 µm [2,32,75,76]. Per each section, a minimum of 10 points for glass shards plus 10 per
mineral were acquired.

Image analysis. The Image-Pro Plus 6.0 software was used to perform image analysis
on a total of 24 BS-SEM microphotographs (3 per sample) at different magnifications:
100× to determine the abundance of crystals, glass and carbonates, while the 200× was
preferred to quantify textural attributes. Each BS-SEM image was processed as follow:
(i) conversion into 8-bit format with 256 shades of grey, (ii) enhancing of image to better
emphasize the contours of the phases and (iii) segmentation [2,32,69,75,77]. As shown
in Figure S4, the glasses, carbonates and crystals were separated by segmentation as a
function of their characteristic grey tones. When necessary, several phases were identified
by manual separation. Finally, all the textural attributes of any single phase were measured
automatically [78]. Per each phase, i.e., glass or mineral particle, its equal-area ellipsis was
measured to determine major and minor axes, their aspect ratio, the angle of the major
axis with respect to the horizontal and its area. Equal-area ellipses with major and minor

https://actlabs.com/geochemistry/lithogeochemistry-and-whole-rock-analysis/lithogeochemistry/
https://actlabs.com/geochemistry/lithogeochemistry-and-whole-rock-analysis/lithogeochemistry/
https://actlabs.com/geochemistry/lithogeochemistry-and-whole-rock-analysis/carbon-and-sulphur/
https://actlabs.com/geochemistry/lithogeochemistry-and-whole-rock-analysis/carbon-and-sulphur/
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axis < 10 and <5 µm, respectively, were excluded. In addition, also the roundness of glassy
particles was quantified:

perimeter2/(4 × π × area) (1)

A roundness of 1 corresponds to a perfect circular object, while an increment of it
indicates objects with more irregular contours [33,79]. The size distribution was calculated
from 2D textural data [69,73,74]. The grain-size was converted to phi-scale as,

Φ = −log2D (2)

where D is the major axis in mm of the equal-area ellipse. Such measurements were used
to construct grain-size parameters [69]:

Mz = (Φ16 + Φ50 + Φ84)/3 (3)

σi = [(Φ84 − Φ16)/4] + [(Φ95 − Φ5)/6.6] (4)

SKi = {(Φ84 + Φ16 − 2Φ50)/[2(Φ84 − Φ16)]} + {(Φ95 + Φ5 − 2Φ50)/[2(Φ95 − Φ5)]} (5)

KG = (Φ95 − Φ5)/[2.44(Φ75 − Φ25)] (6)

in all the calculations the abundance of particles with a certain Φ is in area%; for in-
stance, the Φ50 denotes the size of the major axis representing the 50 area% in the particle
distribution [69,80].

4. Results
4.1. Field and Mesoscopic Stratigraphy

In the field, the outcrop of CR laterally extends for several tens of meters with only
centimetric variation of its thickness, which remains invariably lesser than two meters
(Figure S1). The mesoscopic and oriented specimens highlight the following types of sedi-
mentary facies: (i) unlayered or massive (almost structure-free), (ii) plane-parallel layered,
(iii) undulated-parallel or cross-laminated layered, (iv) complex, i.e., with the coexistence
of the various types listed above (Figure 2. Complex type shows also intersections between
the various layers, cross layering and load structures [34].

Moving from the bottom, the VRL-5.5 horizon lies on shales through a sharp contact
(Figure S1). The combined investigations of field and meso scopic polished surfaces allow
for the recognition of three intervals into the VRL of CR. The CR-1, CR-2-bottom and CR-2-
top are homogeneous and massive, free of gradation and show local regular plane-parallel
laminations (type i and ii), with colour bands, sub-horizontal stylolitic pressure-solution
structures, rare load and flames-pillows structures (Figure 2). At the top of the following CR-
3-top sample the first appearance of parallel wavy structures (type iii) has been observed
(Figure 2). The entire basal succession, corresponding to the first pseudo-layer, shows a total
thickness of about 80–90 cm from CR-1 to CR-3-top (Figures 2 and S1). The following CR-5
sample largely shows a general massive unlayered aspect (type i) with a cross-lamination
at the top, thus resulting in the complex type (type iii and iv); this constitutes the second
sub-horizon of about 20 cm in thickness, and appears homogeneous and macroscopically
coarser grained with respect to the underlying beds (Figures 2 and S1). The CR5 differs in a
wave-like appearance with respect the underlying planar CR-1 to CR-3-top interval. The
transition between the CR-1, CR-3 and CR5 is also marked by presence of structures in the
CR-3-top and by an increasing grains size (Figures 2 and 3).

The successive third sub-horizon (including CR-7, CR-9 and CR-11 samples) has a
whole thickness of about 80 cm, again displaying first a coarse plane parallel lamination
(type ii in CR-7), then a thin lamination (type ii in CR-9) and finally a cross-lamination (type
iv in CR-11) (Figures 2 and S1). The uppermost interval in CR-11 contains several internal
minor horizons of mostly plane-parallel laminations (type ii) alternated with thin curved
and cross-bedding structures (type iii and iv), with also curved erosional trough bounding
surfaces filled by sets (0.5–1 cm thick) of foreset laminae that commonly have a tangential
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relationship to the base of the set bounding surfaces (Figure 2). Cross-laminations are
truncated at the top and are overlain by near plane parallel bed sets. In the upper part
of this interval (CR-7, CR-9 and CR-11) soft sediment deformations are visible; moreover,
upward squeezing of ash particles are also present (CR-9 and CR-11) (Figure 2). The VRL
horizon ends up with a clayey soil through a sharp contact (Figure S1).

4.2. Microscopic Features

The previous mesoscopic attributes (Figure 2) are here corroborated and detailed by
observation on digitalised images of thin sections (left column in Figure 3), as well by
representative BS-SEM micro-photographs (middle and right columns in Figure 3). The
type of sedimentary structures described above are corroborated by scanned thin section
images (Figure 3). The eight samples mostly contain glassy ash-sized volcanic particles, plus
subordinate carbonate cement filling voids and very few silicate minerals (Figures 3 and 4).
The shape of glass particles are discriminated following the classical morphological features,
such as: (i) blocky with curvy-planar surfaces and low vescicularity, (ii) vesicular with
irregular shapes and smooth fluid surfaces, (iii) fine and irregular shaped consisting of
several globular masses stick together, (iv) spherical or drop-like with smoothly curved
surfaces and commonly attached and/or agglutinated, and (v) platy with curved surfaces,
part of a bubble wall [9,10,13,79,81,82].
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The glass shards have dimension ranging around 100 µm, with a prevalence of
blocky (type i) and vesicular (type ii) morphologies, plus some fragments with platy-
like shape (v types); many glassy particles contours can be associated to bubble-walls
(Figures 3 and 4). The largest blocky shards result sometimes fractured or broken, while
only some of these biggest fragments show inside them bubbles with micrometric dimen-
sions, never exceeding few tens of µm (Figures 3 and 4). Their aspect ratio moves mainly
from 1:2 to 1:3, i.e., prismatic shape, whereas more anisotropic shapes are uncommon
(Figures 3 and 4). The shards appear insignificantly affected by alteration. The carbon-
ate content is poorly variable (see below); calcite phases mainly occur in voids among
glassy particles and subordinately in isolated particles. Fossils are completely lacking in all
samples (Figures 3 and 4).

4.3. XRPD

X-ray diffraction analyses were performed on eight representative selected CR speci-
mens as a function of the stratigraphy (Figure 2 and Figure S1) and are shown in Figure 5.
The principal feature of all samples, except for the CR-5, is the presence of a large bulge
(between ~18 and 33◦ of 2θ) with a low but detectable intensity (about 100 cps), due to the
amorphous silicate phase occurrence [57,83–85]. With the exception of CR-5 sample, two
very faint peaks at low angles are observed. They indicate the presence of sheet-silicates,
such as montmorillonite and biotite (Figure 5). In all of the CR patterns, at 3.34, 3.26, 3.2 Å
reflections indicate the quartz, sanidine and anorthite, respectively; the typical most intense
Bragg reflections of calcite (3.03Å) are also always detectable (Figure 5). The intensities
of Bragg reflections are crudely and inversely correlated with the intensity of the large
shoulder; since the data collection of XRPD and weight of used materials are the same,
it can be stated that the amount of minerals decreases when the silicate glass fraction
increases (Figure 5). Admitting the absence of any preferred orientation of crystallites, the
intensity of calcite is weak (<300 cps) in the lower part of the section (CR-1, CR-2-bottom,
CR-2-top, CR-3-top), the highest in CR-5 and then progressively decrease again moving
upward (CR-7, CR-9, CR-11) (Figure 5). The CR-5 XRPD pattern is instead characterised
by the near absence of the bulge related to the non-crystalline phase counterbalanced by
the presence of the highest intense Bragg peak, corresponding to quartz and feldspars
(Figure 5).

4.4. Whole and Micro-Chemical Compositions

The bulk composition of the 3 samples selected for analysis in the reason of the lower
clay and calcite abundance, is reported in Tables S3 and S4. Only SiO2, CaO and CO2 and
LOI (and tot) show significant absolute variations (particularly in CR11), whereas all the
other oxides are very similar; the amount of SiO2 is inversely related to that of CaO and
CO2 (Table S3, Figure 6). The total H2O content varies between 7.3 and 7.9 wt.%, with
the largest relative variations due to H2O−, whilst H2O+ shifts between 6.1 and 6.6 wt.%
(Table S3, Figure 6). The FeO and Fe2O3 contents range between 1.3 to 1.5 and 0.9 to
1.4 wt.%, resulting in a slight variable Fe2+/Fe3+ ratio (Table S3). The contents of the LOI
and of CO2 + H2O + S are well comparable between them per each sample (Table S3); the S
is at the detection limit.

The micro-chemical compositions of glassy grains are reported and compared with pre-
vious determination on other VRL horizons or from the same locality (see below) in Tables
S5 and S6. The values of the major oxides obtained from the microprobe analyses on glassy
fragments well reflect those determined by bulk rock composition (Tables S3, S5 and S6), in
line with the low amount of minerals in the analysed VRL (Figures 3 and 4) and the XRPD
outcomes (Figure 5). The most evident absolute and relative differences between the micro-
probe and bulk geochemical data are found for SiO2, MgO and CaO (Tables S3, S5 and S6).
The higher SiO2 and lower contents of CaO and also MgO in the glassy particles by EPMA
compared to bulk compositions is due to the absence of relative silica-poor mineral phases
such as sheet-, chain- and framework-silicates and to the absence of carbonates and Mg-
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bearing silicates, respectively (Tables S3, S5 and S6). The differences of sum of oxides with
respect to the ideal closure of 100 wt.% when compared with H2O+ determinations are in
very well agreement. Thereby, the amount of water likely dissolved in these glasses is on
the order of 6–7 wt.% (Figure 6).
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Figure 5. Stacked XRPD patterns as a function of stratigraphy of the CR section. The coloured
vertical lines correspond to crystalline standards from the ICSD database. These XRPD spectra are
characterised by a large and relatively low-intense bulge around 18◦ and 32◦ of 2θ, indicative of a
non-crystalline phase. Recognised crystalline phase are anorthite (AN), biotite (BT), calcite (CLC),
montmorillonite (MNT), quartz (QZ) and sanidine (SND).
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5. Discussion

Petrology and provenance of the VRL-5.5. The glassy grains via EPMA have a rhyolitic
composition [86], perfectly overlapping with those derived from previous studies on similar
VRLs (Figure 7) [48,51,53,63]. The Harker diagrams further constrain the variations of the
major oxides that invariably fall within narrow compositional ranges (Figure 7), except
those by Guerrera et al., 1986 [53]. Since the stratigraphic positions of these VRL horizons
are also similar (Figure 1), the volcanic-rich layer cropping at CR was also emplaced at
5.5. Ma (VRL-5.5).
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Figure 7. TAS classifications (up) and SiO2 vs. other major oxides (down) of the VRL5.5 glasses
measured with EPMA (from the recalculated on a dry basis data in Table S6). All the data from this
(empty squares) and previous studies (empty stars) are clustered in limited compositional domains,
except few samples.

The bulk immobile elements are particularly useful to evaluate old and tephra with
some alteration and to constrain the magmatic signature of the VRL-5.5 [87,88], similar
to as displayed in Figure 8. All the VRL-5.5 trace immobile elements determined here
fall invariably in the field of volcanic arc and sin-collisional domains (Figure 8). The high
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amount of H2O wt.% (Figure 6) can result on both primary magmatic water and secondary
hydration [89]. We were unable to measure H2O profiles using FTIR and especially isotopic
signatures of water and consequently it can not be definitely quantified the fraction of
magmatic vs. submarine water in these glasses. Such finding excludes a paleo-Ponza
source as hypothesised by Trua et al., 2010 [47], being free of any calc-alkaline, and suggests
the provenance from a convergent geodynamic setting [90]. Moreover, the provenance of
the VRL-5.5 from W or SW with respect to CR should determine a significant thickness of
such materials in some peri-Tyrrhenian sites, that are totally undocumented in central and
southern domains east of Tyrrhenian sea, with the exception of 1–2 cm-thick VRL at the
Serredi quarry, in Tuscany (Figure 1).
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Volcanology and deposition of the VRL-5.5. Previous investigations on the other
VRL 5.5 sites (Figure 1) reported only a qualitative low amount of volcanic minerals,
whereas the amount of carbonate or in general sedimentary fractions was never analysed
or quantified [47,51,53]. Here, the image analysis determinations allow us to quantify
sedimentary vs. volcanic fractions, as well as their textural attributes [35,40,73,91,92].
The 2D image analysis obtained on thin sections allow for the constraint of qualitative
determinations (Figures 3 and 5) and to quantify the actual content of glassy particles,
magmatic minerals and carbonates (Figure 9). The total content of magmatic minerals
(quartz, feldspars, and biotite) is very low (Figure 9). They are invariably contained
in glass matrix and never occurring similar to isolated crystals (Figures 3 and 5). Such
determinations are in line with the XRPD results (Figure 5), except for the sample CR-5
where the amount of quartz and feldspars are higher. Only in the CR-5, we interpreted
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such apparent discrepancy by considering both these silicate phases such as sedimentary
rocks are unrelated to the VRL-5.5 magmatic source.
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Figure 9. Abundance of glasses, carbonates and crystal phases, calculated by image analysis on
3 representative BS-SEM microphotographs per thin section at a magnification of 100×.

Such explanation well agrees with the area% of sedimentary carbonates measured again
for the CR-5 specimen. Montmorillonite also is grown in sedimentary environment [93,94],
at a sub-micrometric scale since it is unobservable in SEM images but only by XRPD.
The carbonate and montmorillonite phases can be thus considered to precipitate from
circulating seawater fluids after the deposition of the CR VRL-5.5 horizon and/or by the
alteration of its glassy fraction [14,95,96]. They lithified or cemented the previously loose
CR VRL-5.5 deposit [27,42].

We can then conclude that CR-5 is the layer richest in sedimentary materials and
more depauperated in volcanic ones due to mechanical transport and/or the richest in
carbonates due to the largest volcanic grains (see below) that induce a major number
of voids (Figures 9 and 10). In line with aforementioned field and mesoscopic observa-
tions (Figures 2 and S1), the CR-5 sub-horizon divides the lowermost and almost massive
sub-horizon (CR-1 to CR-3-top) from the uppermost one containing many pervasive sedi-
mentary structures (CR-7, CR-9 and CR-11) (Figures 2, 9 and S1). In the eight thoroughly
analysed specimens extraneous lithologies and fossils are completely lacking, as well as
clear evidence of turbiditic sedimentary structures [7,97,98] common in the rest of the
Messinian succession (Figures 2 and S1). These attributes exclude a deposition of the entire
VRL-5.5 of CR or of a part of it from a turbiditic current [1,20,24] and the suggestion of its
origin from a single enormous gravity current [47,51,53]. At the same time, the presence
of these three main sub-horizons and slight but detectable 2D grain-size variations can be
attributed to different depositional processes (Figures 2 and S1).
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Figure 10. (top) 2D grain sizes versus cumulative area%, where the major axis corresponds to the
major axes (µm) of equal-area ellipses quantified by image analysis on BS-SEM microphotographs
(Figure S4) at a magnification of 200×. (bottom) 2D grain-size parameters (see Table S7).

The various measurements derived from the image analysis, including the abundance
in area%, of the various glass fragments were used to calculate the classic whole grain-size
parameters [80], mirroring those obtainable from 3D determinations [69,73,74] (Table S7
and Figure 10). The pyroclastic clasts are all ash-sized, with the largest clasts always below
150 µm and with a prevalence of fine ash compared to coarse ones (Figure 11). The grain
size distribution does not show any significant trend associated with the position along the
stratigraphic column, except a slight but detectable inversion in the 2D grain-size trend for
the CR-5 sample (Figures 2 and S1). The tiny sizes of ash particles and the absence of loose
minerals suggests a distal origin of the entire VRL-5.5 volcanic material [1,20,24].
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Figure 11. (a) major vs. minor axes (log scale) of all equal-area ellipses of glass shards; (b) major
axis frequency distribution divided in 9 classes every 10 µm; (c) aspect ratio frequency distribution
divided in 9 classes; (d) 2D angular frequency distribution of major axis considering 12 classes, every
15◦; (e) roundness frequency distribution divided in 7 classes, every 5 plus one of 2; (f) roundness
frequency comparison from the Grímsvötn-2011 fallout, sample G6 (60 kms from the vent) in 59. All
parameters are quantified by image analysis on BS-SEM images at 200×.
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The mean size MZ in the various samples are poorly variable being comprised between
5.60 and 5.87, with a mean value of 5.72 (Table S7 and Figure 10). In detail, the MZ decreases,
thus the grain size of ash increases, moving upwards up to the CR-5, then the trends reinvert
again; in other words, the CR-5 hosts the largest ash grains, whereas the tiniest ones increase
moving downward and upward from it (Figure 10). The other σi and KG parameters
have similar but opposite characteristics as a function of vertical stratigraphy, while the
skewness SKi is instead constant; the relative less sorted sample is CR-5 (Figure 10). Further
confirmations of such appraisal are furnished by the similarities in 2D long and short sizes,
aspect ratio, roundness and orientation of particle lengths (Figure 11).

The long and short axes of equal-area ellipses of ashy grains overlap among all the
samples analysed, testifying an extremely high textural similarity; the aspect ratio of
particles is also very similar and mainly ranging between 2 and 5 (Figure 11). The length
of particles is mainly randomly distributed around the theoretical value of 8.3% per class
(perfect random distribution on the 12 classes used), sign of an absence or scarce presence
of fabric except for sample CR-2-top (Figure 11). This can be related to the poor anisotropy
of the particles (see above) and to weak, if present, depositional effects.

The roundness of volcanic particles provides valuable insights on the possible trans-
port of cuspated or segmented grains [3,79,99–101]. The most part of particles has similar
roundness distribution with value of 5, followed by 2 (more rounded). They are unrelated
to vertical stratigraphy and are equally or even less rounded than pristine tephras reported
for the Grímsvötn-2011 fallout [79] at tens of km from its source (Figure 11). As matter of
fact, the shards preserve their original shape. Therefore, these features further confirm the
absence of significant reworking as expected in deposition by turbidity currents (e.g., higher
grain roundness) even if a local remobilization of the VRL-5.5 pyroclastic grains cannot
be excluded.

To summarize, the 2D textures of volcanic particles have very similar distributions
along the CR stratigraphy (Figure 11). Since only the lowermost massive sub-horizon of
CR-5 is structure-less, we conclude that this first 80–90 cm of the CR deposit results from
direct precipitation of fine ashy particles from a volcanic vent. They first dispersed in
the atmosphere and then sink in seawater [1,9]. The uppermost sub-horizon is instead
characterized by poor but visible structures (Figures 2 and S1) and we thus speculate
that it resulted from re-mobilisation and local transport by low-energy currents of the
same unconsolidated and waterlogged VRL-5.5 from adjacent sites, such to preserve the
original roundness of the brittle ashes (Figure 11). The CR-5 sample may represent the
first deposited materials after this local reworking or a single thin redeposited sub-horizon.
The CR-7 to CR-11 uppermost sub-horizon is the sluggish sedimented part of this local
remobilised current(s) made of VRL-5.5 glassy shards.

This depositional reappraisal indicates that of the total 170–180 cm height of the
outcrop in CR, lesser than 80–90 cm is the real primary deposit. Such interpretation
also well explains the variability in thickness, admitting no erosive process, of the same
surrounding VRL-5.5 at limited lateral distance from CR in the Marche area (Figure 1),
i.e., 150 cm at Colle Gallo, 150–300 cm at Amandola, 120 cm at Maccarone and 80 cm at
Calcinelli (96; 47; 22). Further investigations on the same VRL-5.5 must constrain the real
primary thickness of them. The sampling and analytical protocols described here are useful
to identify the petrological and sedimentary processes underwent in other lithified tephras,
i.e., VRLs.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12070893/s1, Figure S1: An enlarged and detailed field view
and specimens of the CR outcrop, with all the 15 specimens and 15 XRPD patterns.; Figure S2: Ex-
ample of image analysis on two representative samples. From left to right and up to down: BS-SEM
microphotographs, segmentation in false colours and textural measurements of single objects. The
false colours red, cyan and yellow corresponds to glass, carbonates and crystals, respectively. The
collected textural measures concern the angle between the major axis and the horizontal, area, as-
pect ratio (as major axis/minor axis), perimeter, length of the major and minor axes, roundness
(right column). The blue bars correspond to 50 µm. Table S1: CR sample locations, labels and thick-
ness; Table S2: Sites of VRL5.5 reported in previous studies; Table S3: Bulk compositions of selected
samples rich in volcanic phases; Table S4: Trace elements from bulk analysis of selected CR samples
and literature (where available); Table S5: Micro-chemical composition of glassy matrixes determined
by EPMA (raw data); Table S6: Micro-chemical composition of glassy matrixes determined by EPMA
(100 wt.% dry recalculation); Table S7: Micro-chemical composition of a Dumfriesshire augite from the
Micro-Analysis Consultant, run as a standard, determined by EPMA; Table S8: Grain-size statistical
parameters derived from image analysis.
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