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Abstract: The Jinba deposit is an orogenic gold deposit located in the Markakuli shear zone, in the
southern part of the Altay orogenic belt, northwestern China. Several granite and diorite dykes are
present in the area of the mine, with ore bodies occurring in the diorite dykes. However, the diagenetic
age, genesis, and evolution of these magmas, and the tectonic setting of the dyke emplacement process,
remain unclear. The present study is based on a detailed geological survey, zircon U–Pb dating,
Lu–Hf isotopes, and geochemical analysis of the granitic and diorite dykes. The crystallization ages
of the granitic and diorite dykes are 384.5 ± 1.2 Ma and 393.9 ± 3.5 Ma, respectively, which indicates
formation in the Early to Middle Devonian. Zircon εHf(t) values of the granitic and diorite dykes are
1.43 to 5.2 and −4.47 to −1.18, respectively, with a corresponding two-stage model of depleted mantle
(TDM2) ages of 1046 to 1285 Ma and 1242 to 2623 Ma, respectively. This indicates that the granitic
and diorite dykes were formed by the mixing of mantle magma and crustal materials to varying
degrees, and diorite dykes are more obviously contaminated by the lower crust. Geochemical analysis
shows that the granite dykes have a high SiO2 (72.51%–74.87%) and moderate Al2O3 (12.88%–14.04%)
content, a total alkali of (K2O + Na2O = 5.51%–6.44%), and aluminous (A/CNK = 1.0–1.02). Granite
dykes are enriched in LREE and Th, U, and Pb, and depleted in P, Sr, and Nb elements, with clear Eu
negative anomalies (δEu = 0.62~0.66). The SiO2 content of diorite dykes is 51.48%–53.71%, Al2O3

contents are high (14.70%–15.99%), K2O is 1.94%–2.54%, Na2O is 2.97%–3.96%, MgO contents are
high (5.15%–6.46%), and TFe2O3 is (13.42%–15.13%), enriched Sr, U, Pb, deficient Th elements, rare
earth fractionation is not obvious, and Eu anomaly is not obvious (δEu = 0.93~1.1). We conclude that
the Early to Middle Devonian magmatism in the southern margin of Altay (which corresponds to the
Jinba gold deposit) may have formed in an island arc-related subduction environment.

Keywords: Altay orogenic belt; geochemistry; zircon U–Pb; Hf isotopes; Jinba gold deposit

1. Introduction

The Altay orogenic belt is located at the junction of China, Mongolia, Russia, and
Kazakhstan, and is an important part of the Central Asian Orogenic Belt (CAOB) [1–6].
The CAOB experienced Paleozoic accretion and Meso-Cenozoic intracontinental orogene-
sis [7–10]. It is characterized by complex tectonic and orogenic activity, frequent magmatic
activity, and an extensive distribution of intrusive rocks, volcanic rocks, and subvolcanic
rocks. This makes the CAOB, and specifically the Altay area, ideal for the study of tectonic
evolution, crustal accretion, and mineralization–tectonics relationships. Indeed, there has
been a great deal of research on the intrusive, volcanic, and subvolcanic rocks in the area;
however, there are differing opinions on the formation age, source, and evolution of the
magmatic materials, tectonic environment, and its relation to mineralization [11–17].

The Jinba gold deposit is located in the back arc basin of the Kelan in the southern
margin of the Altay orogenic belt. Studies on the deposit mainly focus on its geological
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characteristics, genesis, metallogenic chronology, and exploration potential [18–22]. How-
ever, there is little research on the magmatic rocks of the Jinba deposit, especially on granitic
and diorite dykes. It is worth noting that some ore bodies of the Jinba gold deposit occur
within diorite dykes. In addition, the relationship between the magmatic activity of these
dykes and the mineralization at Jinba is not clear at present. The granitic and diorite dykes
are specifically located in the Habahe pluton, which is the largest intrusive body in the area.

The Habahe pluton is located on the northeastern side of the Markakuli fault, with an
irregular-shaped outcrop area of approximately 180 km2 [23]. It is a complex massif formed
all at once and is mainly composed of medium and coarse-grained tonalite. The study
of these dykes plays an important role in the geochronology, mantle origin, and tectonic
evolution of the southern Altay, and provides important information on the relationship
between the dykes and the coeval intrusive rocks in the area. The age, genesis, and tectonic
setting of these dykes is clarified by the comprehensive study of whole-rock geochemical
composition, zircon U–Pb chronology, and zircon Lu–Hf isotope data provided in the
present study. Based on the results of this study and the available data for magmatic
rocks in the southern Altay margin, their Devonian tectonic setting is discussed in order to
provide insight into the relationship between dykes and mineralization and the tectonic
evolution of the southern margin of the Altay orogenic belt.

2. Regional Geology

The Jinba deposit is located near the border between China and Kazakhstan and
is the extension of the metallogenic belt in the Kazakhstan mining area. Exposed strata
mainly include littoral and neritic sedimentary rocks of the Middle and Lower Devonian
Tuokesalei formation. Volcano-sedimentary rocks are intercalated with carbonate rocks in
the Middle Devonian Ashele formation. The intermediate-acid volcanic rocks of the Upper
Devonian Qiye formation are in angular unconformity with the overlying and underlying
strata [24]. Quaternary sediments are also present in the area. Fracture development is
widespread in the area, with structures present in the northern and western parts of the
area, and near north-to-south structures. The region’s largest tectonic structure is the Irtysh
fault zone, which divides the Siberian plate and the Kazakhstan–Junggar plate, as shown in
Figure 1B [25]. The secondary fault system of the Irtysh fault zone, the Markakuli shear zone,
affects the spatial distribution of intrusive rocks and ore deposits [26]. Magma activity
is frequent in the area, and plutonic intrusive rocks and volcanic rocks are developed.
Ultrabasic, basic, and acidic plutonic rocks are exposed, mainly middle to late Variscan
intermediate-acidic and acidic units, which are mainly distributed along both sides of the
Markakuli fault in the form of bedrock and rock strata and intruding into the strata of
the Tuokesalei and Ashele formations. Basic to acidic outcrops occur in the form of rock
strata, and the rock mass is relatively complex and small in area. There are also acidic,
intermediate, and basic dykes and wall rocks distributed along the direction of the regional
fault zone. The volcanic rocks crop out to the northeast of the Markakuli fault, with a
NWN-SE distribution. They are mainly intermediate-acidic and intermediate units, with
few basic rocks [27]. The Ashele copper-zinc deposit, Zhelande, Saidu, Tuokuzibayi, and
Jinba gold deposits have been discovered in the area. (Figure 1A).

At present, six ore bodies have been proved in the Jinba deposit [21] (Figure 2A).
Mineralization types can be divided into altered-rock type and quartz-vein type. Altered-
rock-type orebodies mainly occur in altered diorite dykes, which are vein-like or lenticular,
including orebodies I, II, III, and V (Figure 2B).
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3. Analytical Methods
3.1. Sample Descriptions

The granite dyke intrudes into the Habahe pluton, Habahe County, northwest China.
Their hand specimens are predominantly grayish white, with rough granite structures and
massive structures (Figure 3A). The main mineral composition is feldspar (60%), quartz
(30%), biotite (10%), and a small amount of hornblende. Quartz contains a small amount of
basic mineral inclusions, mainly biotite and hornblende (Figure 3B). The main accessory
minerals are zircon, apatite, and magnetite.
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Figure 3. Hand specimen and photomicrographs of rocks from Jinba gold deposit. (A)—Granite
dyke hand specimen, (B)—Photomicrograph of the granite dyke, (C)—Diorite dyke hand spec-
imen, (D)—Photomicrograph of the diorite dyke. Q—quartz; Pl—plagioclase; Kfs—K-feldspar;
Hbl—hornblende; Bt—biotite.

Diorite dykes are gray in color, with variable complementary semi-idiomorphic
granular structure and massive structure (Figure 3C). Plagioclase: 60%, euhedral, semi-
euhedral plate, poly-flake double crystal, sodium compound double crystal development,
plate length 0.2–1.2 mm, scattered distribution. Hornblende: 35%, columnar, granular,
less with hexagonal geometric section, hornblende cleavage development, particle size
0.15–1.2 mm, scattered distribution. Quartz: small amount, xenomorphic granular, par-
ticle size 0.1–0.5 mm, star-dot distribution. Apatite: small amount, columnar, granular.
Opaque minerals: 2%–3%, xenomorphic granular and irregular granular (Figure 3D). More
distributed in hornblende edge.

3.2. LA-ICP-MS Zircon U–Pb Geochronology

Zircon grains were separated from the diorite and granite samples by conventional
magnetic and density techniques. Zircon grains free of visible inclusions and fractures were
handpicked, embedded in epoxy resin, and polished to expose grain centers. The polished
grains were further examined by cathodoluminescence (CL) imaging using a JXA-8100
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electron microprobe at the Langfang Regional Geological Survey, Langfang, China. Zircon
U–Pb dating and trace element analyses were performed at the Beijing Yandu Zhongshi
Testing Technology Co. LTD (Beijing, China) using a Brooke M90 ICP-MS. The detailed
method has been described by Liu et al., [28]. Data acquisition time was ~20–30 s for blank
signal and ~50 s for sample signal. Data processing was carried out with ICPMS Data
Cal software [28]. U–Pb isotope fractionation effects were calibrated using zircon 91500
as the external standard [29], and NIST 610 glass was used for instrument optimization.
Analytical data are presented on U–Pb concordia diagrams with 2σ errors, and weighted
mean ages are quoted at the 95% confidence level using ISOPLOT software [30].

3.3. Major and Trace Element Analyses

The major and trace element contents of 5 diorite samples and 5 granite samples
were obtained at ALS Mineral-ALS Chemex in Guangzhou, China. The samples were
first crushed with a steel-jaw crusher and then ground to 200 mesh with an agate mortar.
Major elements were analyzed by X-ray fluorescence ME-XRF26X, and trace element con-
centrations were determined by rare earth mass spectrometry (ME-MS81) and inductively
coupled plasma atomic emission spectrometry. A mixture of HF and HNO3 was added to
the melted sample and tartaric acid digestion was performed according to the analytical
method of [31] (Method ME-MS61). The samples were stored at 190 ◦C for 48 h with indium
as internal standard and the China National Standard sample as monitoring sample. The
analysis accuracy of major and trace elements (REE) is better than 5% and 10%, respectively.
Ignition losses (LOI) for all samples were obtained by heating them in a pre-fired silicon
crucible at 1000 ◦C for 1 h and recording the percentage of weight loss.

3.4. In Situ Zircon Lu–Hf Isotope Analysis

Zircon Lu–Hf isotope analysis of previous U–Pb sites was performed using a Neptune
Plus MC-ICP-MS and a New Wave UP 213 laser ablation detector. The work was conducted
at the Beijing Yandu Zhongshi Testing Technology Co., LTD. Beam diameter was 45 µm and
laser repetition rate was 10 Hz. Helium and argon were, respectively, used as carrier gas
and supplementary gas for analysis. The international zircon standard GJ1 was adopted
as the external standard. Operating conditions were provided by [32,33]. Using 91500,
MON, and GJ-1 as reference standards, the recommended 176Hf/177Hf ratios are 0.282307,
0.282739, and 0.282015, respectively. It is assumed that the average crustal 176Lu/177Hf ratio
is 0.015, and the current chondritic 176Hf/177Hf and 176Lu/177Hf ratios are 0.282772 and
0.0332, respectively. 176Lu/177Hf ratios in the mean mantle are 0.28325 and 0.0384 [34,35].
The decay constant of 176Lu is 1.865 × 10−11 year−1 [36].

4. Results
4.1. Zircon U–Pb Ages

Zircon LA-ICP-MS, U–Pb dating, and trace element analysis results are shown in
Table 1. Most of the zircon specimens in the samples studied show similar signatures.
Zircon grains in the samples are irregular in shape (Figure 4). Grain sizes range from 50
to 200 µm with aspect ratios of 1:1 to 2:1. CL imaging reveals that most grains have fine
oscillatory growth zones, which suggest a magmatic origin [37].
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Table 1. LA-MC-ICP-MS U–Pb data of zircons from granite and diorite dykes of the Jinba
gold deposit.

Sample
238U 232Th Th

/U
207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U

×10−6 ×10−6 Ratio 1σ Ratio 1σ Ratio 1σ Age (Ma) 1σ Age (Ma) 1σ Age (Ma) 1σ

JB1-04 333 162 0.49 0.0550 0.0015 0.4599 0.0119 0.0606 0.0006 412.4 62 384.2 8 379.6 4
JB1-24 499 302 0.61 0.0543 0.0010 0.4545 0.0088 0.0607 0.0006 384.4 43 380.4 6 379.6 4
JB1-01 496 477 0.96 0.0549 0.0007 0.4613 0.0074 0.0609 0.0006 407.9 30 385.1 5 381.0 3
JB1-07 449 288 0.64 0.0559 0.0014 0.4683 0.0118 0.0609 0.0008 446.9 55 390.0 8 386.5 5
JB1-16 305 197 0.65 0.0547 0.0013 0.4602 0.0110 0.0610 0.0007 400.7 52 384.4 7 381.6 4
JB1-05 353 173 0.49 0.0553 0.0010 0.4648 0.0084 0.0610 0.0004 422.4 38 387.6 5 381.9 3
JB1-18 431 241 0.56 0.0546 0.0010 0.4603 0.0079 0.0611 0.0005 397.7 39 384.5 5 382.1 3
JB1-17 404 269 0.67 0.0529 0.0009 0.4473 0.0080 0.0612 0.0005 325.7 39 375.4 5 383.2 3
JB1-11 368 196 0.53 0.0535 0.0009 0.4522 0.0079 0.0613 0.0005 349.9 39 378.8 6 383.5 3
JB1-14 396 199 0.50 0.0554 0.0009 0.4675 0.0077 0.0613 0.0005 426.6 36 389.5 5 383.6 3
JB1-09 415 194 0.47 0.0548 0.0008 0.4640 0.0069 0.0614 0.0005 404.2 31 387.0 5 384.2 3
JB1-06 462 271 0.59 0.0560 0.0007 0.4732 0.0065 0.0615 0.0005 450.5 28 393.4 5 384.7 3
JB1-10 384 186 0.49 0.0545 0.0007 0.4608 0.0062 0.0615 0.0005 389.9 28 384.8 4 384.8 3
JB1-03 424 236 0.56 0.0555 0.0007 0.4693 0.0063 0.0615 0.0005 430.8 29 390.7 4 384.8 3
JB1-19 564 372 0.66 0.0543 0.0009 0.4616 0.0082 0.0615 0.0005 384.2 36 385.3 6 384.9 3
JB1-08 515 293 0.57 0.0550 0.0009 0.4658 0.0069 0.0616 0.0005 410.9 35 388.3 5 385.1 3
JB1-29 745 509 0.68 0.0550 0.0009 0.4673 0.0075 0.0616 0.0006 414.2 35 389.3 5 385.1 3
JB1-02 433 280 0.65 0.0542 0.0009 0.4599 0.0078 0.0616 0.0005 380.4 39 384.2 5 385.1 3
JB1-23 442 230 0.52 0.0540 0.0010 0.4586 0.0075 0.0616 0.0005 370.6 41 383.3 5 385.3 3
JB1-13 440 256 0.58 0.0544 0.0007 0.4619 0.0074 0.0616 0.0007 388.3 30 385.6 5 385.4 4
JB1-22 513 271 0.53 0.0546 0.0008 0.4640 0.0066 0.0617 0.0006 397.8 31 387.0 5 385.9 3
JB1-28 550 314 0.57 0.0538 0.0009 0.4582 0.0069 0.0618 0.0006 361.8 37 383.0 5 386.4 4
JB1-27 586 355 0.61 0.0544 0.0007 0.4642 0.0059 0.0618 0.0005 387.1 27 387.1 4 386.5 5
JB1-21 524 318 0.61 0.0542 0.0006 0.4625 0.0058 0.0618 0.0005 381.2 25 386.0 4 386.5 3
JB1-15 417 188 0.45 0.0543 0.0007 0.4621 0.0065 0.0618 0.0005 381.6 31 385.7 5 386.6 3
JB1-26 445 215 0.48 0.0553 0.0010 0.4709 0.0079 0.0618 0.0006 425.5 39 391.8 5 386.7 4
JB1-20 976 789 0.81 0.0547 0.0006 0.4661 0.0047 0.0618 0.0005 401.8 24 388.5 3 386.8 3
JB1-12 470 245 0.52 0.0537 0.0006 0.4588 0.0058 0.0619 0.0005 359.4 27 383.4 4 387.4 3
JB1-25 464 188 0.40 0.0539 0.0013 0.4610 0.0132 0.0620 0.0008 364.8 56 385.0 9 387.5 5
JB2-06 515 318 0.62 0.0559 0.0009 0.4902 0.0024 0.0628 0.0002 412.7 41 397.9 4 393.6 3
JB2-04 316 186 0.59 0.0554 0.0012 0.4852 0.0074 0.0625 0.0004 404.7 46 386.1 6 394.8 3
JB2-11 335 167 0.50 0.0544 0.0011 0.4765 0.0113 0.0631 0.0009 383.3 47 393.5 5 391.1 5
JB2-09 475 144 0.30 0.0548 0.0013 0.4713 0.0146 0.0629 0.0007 405.1 68 382.6 8 392.1 4
JB2-01 289 137 0.47 0.0570 0.0009 0.4914 0.0086 0.0626 0.0005 491.2 36 405.8 6 391.4 3
JB2-02 413 269 0.65 0.0552 0.0012 0.4772 0.0103 0.0627 0.0005 420.1 48 396.2 7 392.2 3
JB2-03 741 511 0.69 0.0555 0.0010 0.4823 0.0091 0.0630 0.0008 433.3 41 399.6 6 393.9 5
JB2-05 488 222 0.46 0.0542 0.0012 0.4702 0.0098 0.0632 0.0007 377.6 50 391.3 7 394.9 4
JB2-08 375 236 0.63 0.0547 0.0014 0.4781 0.0052 0.0627 0.0009 420.1 53 396.0 10 394.4 6
JB2-12 647 397 0.61 0.0569 0.0006 0.4883 0.0103 0.0628 0.0010 386.8 23 399.0 6 392.3 3
JB2-10 351 208 0.59 0.0553 0.0011 0.4799 0.0114 0.0632 0.0006 384.3 35 393.7 5 393.3 5
JB2-07 379 237 0.62 0.0548 0.0015 0.4751 0.0067 0.0628 0.0009 417.5 25 394.3 3 393.2 5
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4.1.1. Granite Dykes

The 232Th content of zircons found in granite ranges from 197,307 to 789,253 ppb, 238U
content ranges from 305,346 to 975,726 ppb, and Th/U ratios are between 0.40 and 0.96.
Twenty-nine zircon grains fall in the range of 379.6–386.8 Ma with a weighted mean age of
384.5 ± 1.2 Ma (MSWD = 0.42, n = 29) (Figure 5A), which we interpret as the emplacement
age of the granitic dykes.
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4.1.2. Diorite Dykes

The 232Th content of zircons found in diorite ranges from 137,202 to 510,852 ppb, 238U
content ranges from 289,041 to 741,002 ppb, and Th/U ratios are between 0.30 and 0.69.
Twelve zircon grains fall in the range of 394.9–391.1 Ma with a weighted mean age of
393.0 ± 2.2 Ma (MSWD = 0.10, n = 12) (Figure 5B), interpreted as the emplacement age of
the diorite dykes.

4.2. Zircon Hf isotopic compositions

Zircon Hf isotopic analysis results are shown in Table 2 and Figure 6. The values of
176Yb/177Hf and 176Lu/177Hf range from 0.035134 to 0.076424, and 0.001353 to 0.002847, re-
spectively. Zircon εHf(t) values of granite range from 1.43 to 5.2, with an average of 3.24. The
corresponding TDM2 model ages range from 1046 to 1285 Ma, with an average of 1171 Ma.
The values of 176Yb/177Hf and 176Lu/177Hf are 0.029446–0.112701 and 0.001033–0.004123,
respectively. The zircon εHf(t) of diorite dykes is between −4.47 and −1.18, with an average
of −2.59. Corresponding TDM2 model ages range from 1242 to 1668 Ma, with an average of
1464 Ma. Thus, it can be seen from the above data that the granitic dyke material originated
from the depleted mantle and was mixed with partially molten crust, while the diorite
dyke material was derived from the lower crust (Figure 6).
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Table 2. Hf isotope data of zircon from granite and diorite dykes of the Jinba gold deposit.

Sample No Age 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) TDM1 TDM2 fLu/Hf

JB-1-01 381 0.038611 0.000855 0.001452 0.000032 0.282642 0.000023 −4.60 3.42 874 1157 −0.96
JB-1-02 385.1 0.027714 0.000329 0.001070 0.000013 0.282621 0.000024 −5.33 2.87 895 1195 −0.97
JB-1-03 384.8 0.048592 0.000146 0.001783 0.000006 0.282650 0.000024 −4.30 3.71 870 1141 −0.95
JB-1-04 379.6 0.045428 0.001634 0.001614 0.000058 0.282646 0.000023 −4.46 3.48 873 1151 −0.95
JB-1-05 381.9 0.067268 0.001984 0.002409 0.000050 0.282640 0.000025 −4.65 3.14 900 1175 −0.93
JB-1-06 384.7 0.051168 0.000476 0.001908 0.000012 0.282693 0.000022 −2.78 5.20 811 1046 −0.94
JB-1-07 386.5 0.047940 0.000193 0.001745 0.000008 0.282638 0.000028 −4.75 3.31 887 1168 −0.95
JB-1-08 385.1 0.051441 0.000546 0.001808 0.000018 0.282650 0.000026 −4.33 3.69 872 1143 −0.95
JB-1-09 384.2 0.058729 0.000897 0.002124 0.000035 0.282635 0.000025 −4.86 3.05 901 1182 −0.94
JB-1-10 384.8 0.044939 0.001281 0.001688 0.000052 0.282659 0.000021 −3.99 4.05 855 1119 −0.95
JB-1-11 383.5 0.035134 0.000219 0.001368 0.000009 0.282618 0.000022 −5.45 2.65 906 1207 −0.96
JB-1-12 387.4 0.053721 0.000940 0.001962 0.000027 0.282632 0.000024 −4.94 3.08 900 1183 −0.94
JB-1-13 385.4 0.054529 0.000811 0.001947 0.000025 0.282652 0.000026 −4.26 3.73 872 1140 −0.94
JB-1-14 383.6 0.057263 0.000913 0.001987 0.000024 0.282687 0.000022 −3.02 4.91 823 1064 −0.94
JB-1-15 386.6 0.038809 0.000141 0.001353 0.000005 0.282642 0.000027 −4.58 3.58 871 1151 −0.96
JB-1-17 383.2 0.060300 0.001188 0.002222 0.000050 0.282611 0.000024 −5.70 2.16 938 1238 −0.93
JB-1-18 382.1 0.076424 0.000684 0.002847 0.000026 0.282628 0.000025 −5.09 2.60 929 1209 −0.91
JB-1-19 384.9 0.051151 0.000905 0.001949 0.000027 0.282587 0.000023 −6.54 1.43 965 1285 −0.94
JB-1-21 386.5 0.053689 0.000318 0.002056 0.000007 0.282613 0.000024 −5.63 2.35 931 1229 −0.94
JB-2-02 396.2 0.032874 0.000340 0.001228 0.000007 0.282407 0.000025 −12.90 −4.47 1201 1668 −0.96
JB-2-03 399.6 0.112701 0.001062 0.004123 0.000018 0.282499 0.000028 −9.65 −2.21 1161 1516 −0.88
JB-2-05 391.3 0.045189 0.001260 0.001745 0.000044 0.282603 0.000020 −5.99 −2.22 938 1242 −0.95
JB-2-06 397.9 0.055345 0.000982 0.001929 0.000040 0.282605 0.000029 −5.91 −3.51 939 1393 −0.94
JB-2-10 393.7 0.029446 0.000385 0.001136 0.000011 0.281869 0.000030 −31.93 −14.93 1949 2623 −0.97
JB-2-12 399.0 0.031049 0.000368 0.001033 0.000007 0.282431 0.000025 −12.04 −1.18 1161 1545 −0.97

εHf(t) = 10,000 × {[(176Hf/177Hf)S − (176Lu/177Hf)S × (eλt − 1)]/[(176Hf/177Hf)CHUR,0 − (176Lu/177Hf)CHUR

× (eλt − 1)] − 1}. TDM = 1/λ × ln{1 + [(176Hf/177Hf)S − (176Hf/177Hf)DM]/[(176Lu/177Hf)S −
(176Lu/177Hf)DM]}. fLu/Hf = (176Lu/177Hf)S/(176Lu/177Hf)CHUR − 1. where, λ = 1.867 × 10−11 year−1

(Soderlund et al. [38]); (176Lu/177Hf)S and (176Hf/177Hf)S are the measured values of the sam-
ples; (176Lu/177Hf)CHUR = 0.0332 and (176Hf/177Hf)CHUR,0 = 0.282772 (Blichert-Toft and Albarède, 1997);
(176Lu/177Hf)DM = 0.0384 and (176Hf/177Hf)DM = 0.28325 (Griffin et al. [32]); (176Lu/177Hf)mean crust = 0.015;
fs = fLu/Hf; fDM = [(176Lu/177Hf)DM/(176Lu/177Hf)CHUR] − 1; t = crystallization time of zircon.
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Guo et al. [39]).

4.3. Major and Trace Elements
4.3.1. Major Elements

Elemental analysis data of granite and diorite dykes are shown in Table 3. The
results show that SiO2 and Al2O3 contents of granite dykes are 72.51~74.87 wt%, and
12.88~14.04 wt%, respectively. Samples show A/CNK: 1.00~1.02, a Rittman index of
1.08~1.49, K2O + Na2O of 5.51%~6.44%, P2O5 of 0.05%~0.06%, and CaO of 2.50%~2.89%.
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Table 3. Major (%) and trace element (ppm) data from granite and diorite dykes of the Jinba
gold deposit.

Sample No. JB-1 JB-2 JB-3 JB-4 JB-5 JB-6 JB-7 JB-8 JB-9 JB-10

Rock Type Granite Dykes Diorite Dykes
Age 384 Ma 393 Ma

SiO2% 74.87 73.32 73.51 72.82 72.51 53.71 51.61 51.48 53.05 52.18
TiO2% 0.22 0.23 0.23 0.26 0.25 1.62 1.66 1.86 1.60 1.76

Al2O3% 12.88 13.02 13.36 14.04 13.08 15.03 14.70 15.99 14.96 14.84
TFe2O3% 2.75 2.76 3.09 3.08 3.09 14.04 15.13 13.42 14.82 14.55

MnO% 0.06 0.06 0.07 0.04 0.07 0.21 0.25 0.25 0.23 0.23
MgO% 0.65 0.65 0.77 0.63 0.69 5.61 5.60 6.46 5.15 5.88
CaO% 2.63 2.66 2.84 2.50 2.89 3.23 3.40 3.34 3.38 3.44

Na2O% 3.14 3.24 3.44 4.46 3.11 3.26 3.15 3.96 2.97 3.62
K2O% 2.66 2.53 2.12 1.98 2.40 2.54 2.10 1.96 1.94 1.98
P2O5% 0.05 0.05 0.05 0.06 0.05 0.21 0.16 0.19 0.17 0.18
LOI% 0.66 0.74 0.99 0.90 0.88 0.97 1.26 0.83 0.82 0.96
Total% 100.57 99.31 100.28 100.97 100.97 100.43 99.02 99.74 99.09 99.62

A/CNK 1.00 1.00 1.02 1.00 1.01 1.07 1.08 1.09 1.14 1.03
Mg# 31.9 31.8 33.0 28.8 30.7 44.2 42.3 48.8 40.78 44.5

V µg/g 32 36 38 43 41 329 418 306 390 335
Cr µg/g 10 20 20 30 20 10 20 10 10 20
Ni µg/g 2.3 2.2 2.3 3.0 2.6 4.9 6.7 6.1 4.8 5.0
Ga µg/g 11.5 11.9 12.0 11.6 12.2 16.8 19.7 17.8 20.7 19.3
Rb µg/g 86.0 90.7 71.1 75.6 92.1 87.2 81.7 64.9 50.0 67.2
Sr µg/g 130.5 102.5 160.5 188 113.5 155.5 128.5 168.5 162 159.4
Y µg/g 21.4 22.5 22.7 23.4 23.8 28.0 27.6 29.9 28.3 28.2
Zr µg/g 97 116 120 116 106 77 63 84 73 82
Nb µg/g 5.8 6.3 6.3 7.6 6.7 2.8 1.8 2.6 2.3 2.6
Cs µg/g 1.59 2.25 1.34 1.04 2.42 5.40 5.08 4.47 4.98 5.18
Ba µg/g 378 355 393 361.5 311 68.4 69.5 51.1 80.7 70.4
La µg/g 20.7 20.8 21.5 17.6 19.4 5.1 4.2 4.8 4.6 4.7
Ce µg/g 40.0 40.5 41.9 36.1 38.6 14.3 11.6 13.6 12.2 12.3
Pr µg/g 4.40 4.37 4.70 4.34 4.46 2.16 1.89 2.14 2.11 2.15
Nd µg/g 15.0 14.9 16.5 15.9 15.6 10.7 9.6 10.9 10.6 10.0
Sm µg/g 2.77 2.75 3.01 3.53 3.14 3.56 3.28 3.52 3.48 3.39
Eu µg/g 0.57 0.54 0.62 0.71 0.60 1.21 1.32 1.41 1.41 1.35
Gd µg/g 2.48 2.49 2.75 3.47 2.83 4.44 4.44 4.73 4.41 4.54
Tb µg/g 0.41 0.41 0.43 0.58 0.47 0.79 0.74 0.82 0.75 0.75
Dy µg/g 2.54 2.75 2.81 3.83 3.15 5.21 5.04 5.53 5.12 5.38
Ho µg/g 0.57 0.60 0.63 0.83 0.69 1.12 1.09 1.21 1.09 1.13
Er µg/g 1.72 1.91 1.88 2.68 2.14 3.21 3.17 3.44 3.21 3.24
Tm µg/g 0.29 0.33 0.31 0.44 0.36 0.50 0.47 0.52 0.50 0.49
Yb µg/g 2.03 2.24 2.22 2.26 2.56 3.17 3.07 3.41 3.30 3.38
Lu µg/g 0.34 0.37 0.37 0.53 0.43 0.48 0.45 0.49 0.48 0.44
Hf µg/g 2.8 3.2 3.3 3.4 3.1 2.1 1.9 2.3 2.0 2.0
Ta µg/g 0.50 0.54 0.47 0.58 0.57 0.15 0.11 0.16 0.13 0.14
Th µg/g 7.40 7.95 7.01 7.31 7.39 0.55 0.46 0.56 0.51 0.55
U µg/g 2.4 2.0 2.6 2.7 2.4 0.2 0.3 0.4 0.2 0.3
δEu 0.66 0.63 0.66 0.62 0.62 0.93 1.06 1.06 1.1 1.05

ΣLREE/ΣHREE 8.04 7.55 7.74 5.01 6.48 1.96 1.73 1.8 1.82 1.75
LaN/YbN 7.31 6.66 6.95 5.87 5.44 1.15 0.98 1.01 1.00 1.00

LOI = Loss on ignition. Mg# = Molecular Mg/(Mg + Fe). Fe2O3T are total iron. Normalizing values af-
ter Sun and McDonough (1989). Metaluminous and peraluminous fields, and diorite dykes fall within the
hyperaluminous range.

The SiO2 and Al2O3 contents of the diorite dykes are 51.48~53.71 wt% and 14.70~15.99 wt%,
respectively. These dykes show weak peraluminite (A/CNK: Terman index in 1.03~1.14), 3.0~5.14,
K2O + Na2O (4.91%~5.92%), P2O5 (0.16%~0.21%), and CaO (3.23%~3.44%) (Figure 7a).
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and diorite dyke samples. (a) Diagram of SiO2–(Na2O + K2O); (base map after Middlemost, [40]).
(b) Diagram of SiO2–K2O (after Peccerillo and Taylor [41]). (c) Diagram of A/NK − A/CNK (after
Maniar and Piccoli [42]).

In the TAS diagram, all granite data points fall into the granite range, and diorite
dykes fall within the monzonite range. In the K2O vs. SiO2 diagram, granite plots in
the calc-alkaline series (Figure 7b), and diorite dykes plots in the high-K, calc-alkaline
series. In the A/CNK vs. A/NK diagram (Figure 7c), granite dykes are located at the
junction of the metaluminous and peraluminous fields, and diorite dykes fall within the
hyperaluminous range.

4.3.2. Trace Elements

The total rare earth element content of the granite dykes is 93.80~99.63 µg/g. The
standardized chondrite rare earth element diagram (Figure 8a) shows that LREE elements
are evidently enriched, and the ratios of (La/Yb)N and La/Yb are 5.44–7.31 and 7.58–10.20,
respectively. There is a clear Eu anomaly (Eu/Eu* = 0.62–0.66, average 0.64), and Yb content
is 2.03~2.56 µg/g, with an average of 2.26 µg/g. The normalized trace element distribution
diagram of the original mantle (Figure 8b) shows that diabase is enriched in LILE (Rb, K,
and Sr) and depleted in HFSE (Nb, Ta, Zr, Hf, and Ti).
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values and chondrite-normalized values are from Boynton [43] (1984) and Sun et al. [44] (1989)).

The total rare earth content of diorite dykes is 50.36~56.52 µg/g. The chondrite
normalized REE diagram (Figure 8c) shows obvious enrichment of LREE, with (La/Yb)
N and La/Yb ratios ranging from 0.98 to 1.15 and 1.37 to 1.61. The Eu anomalies of all
samples are not obvious (Eu/Eu* = 0.93–1.1 average 1.04). The Yb content was low in
3.07~3.41 µg/g, with an average of 3.27 µg/g. In the original mantle-normalized trace
element distribution curve (Figure 8d), samples show enrichment of LILEs (Rb, Th, Ba, K)
and depletion of HFSEs (Ta, Nb, Ti).

5. Discussion
5.1. Emplacement Ages of Dykes and Magmatism

Plagioclase granite dykes (Habahe pluton) are important orebody host rocks of the
Jinba gold deposit. This pluton is widely exposed in the region and crops out over an area
of 540 km2. Researchers have conducted a large number of chronological studies on the
Habahe pluton and suggested the emplacement ages of the pluton are within the range of
406 to 390 Ma [23,45]. The age of mafic dykes from the Habahe pluton is 375 Ma [46]. Zircon
U–Pb ages of granite and diorite dykes intruding the Habahe pluton are 384.5 ± 1.2 Ma
(MSWD = 0.42, n = 29) and 393.0 ± 2.2 Ma (MSWD = 0.10, n = 12), respectively. Extensive
alteration and mineralization are observed on the edges and/or inner parts of some diorite
dykes, indicating a close relationship with gold mineralization.

There is no accurate mineralization age data for the Jinba gold deposit to date, while
a lot of chronological data (Table 4) have been reported for the Zhelande and Saidu gold
deposits, located ~15 km and ~10 km northwest of the Jinba deposit, respectively. These
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three deposits are all emplaced in Devonian strata and within the Markakuli shear zone,
which is controlled by NW-trending faults. They all have similar mineralization types
(quartz-vein + altered-rock types), mineral assemblages, fluid characters, and isotope
composition [47–49], suggesting the same geodynamic setting and metallogenic timing.
The interpreted age of gold mineralization is based on Rb–Sr, K–Ar, and Ar–Ar ages of
alteration minerals and FIs in ore-bearing quartz veins [19,23,45,50–54]. Mineralization in
the region is interpreted to have occurred between ca. 300 and 270 Ma with a peak value of
~290 Ma, which is consistent with the period of orogenic events in the region during the
Late Carboniferous–Early Permian.

Table 4. Isotopic ages of rocks and minerals from the Jinba gold deposit.

Test Object Location Method Age Reference

Plagioclase granite Jinba U–Pb 406 Ma [23]
Plagioclase granite Jinba SHRIMP U–Pb 390 ± 5 Ma [45]

Diorite Jinba U–Pb 393.0 ± 2.2 Ma This study

Granite Jinba U–Pb 384.5 ± 1.2 Ma This study
[50]

FIs from ore-bearing quartz vein hosted in Devonian strata Saidu Rb-Sr 294~306 Ma [50]
FIs from ore-bearing quartz vein hosted in Habahe pluton Saidu Rb-Sr 272 ± 19 Ma [51]

Sericite from ore-bearing quartz vein Saidu 40Ar/39Ar 289.2 ± 3.1 Ma [52]
Muscovite from ore-bearing quartz vein Saidu 40Ar/39Ar 294.7 ± 3.5 Ma [53]

Biotite from ore-bearing quartz vein Saidu 40Ar/39Ar 270 ± 2.5 Ma [19]
Biotite from ore-bearing phyllites Zhelande K-Ar 297.3 ± 3.3 Ma [19]

Muscovite from ore-bearing quartz vein Zhelande K-Ar 293.4 ± 3.1 Ma [19]
FIs from ore-bearing quartz vein Zhelande Rb-Sr 306.1 ± 5.0 Ma [19]

Muscovite from ore-bearing quartz vein Zhelande 40Ar/39Ar 295.4 ± 1.6 Ma [54]

It can be seen from the above research that the ore-forming age and the dyke em-
placement age of the Jinba gold deposit are not consistent, which indicates that there is no
centralized or large-scale mineralization in the initial emplacement of dykes. As an oro-
genic gold deposit, the minerals of the Jinba gold deposit are mainly derived from diorite
and Ashele formation rocks [22], that is to say, diorite dykes provide metal ore-forming
materials for mineralization.

5.2. Petrogenesis of the Dykes
5.2.1. Granite Dyke

The granitic dykes are calc-alkaline, weakly peraluminous and have the characteristics
of differentiated I-type granites [55]. In addition, the rock does not contain cordierite, garnet,
or white mica. The content of P2O5 is far less than 0.15%, and the content of K2O + Na2O
is low. Judging from 10,000 × Ga/Al, the granite dykes are neither S-type nor A-type. It
can be seen from Figure 9a,b that the granite dykes are I-type granites. Rb/Sr values in the
granitic dykes (0.40–0.88) are significantly higher than the Rb/Sr values in the upper crust
(0.25), indicating that the rocks have undergone separation crystallization. As can be seen
from Figure 9c, the granitic dykes have also undergone differentiation. Thus, the granite
dykes belong to I-type granites which are formed by crystallization differentiation.
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diagrams (Collins et al. [56]); (b) Y and SiO2 granites dykes discriminant diagram (Collins et al. [56]);
(c) T FeO/MgO and Zr + Nb + Ce + Y granites (Whalen, [57]). FG—fractionation acid granites;
OGT—unfractionation M, I, and S type granites.

Moreover, the high εHf(t) and the relatively young TDM of the depleted mantle model
suggest that the granitic dykes may have originated from a relatively young source re-
gion, possibly through fractional crystallization or early partial melting of mantle-derived
magma. The linear relationship between the ratio of K/Rb and K/Cs and SiO2 is not very
obvious, suggesting that the fractional crystallization of magma is not strong. At the same
time, the relationship between La/Sm and La showed a significant positive correlation, in-
dicating that although a certain degree of crystallization differentiation occurred during the
ascending emplacement of magma, it was mainly controlled by partial melting. The Nb/Ta
values of all samples range from 11.6 to 13.4, and the Zr/Hf values range from 34.1 to 35.2,
which are close to the corresponding crustal element ratios of 11 and 33, respectively. The
Th/Ta ratios of the samples range from 12.6 to 14.9, which is comparable to the Th/Ta ratios
of the crust (approximately 10) [58]. The samples have low Sr contents (102.5–188 µg/g),
Al2O3 (12.9%–14.0%), and Ti/Zr of less than 20 (11.8–14.4), which indicates that the granitic
veins are typical partial melting products of the continental crust [59,60]. All the rocks have
an obvious negative Eu anomaly, with a strong depletion in Sr, P, Ti, and other elements,
Zr/Sm > 10 (32.9–43.6), and high Yb content (2.03–2.56 µg/g), indicating that there are
plagioclase, apatite, and hornblende residues in the mineral facies of the asthenosphere [61].
Therefore, it is considered that the granite dykes are mainly formed by mixing and melting
of crustal and mantle materials with slight crystallization differentiation.

5.2.2. Diorite Dykes

The main elements are positively correlated with the change of MgO content, indi-
cating that there may be some separated crystallization in the process of magmatism. Cr
and Ni contents in diorite dykes are low (10–20 µg/g and 4.8–6.7 µg/g), and lower than
those of primary basaltic magma (300–400 µg/g and 300–500 µg/g) [62]. This indicates
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that the diorite dyke magma experienced significant separation crystallization of mafic
minerals such as olivine, monoclinic pyroxene, and ferrotitanium oxides. The diorite dykes
are depleted of rare earth elements in different degrees and the chondrite normalized REE
distribution curve, and all samples have the same variation trend and typical N-MORB REE
geochemical characteristics, indicating that the diorite dykes derived from the depleted
asthenospheric mantle. All the samples are characterized by an enrichment of large ion
lithophile elements (Rb, Th, Ba, K) and depletion of high field strength elements (Ta, Nb,
Ti), indicating that the magma source was contaminated and metasomatized by crustal
components [63]. Ti/Zr values range from 11.2 to 18.1, and Ti/Y values range from 31.5
to 41.3, which is close to crustal contents (Ti/Zr < 30, Ti/Y < 200) [64,65]. Rb/Sr values
range from 0.31 to 0.64, indicating a crustal origin [66]; thus, the original magma was mixed
with crustal materials to a certain extent during magma ascension. In addition, the Lu–Hf
isotopic system in zircon can explain magma origin and petrogenesis [67,68]. Indeed,
εHf(t) values of diorite dykes range from −1.18 to −4.47, and TDM2 values range from
1242 to 1668 Ma, indicating that the magma may have both relatively ancient lower crust
and depleted mantle components. In addition, the high Nb and Ta contents (1.8–2.8 ppm,
0.11–0.16 ppm) also indicate the obvious crustal mixing. The mixing of depleted mantle
and ancient crust led to a change in εHf(t), and the degree of change depends on the mixing
ratio of the two [69]. Thus, in general, the diorite dykes were the product of rising mantle
magma that underwent mafic mineral crystallization and mixing with crustal material.

5.3. Tectonic Setting

The granite dykes have obvious characteristics of I-type granites and high Th/Ta
ratio (12.6–14.9), which are geochemical characteristics of subduction zone magma. In
addition, the granitic dykes have low Yb, Ta, and Th contents, enrichment of U, Pb, and
LREE, depletion of Ti, P, Sr, and Ba, negative Nb and Ta anomalies, and weak negative
Eu anomalies, similar to island arc magmatic rocks in subduction zones. In the Nb-Y and
Rb-Y + Nb discrimination diagrams for granitic dykes (Figure 10), all samples fall within
the volcanic arc granite region. The granitic dykes are depleted of P, Nb, Ti, Sr and enriched
in Rb, Th, K, La, and the Hf isotope indicates that the granitic dykes have an obvious
addition of continental crust material, indicating that the granitic dykes were formed in an
island arc environment on active continental margins.
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ing to Pearce et al. [70]). WPG—intraplate granite; VAG—volcanic arc granite; Syn-COLG—syn-
collisional granite; ORG—ocean ridge granite.
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Diorite dykes show similar compositions to N-MORB in Nb/Yb-Th/Yb (Figure 11a),
which point towards mantle sources. In addition, the Nb and Ta contents of diorite dykes
are 1.8–2.8 µg/g and 0.11–0.16 µg/g, respectively, which are similar to typical island
arc tholeiite (1.7–2.7 µg/g, 0.1–0.18 µg/g). In V-Ti/1000 (Figure 11b), the samples all
fell into the island arc tholeiite area. In general, diorite dykes are enriched in large ion
lithophile elements and light rare earth elements and depleted in high field strength ele-
ments. Diorite dykes have exactly the same characteristics as subduction-related island arc
magmatism [70], so diorite dykes are characterized by continental or island arc magmatism
associated with subduction zones [71].
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Figure 11. Diorite dyke structure discrimination diagram. (a) Nb/Yb-Th/Yb diagram (after
Xu et al. [72]); (b) Ti-V diagram (after Shervais [73]).

Zircon U–Pb ages of granitic and diorite dykes in the Jinba gold deposit are 384 Ma
and 393 Ma, respectively, which belong to the products of Early–Mid-Devonian magmatic
activity in the southern margin of the Altay belt. Previous studies have proved that
the southern margin of Altay was in an active continental margin environment at this
time [14,74–78]. Thus, based on this study, the granitic and diorite dykes of the Jinba gold
deposit were formed in an island arc environment related to subduction.

6. Conclusions

1. Zircon U–Pb ages of granite and diorite dykes are 384~393 Ma, indicating Early–
Middle Devonian magmatic activity. The mineralization age of Jinba gold deposit is
Late Carboniferous–Early Permian. The mineralization age of the Jinba gold deposit
does not coincide with granite dykes and diorite dykes.

2. The granite dykes are mainly formed by the mixing and melting of crustal and mantle
materials with slight crystallization differentiation, while diorite dykes are the product
of rising mantle magma that underwent crystallization of mafic minerals and mixing
with crustal material.

3. The granitic and diorite dykes of the Jinba gold deposit were formed in an island arc
environment related to subduction.
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