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Abstract: Natural samples of sphalerites containing Mn in the range 0 ≤ x ≤ 0.25 apfu from the
Săcărâmb Au–Ag–Te ore deposit, found in the Apuseni Mountains, Romania, were investigated using
Raman spectroscopy to determine its capability to provide estimates of Mn content. Raman data
for the natural Mn-rich sphalerite have not been published so far, with the largest concentration of
Mn in sphalerites being from Romanian territory (i.e., 14.1 wt.%). The results are in good agreement
with SEM-EDS data. In this study, three genetic types of sphalerites were identified: from ferroan
(Zn0.87Fe0.16)∑=1.03S0.97 to manganoferroan (Zn0.77 Mn0.14Fe0.06)∑=0.97S1.03, as well as mangan-rich
(Zn0.8 Mn0.25)∑=1.05S0.95 compositions. Sphalerites with a high content of Mn (up to 14.1 wt.%) were
strongly connected to the presence of alabandite in the mineralized assemblages. The formation of
several types of sphalerites in the Săcărâmb Au–Ag–Te ore deposit was caused by the succession of
different types of hydrothermal fluids and the interaction between the fluids and the host materials
(host rocks and earlier mineralized stages).

Keywords: manganoan sphalerite; alabandite; hydrothermal; Raman spectroscopy; Apuseni Mountains

1. Introduction

Sphalerite is well known as the main source of zinc and is a common mineral in
base-metal hydrothermal mineralization. Common substitutions in the cubic polytype of
the ZnS structure (β-ZnS, sphalerite) include Fe2+, Mn2+, and Cd2+ for Zn2+ in tetrahedral
sites. Common substitutions for Zn2+ in the tetrahedral sites of the cubic polytype (β-ZnS,
sphalerite) include Fe2+, Mn2+, and Cd2+. Besides these major divalent cations, other minor
and trace elements are found in the crystal lattice of natural sphalerites, involving coupled
substitution [1,2].

ZnS polytypes, especially sphalerite and wurtzite (hexagonal α-ZnS polymorph), have
been the subject of several studies dealing with geological (e.g., geobarometer [3]) and
economic implications (e.g., [1]) due to the numerous substitutions that can occur in the ZnS
lattice. Furthermore, ZnS is one of the most important II-VI compound semiconductors used
in various domains: light-emitting or laser diodes in the Near-UV region, photocatalysis,
solar energy conversion, etc. [4,5].

In recent decades, Raman spectroscopy has been used extensively for the structural
and chemical characterization of sphalerites. Zigone et al. [6] reported vibrational changes
in the synthetic crystals of ZnS doped with relatively small amounts of Fe, Mn, Co, or
Cr. Several authors have shown the efficiency of Raman spectroscopy in quantifying
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iron content in natural sphalerites [7–9]. Other systematic vibrational studies have been
previously undertaken on synthetic sphalerites [10,11].

The present study investigates the potential of Raman spectroscopy for the estimation
of manganese content in natural sphalerites and the effect of Mn substitution on natural
sphalerites from Săcărâmb Au–Ag–Te ore deposit, found in the Metaliferi Mountains,
Romania. The results have genetic implications for the Mn-rich sphalerites and a possible
geological influence on sphalerite chemistry in intermediate-sulfidation (IS) and low-
sulfidation (LS) ore deposits.

2. Geological Setting

The Săcărâmb Au–Ag–Te ore deposit is found in the Brad-Săcărâmb district, in the
South Apuseni Mountains (Figure 1). According to thorough K-Ar analyses and strati-
graphic data from earlier studies conducted by Ros, u et al. [12,13], the magmatic activity in
the Apuseni Mountains took place between 14.7 and 7.4 Ma, while the Săcărâmb volcanic
activity took place between 10.5 and 12.8 Ma. An important feature of the Brad-Săcărâmb
district is the grouping of deposits into metallogenetic nodes. The most important node is
Barza, which is made up of gold and polymetallic vein groups, together with porphyry
copper bodies [14]. The relationships between Miocene magmatism and extensional tecton-
ics are thus of prime importance. The Au–Ag–Te ore is developed within over 200 veins
situated in the central volcanic neck and in some andesitic necks. The volcanic structure is
formed at the intersection of a group of major faults with NW–SE and E–W directions.

The morphology of the deposit was influenced by the shape of the volcanic structure
and the generations of fractures that controlled the flow of fluids. The veins in the andesitic
bodies in the western part of the deposit are deeper than those affiliated with lava [15].

The Săcărâmb ore deposit was described as a low-sulfidation one in [16] based on the
ore and gangue mineralogy, the alteration mineral assemblages, the zonality of alterations
around the ore bodies, and the geochemical associations. The fluid inclusion studies carried
out on magmatic and hydrothermal quartz revealed low fluid salinities ranging from
approximately 1 to 4 wt.% NaCl equiv., and low to medium homogenization temperatures
ranging from 113 to 315 ◦C, confirming the LS character of the ore deposit with a dominance
of magmatic water [17].

The Săcărâmb ore deposit has an exceedingly complex mineralogy. The primary
gangue minerals are Ca–Mn carbonates, quartz, and barite. The ore minerals consist of
sulfides: alabandite (Săcărâmb is the type locality), pyrite, arsenopyrite, galena, sphalerite,
chalcopyrite, stibnite, and realgar. A wide variety of tellurides of Au, Ag, Pb, Sb, Bi, and
Hg are found in mineralization. Săcărâmb is the type locality for a group of tellurides
and Te-sulfosalts: petzite (Ag3 AuTe2); krennerite (Au1−x AgxTe2), where (x = 0.2− 0.4);
stützite (Ag5−xTe3), where (x = 0.24 − 0.36); nagyágite [Pb3(Pb, Sb)3S6](Au, Te)3; muth-
mannite (AuAgTe2); and museumite [Pb2(Pb, Sb)2S8](Te, Au)2 [16–20]. Sulfosalts are
another complex part of the mineralogy of Săcărâmb, having a strong relationship with
tellurides [19,20]. The most common sulfosalts are as follows: the tetrahedrite–tennantite
group, the geocronite–jordanite series, bournonite and boulangerite [16,18,21]. Recently,
the occurrence of luzonite–famatinite, manganoquadratite and andorite IV, benleonardite,
fullopite, falkmanite, robinsonite, liveingite, and zinkenite in alabandite-rich mineralization
has been reported [21–24]. A distinct feature of the deposit is the existence of vein groups
that present similar orientations and distinctive suites of ore and gangue minerals: the
Antelonghin and Ertzbau group in the NW–SE direction and the Nepomuc–Magdalena
group oriented towards the NE–SW [15,25]. Paragenetic studies of individual miner-
alized veins have highlighted their mineralogical complexity; furthermore, the studies
have revealed a succession of several mineralizing events occurring in the complex vein
system [16,20,26,27].
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Figure 1. Localization of the studied area in the Carpathians (a); simplified geological map of
Săcărâmb volcanic structure (b); simplified geologic cross-section through the Săcărâmb deposit (c),
with the mining galleries redrawn after Udubas, a [18]; Alderton and Fallick [17].

3. Materials and Methods

Ore samples were collected from the surface of three waste dumps: Sector 1 (S1),
Sector 2 (S2) and Sector 3 (S3) (Figure 1 shows the location of the waste dumps). Addition-
ally, some of the studied samples were collected from a drill core, with a length of 1000 m,
and positioned in the eastern part of the deposit. A total of 33 polished sections were
used to identify sphalerites and texturally characterize mineral assemblages. Sphalerite
identification and characterization were conducted by first observing the optical proprieties.
The polished sections were studied under reflected light. For this part of our study, we used
a Zeiss Axio Imager A2m microscope. After the optical studies, we used a scanning elec-
tron microscope with energy dispersive spectroscopy (SEM-EDS). For these observations,
we used a tabletop Hitachi TM3030 SEM, operating at an accelerating voltage of 15 kV.
Elemental analyses were collected through a QUANTAX 70 EDS system from Bruker.

The Raman spectra were obtained on polished sections using the micro-Raman spec-
trometer Renishaw InVia coupled with a Peltier cooled CCD detector. Excitation was
provided by a 532 nm laser (Model: RL532C50, Renishaw, Inc., Wotton-under-Edge, UK)
with a nominal power of 50 mW at room temperature. The laser power was controlled by
means of a series of density filters in order to avoid heating effects. Samples were scanned
from 0.5 to 1783 cm−1 at a nominal spectral resolution of about 1.5 cm−1. The micro-Raman
spectra were acquired using an exposure time of 30 s per frame, and 10–20 acquisitions
at a laser power of 0.5%–1%, in order to improve the signal-to-noise ratio. Spectra were
obtained using 50× or 20×magnification objectives. Calibration was performed using a
520.5 cm−1 line of silicon. Data acquisition was carried out using Wire software version 3.2.
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The Raman spectra were reduced in intensity in order to display them clearly in stacked
graphs and for a better comparison.

The abbreviations of minerals reported in the present study follow the list approved by
the International Mineralogical Association (IMA) Commission on New Minerals, Nomen-
clature and Classification (CNMNC) [28].

4. Results
4.1. Mineral Paragenesis and Chemistry of Sphalerite

Sphalerite occurs in all mineralization stages of the deposit and predominates in the
lower parts of the deposit where it is associated with common sulfides. It is isolated in
massive alabandite (MnS), usually in carbonate veins. In the deeper parts of the vein system,
it is one of the most common sulfides associated with galena, pyrite, and tetrahedrite.
Macroscopically, two types were observed: The first type was a cleiophane sphalerite with
shades of orange and yellow (Figure 2e), in which the crystals were translucent and had
a resinous luster. The second type of sphalerite appeared to have a brown to black color;
some crystals were opaque (marmatite) and were frequently associated with chalcopyrite
and galena (Figure 2a).

Microscopically, the Săcărâmb sphalerite was differentiated into four crystallization
stages. The first stage was of the marmatite type, with euhedral or subhedral crys-
tals, often showing exsolutions of chalcopyrite, forming the so-called “chalcopyrite dis-
ease” [29] in association with pyrite, chalcopyrite, and galena (Figures 2a and 3a,b).
Second-stage sphalerites occurred as inclusions in alabandite or forming assemblages
with galena, tetrahedrite, and pyrite (Figures 2c,d and 3e,f). They may contain chalcopy-
rite inclusions but are less common than the first-stage marmatite type. In the third
stage, the subhedral sphalerite (cleiophane type) predominated, with internal reflections
from dark brown to yellow; it appeared in rhodochrosite veins associated with sulfos-
alts (bournonite and Ag-sulfosalts) or associated with sulfides (galena and pyrite), sul-
fosalts (bournonite–seligmannite, jordanite–geocronite, tetrahedrite, andorite, zinkenite,
luzonite–famatinite, and nagyagite), and tellurides (sylvanite, hessite, and krennerite)
(Figures 2b–d and 3e,f). It frequently had inclusions of pyrite, bournonite, galena, and
jordanite–geocronite, and in one sample, vermicular structures of marcasite were observed.
The last crystallization stage contained anhedral crystals and, in some cases, colomorphic
structures were observed. This sphalerite is frequently associated with colomorphic pyrite,
marcasite, and Mn oxides.

The results of the chemical analyses of the sphalerites investigated are shown in
Table 1, where the chemical formula was calculated on the basis of two atoms per formula
unit (apfu). The sphalerite samples contained an extensive range of Mn (between 0 and
14.10 wt.%). Iron occurred in appreciable quantities and ranged from 0.05 wt.% to 9.48 wt.%.
Cadmium contents were low (up to 0.72 wt.%), while Cu (0.16 wt.%) was found only in one
analysis, probably due to the presence of micrometric chalcopyrite inclusions. Sphalerites
from the Săcărâmb hydrothermal ore deposit showed an extensive transition from fer-
roan (Zn0.87Fe0.16)∑=1.03S0.97 to manganoferroan (Zn0.77Mn0.14Fe0.06)∑=0.97S1.03, as well
as mangan-rich (Zn0.8Mn0.25)∑=1.05S0.95 compositions. The variation in the cation con-
tents of natural sphalerites from the Săcărâmb ore deposit can be expressed as Zn1−x MxS
(M = Mn, Fe) , where x is in the range of 0.07 ≤ x ≤ 0.25.
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Table 1. Chemical composition of sphalerite samples (wt.%) ordered by Mn content and the main Raman modes.

Sector/Sample Type Samples Mn Fe Cd Cu Zn S SUM Calculated Formula xMn
(apfu)

(Mn,Fe)-S
(cm−1)

LO
Zn-S

(cm−1)

Core sample SGD_11_2 n.d. 4.72 n.d. n.d. 63.11 32.18 100 (Zn0.94Fe0.08)∑=1.02S0.98 0 299 330 350

Core sample SGD_11_1 n.d. 9.48 n.d. n.d. 58.48 32.05 100 (Zn0.87Fe0.16)∑=1.03S0.97 0 299 330 351

Core sample 5_SGD_10_2 0.75 4 0.03 n.d. 65.42 29.8 100 (Zn0.99Fe0.07 Mn0.01)∑=1.08S0.92 0.01 300 331 350

Core sample 5_SGD_10_1 0.98 2.79 0.14 n.d. 63.13 32.97 100 (Zn0.94Fe0.05 Mn0.02)∑=1.00S1.00 0.02 300 331 348

Core sample 5_SGD_10_3 1.22 3.50 0.72 n.d. 63.85 30.71 100 (Zn0.96Fe0.06 Mn0.02)∑=1.05S0.95 0.02 299 330 348

Sector 3 2_S3H2_2 3.49 5.4 n.d. n.d. 59.81 31.3 100 (Zn0.89Fe0.09 Mn0.06)∑=1.05S0.95 0.06 298 327 350

Sector 3 2_S3H2_1 7.22 2.23 n.d. n.d. 58.1 32.44 100 (Zn0.86Fe0.04 Mn0.13)∑=1.02S0.98 0.13 297 326 349

Sector 2 8_SGD_22a_1 7.55 0.24 0.4 n.d. 59.81 32 100 (Zn0.89 Mn0.13)∑=1.03S0.97 0.13 297 328 350

Sector 3 2_S3H2_3 7.92 3.57 n.d. n.d. 53.37 35.14 100 (Zn0.77Fe0.06 Mn0.14)∑=0.97S1.03 0.14 298 328 350

Sector 3 4_S3K5_1 9.55 0.56 0.13 n.d. 53.28 36.48 100 (Zn0.76Fe0.01 Mn0.16)∑=0.94S1.06 0.16 298 327 348

Sector 3 S3I1_1_1 10.22 0.46 n.d. n.d. 52.96 36.36 100 (Zn0.76Fe0.01 Mn0.17)∑=0.95S1.05 0.17 298 329 351

Sector 3 S3E4_1_4c 12.29 n.d. 0.16 n.d. 54.92 32.63 100 (Zn0.81 Mn0.21)∑=1.02S0.98 0.21 298 330 352

Sector 2 SG1_1_3 13.11 0.05 0.28 0.16 53.50 32.90 100 (Zn0.78 Mn0.23)∑=1.02S0.98 0.23 297 328 350

Sector 3 S3E4_1_4b 13.74 n.d. 0.49 n.d. 53.96 31.81 100 (Zn0.8 Mn0.24)∑=1.04S0.96 0.24 295, 307 sh 328 349

Sector 3 S3E4_1_4 14.10 0.24 0.03 n.d. 54.23 31.40 100 (Zn0.8 Mn0.25)∑=1.05S0.95 0.25 295, 307 sh 326 350

Structural formula calculated in atoms per formula unit (apfu) based on ∑atoms = 2; n.d. = not detected; sh—shoulder Raman peak.
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Figure 2. Photomicrographs of the samples observed under reflected light (a–f): (a) sphalerite with
chalcopyrite (Ccp) and pyrite (Py) inclusions; (b) subhedral sphalerite crystals in a Mn-rich calcite
and quartz vein replacing alabandite; (c–f) sphalerite crystals in massive alabandite in association
with galena (Gn), jordanite (Jrd), and bernarlottite (Bl); (d) sphalerite with galena, tetrahedrite (Ttr)
and bournonite (Bnn); (e) cross-polarized image of sphalerite crystals (Sp) presenting yellow internal
reflections in association with alabandite (Abd), Mn-rich calcite (Mn-Cal), and quartz (Qz).
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Figure 3. SEM backscattered images of sphalerite (Sp), where: (a,b) stage III sphalerite associated
with galena (Gn) and bournonite (Bnn); (c,d) stage II sphalerite in association with alabandite (Abd);
(e,f) stage I sphalerite in Mn-rich calcite (Mn-Cal) and quartz (Qz) veins, in association with galena.

4.2. Raman Spectroscopy and Band Assignments

The Raman spectra of the natural sphalerite samples from the Săcărâmb ore de-
posit showed typical first-order Raman modes with the main peaks at ~350, ~330, and
~300 (dominant) cm−1. Figure 4 shows the Raman spectra of Zn1−x MnxS with x in the
range 0 ≤ x ≤ 0.25 (Table 1). To the best of our knowledge, Raman data for natural Mn-rich
sphalerite have not been published so far.
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Figure 4. Raman spectra of the natural sphalerite samples from the Săcărâmb ore deposit. The spectra
are displaced vertically for clarity. The red line represents the deconvolution with Gaussian fitting for
sample S3E4_1-4 with xMn = 0.25.

The assignment of the Raman modes was based on previous studies [7,8,30], where the
LO mode (longitudinal optical) occurred at ~350 cm−1 and was due to the Zn–S vibration,
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while the Raman bands located at ~330 and ~300 cm−1 were assigned to metal–sulfur
modes (i.e., (Mn,Fe)-S vibrations). The deconvolution process with Gaussian fitting re-
vealed an additional mode for the Mn-rich Raman spectra, where a shoulder arose at
307 cm−1 (Figure 4).

The transverse optical (TO) mode arose only in one sample (S3E4_1-4b, Figure 4) at
269 cm−1. The Raman spectral domain was truncated to 500–250 cm−1 due to the lower
intensities of the acoustic modes (longitudinal and transverse (LA and TA), i.e., below
250 cm−1) and the combination modes, which arose at above 500 cm−1.

5. Discussion
5.1. Vibrational Characteristics of Mn-Substituted Sphalerite

In recent years, several Raman studies on natural [7–9] and synthetic [10,11] sphalerites
have pointed out systematic changes in spectroscopic parameters (e.g., peak shifts and
changes in relative intensity) due to the simple substitution of divalent ions for Zn in
sphalerite lattice sites. Moreover, a detailed spectroscopic investigation was carried out
by Zigone et al. [6] on ZnS synthetic crystals containing a small concentration (≈1%) of
transition elements, such as Fe, Mn, Co, Cr, and Ni. They found that the frequencies of all
new modes were found between LO and TO modes (i.e., impurity-induced modes), and
showed small differences in the measured frequencies for each of the above-mentioned
elements. These small differences can be attributed to the electronegativity [9] and mass
differences [10] of the cation substituted. Babedi et al. [11] established a relation between
the electronegativity of Fe, Mn, and Cd, versus the Raman peak located at around 300 cm−1.
Taking into account several vibrational studies on sphalerite containing variable amounts
of Mn, Cr, Cd, Fe, Co, and Ni [6,8–11], a strong correlation between the electronegativity of
the consequent metal–sulfide bond and Raman mode position can be extended as shown in
Figure 5. However, despite the lack of Raman data for sphalerites with indium and copper,
the wavenumber of these elements was inferred from the fit line (r = 0.91).
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For the sphalerite samples with an iron content up to 9.48 wt.% (Figure 4), the relative
intensities are consistent with Kharbish [8] and Buzatu et al. [9], who found that iron
content can be quantified by measuring the relative intensities and intensity ratios of the
following Raman modes: 350, 330, and 300 cm−1. In our study, the manganoferroan and
Mn-rich sphalerites did not show any change in terms of the relative intensities of any
Raman mode as a function of Mn concentration. Jiménez-Sandoval et al. [10] also showed
that both the intensities and frequencies of the TO and LO modes of synthetic Zn1−x MnxS
with different Mn (0 < x < 0.5) were independent of the Mn concentration. However,
Jiménez-Sandoval et al. [10] highlight variations in the relative intensities and line widths
of the impurity-induced modes at 300, 312, and 332 cm−1.

In this study, the peak positions of the natural Mn-rich sphalerite were observed to
vary with the composition (Figure 4) across an extended domain of Zn1−x MnxS with x
in the range 0 ≤ x ≤ 0.25. The observed range of peak positions was ~5 wavenumbers:
from 300 cm−1 (sample #SGD_11_2, xMn = 0) to 295 cm−1 (sample #S3E4_1_4, xMn = 0.25).
This shifting behavior started with contents exceeding 3 wt.% Mn (xMn = 0.06). Moreover,
the peak became broader with increasing manganese content. Figure 6 shows a strong
negative correlation (r = −0.84) between manganese content and the Raman wavenumbers.
Exploiting this relationship, the following linear equation of the first-order polynomial fit
was obtained:

xMn = (ω0 − 300.03013)÷−0.16375 (r = −0.84) (1)

where ω0 is the wavenumber value of the Raman band, and xMn is the manganese content
expressed in atom per formula unit (apfu).
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Due to the nature of the samples used in this study, most of the samples had mixed
compositions of Mn ± Fe with Zn1−x MxS (M = Mn, Fe), where x is in the range of
0.07 ≤ x ≤ 0.25. As previous studies [8,9] have already confirmed that iron contents do
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not exhibit the behavior described above, we postulate that the shift of the Raman peak
is due to the increase in Mn content. Moreover, it is worth mentioning that Zn correlates
negatively with Mn + Fe (correlation coefficient: r = −0.92; Figure 7a), suggesting that
it is replaced by both of them. Furthermore, Mn inversely correlates with Fe (r = −0.81,
Figure 7b). In natural sphalerites, the lattice is a dynamic system where different cations,
especially transition metals with a variable number of 3d electrons, are involved in the
hydrothermal fluids (i.e., Mn—3d5, Fe—3d6). Fregola et al. (2012) show that the presence
of transition elements with unpaired external electronic levels can cause large distortions
in tetrahedral and octahedral sites of spinel (belonging to the (Mg1−xCux)Al2O4 series)
due to the Jahn–Teller (JT) effect. It is worth mentioning the influence of the JT effect at
tetrahedral site Fe2+O4 in the structure of chromite [31], or in ferro-magnesian minerals [32].
The influence of the isomorphic substitution of zinc with other divalent cations (M2+) in
the tetrahedral site causes an increase in the reticular parameter a of the sphalerite unit
cell with increasing metal content [9,11,30,33,34], which is responsible for the structural
distortions in sphalerite lattice. Moreover, Vallin et al. [35] demonstrated the presence of JT
effects in the ZnS lattice, due to Cr2+ impurity centers. The different vibrational behavior
between Mn-doped samples of sphalerite [10] and natural Mn-rich sphalerite from the
present study would be a result of the nature of the samples or due to the resolution of
the spectrometer.
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This systematic peak-position shift towards lower wavenumbers with increasing Mn
content is mainly linked to the smaller ionic radius of Mn2+ (i.e., Mn2+ has a smaller
ionic radius than Zn2+) and polyhedral distortions in tetrahedral sites (MnS4), where the
symmetry reduces from Td to D2d. The local displacement of atoms in the crystal lattice of
natural sphalerites induced by Mn2+ ions is strongly related to the nature of the samples and
the physicochemical conditions during the precipitation and recrystallization of sphalerite.

Another argument for a reduction in symmetry consists of the splitting of the 300 cm−1

(295 cm−1 and the shoulder located at 307 cm−1; Figure 4) as a function of Mn concentration
starting with 13 wt.% Mn (xMn = 0.23). These polyhedral distortions are also responsible
for the widening of the Raman peaks of the Mn-rich sphalerites, located at 295 cm−1. A
similar interpretation can be drawn for the synthetic sphalerites dopped with Cd, where
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Babedi et al. [11] identify a new mode (i.e., “X mode” located at 295 cm−1), which increases
in intensity as a function of Cd concentration. Similar shifting and broadening for the
LO and TO modes was observed by Nien and Chen [36] at different Cu concentrations in
synthetic sphalerite lattice, who attributed this behavior to the interstitial location of the
Cu ions.

In addition, a moderate negative correlation (r = −0.54) between manganese content
and the Raman wavenumbers was also observed for the Raman peak located at ~330 cm−1

(Figure 4). The observed range of peak positions was ~4 wavenumbers: from 330 cm−1

(sample #SGD_11_2, xMn = 0) to 326 cm−1 (sample #S3E4_1_4, xMn = 0.25). This shifting
behavior started with contents exceeding 1.22 wt.% Mn (xMn = 0.02). Therefore, the Mn
content can be quantified (in apfu) by using the following linear equation:

xMn = (ω1 − 330.52448)÷−0.26516 (r = −0.54) (2)

where ω1 is the wavenumber value of the Raman band, and xMn is the manganese content
expressed in atom per formula unit (apfu).

On the other hand, the wavenumber of the LO mode located at 350 cm−1 is not a
function of the Mn content. The Raman peak located at 326 cm−1 is close to the frequency
of the so-called “B mode” (i.e., breathing mode) observed by Jiménez-Sandoval et al. [10] at
328 cm−1. They noticed that the frequency of this mode remains constant, and its intensity
increases as the manganese content increases.

According to Sombuthawee et al. [37], the MnS incorporation in the galena-type spha-
lerite structure is limited to 7 mol.%. In contrast, wurtzite (a high-temperature polymorph
of sphalerite) can absorb ~50 mol.% almost without temperature dependence [38]. To the
best of our knowledge, this is the highest Mn content (up to 14.1 wt.%) in sphalerite re-
ported within the Golden Quadrilateral ore deposits (up to 6.01 wt.% at Roşia Montană [39])
and the Baia Mare mining district (0.86 wt.% at Şuior [40]). Previously, Cook et al. [1] re-
ported up to 6.75 wt.% in Săcărâmb hydrothermal ore deposit. To date, higher contents of
manganese in sphalerite have been found in Ag-rich Santo Toribio epithermal deposits (up
to 14.5 wt.%; [41]) and the Tisovec skarn (up to 21.38 wt.%; [42]).

A moderate correlation (r = 0.51) between Fe and Mn was found by Damian et al. [40]
in hydrothermal sphalerites from ore deposits from the Baia Mare area. Cook et al. [1] also
reported a weak positive correlation between these two elements, mainly in individual
ore deposits or sample subsets. The linear correlation between Mn and Fe (i.e., r = −0.81)
in the sphalerites from Săcărâmb suggests the competitive character of these divalent
metals in the mineral–fluid interface. The substitution of Zn2+ ↔Mn2+ is accompanied by
Zn2+ ↔ Fe2+ substitution, and vice versa. Di Benedetto [43] showed that the presence of
Mn strongly depends on the Fe content in zoned crystals of sphalerites. They proposed that
the competition between Mn and Fe for the replacement of Zn is an internally controlled
mechanism during crystal growth, where Cd may influence the distribution of both Fe and
Mn. In the present study, ore microscopy and chemical analyses revealed the presence of
homogeneous sphalerite crystals, without compositional zoning and a neglectable low Cd
concentration (<0.72 wt.% Cd).

5.2. Implications for Metallogenesis of the Săcărâmb Ore Deposit

Based on our investigation and previous studies [15–17,20], the mineralization stages
of the Săcărâmb Au–Ag–Te deposit can be summarized as follows:

• Stage I is a high-temperature stage between 400 and 500 ◦C, dominated by common
sulfides disseminated in the altered andesitic neck.

• Stage II is characterized by temperatures between 350 and 400 ◦C; it is a more complex
stage with the presence of sulfosalts and the development of vein systems,

• Stage III is a Mn-rich stage; it is considered the main ore formation stage with temper-
atures between 200 and 300 ◦C, and alabandite as the main sulfide mineral, forming
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veins of up to 10 cm in diameter. In this stage, sphalerite crystals with the highest Mn
content were identified.

• Stage IV is a telluride- and sulfosalt-rich stage with lower temperatures between
150 and 230 ◦C, as presented by Dincă [20]. Sphalerite in this stage has a high Mn
concentration as in stage III; however, Fe and Cd are present in the composition.

• Stage V, the oxide and As-Sb stage, is the final mineralization stage in which glauch-
type ore is present with Mn oxides, realgar, orpiment, stibnite, and native Au. The
formation temperature is between 100 and 150 ◦C.

The Mn concentrations in sphalerite are strongly affected by redox conditions [44,45],
with high Mn generally reflecting a reduced environment [45,46]. Variations in MnS content
in sphalerite may reflect variations in the activity of MnS in the fluid and in physicochemical
conditions during precipitation. Additionally, variation in the mol.% MnS of sphalerite
coexisting with alabandite reflects the variability of the sulfidation state.

The precipitation and recrystallization of sphalerite presumably occurred under similar
Eh-pH conditions as alabandite. The non-separation of Mn from Fe might have resulted
from low Eh, which kept Mn and partly Fe in a divalent state, thus enabling the primary
formation of Mn–Fe-rich sphalerite in stages II and III (Figure 8, type 3). It is suggested that
in nature, the presence of Mn-rich sphalerite is strongly related to the cogenetic Mn minerals
associated with ore deposits. Mn-rich sphalerites have been discovered in two types of
hydrothermal deposits: (i) Mn skarn deposits, in which the sphalerites are associated
with Mn–Fe spinels, Mn carbonates, and alabandite [42,47]; and (ii) in epithermal Au-Ag
deposits in association with alabandite and Mn carbonates [20,39,41]. The presence of
Mn carbonates (i.e., rhodochrosite and manganocalcite) is a common diagnostic feature to
discern IS from LS epithermal deposits [48,49].
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Mare area [40], and Roşia Montană [39].
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In the case of the Săcărâmb ore deposit, one of the reasons for variable concentrations
of Mn, Fe, and Cd in sphalerites could be the fluid throttling and boiling at stages III and
IV, induced by the vertical ascent of hydrothermal fluid combined with the interaction with
the sedimentary and volcanic rocks [16]. However, the principal connection between Mn
and sphalerite consists of the presence of alabandite as the main source of Mn. Based on the
spatial relationships and textural characteristics between alabandite and sphalerites, it can
be suggested that two types of formation processes have been involved in Mn enrichment.
The first process was the hydrothermal coprecipitation of alabandite with Mn-sphalerite,
galena, tellurides, and Pb-Sb/As sulfosalts in a low-sulfidation environment (Figure 8,
type 1). A sulfide resurgence induced the second formation process in a carbonate-rich
and low-sulfur fluid that dissolved the main Mn ore and reprecipitated a more chemically
complex sphalerite in association with pyrite, galena Ag-Cu sulfosalts, tellurides, and
alabandite (Figure 8, type 3).

6. Conclusions

The following conclusions can be drawn:

1. Natural sphalerites of Zn1−x MxS (M = Mn, Fe), where x is in the range of 0.07 ≤ x ≤ 0.25,
were analyzed by means of SEM-EDS and Raman spectroscopy. The sphalerite samples
contain an extensive amount of Mn (between 0 and 14.10 wt.%), which is the largest
concentration of Mn in sphalerites from Romanian territory.

2. New Raman spectra of natural Mn-rich sphalerites are presented for the first time.
The results obtained in the present study provide Mn estimation by determining the
positions of the 330 and 300 cm−1 Raman bands. Accordingly, two linear equations
were obtained. In this regard, the present study has revealed the usefulness of
Raman spectroscopy for (semi)quantitative measurements of Mn concentration in
natural sphalerites.

3. This systematic peak-position shift towards lower wavenumbers with increasing Mn
content is mainly linked to the smaller ionic radius of Mn2+ and polyhedral distortions
in tetrahedral sites (MnS4) where the symmetry reduces from Td to D2d.

4. In this study, three genetic types of sphalerites were identified: from ferroan
(Zn0.87Fe0.16)∑=1.03S0.97 to manganoferroan (Zn0.77Mn0.14Fe0.06)∑=0.97S1.03, as well
as mangan-rich (Zn0.8Mn0.25)∑=1.05S0.95 compositions.

5. Mn-sphalerites are strongly connected to the presence of alabandite in mineralized
assemblages.

6. The formation of several types of sphalerites in the Săcărâmb Au–Ag–Te ore de-
posit was caused by the succession of different types of hydrothermal fluids and
the interaction between the fluids and the host material (host rocks and earlier
mineralized stages).
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