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Abstract: For San-Xin gold and copper mine, deep blasting large block rate is high resulting in
difficulty in transporting the ore out; secondary blasting not only increases blasting costs but is more
likely to cause the top and bottom plate of the underground to become loose causing safety hazards.
Based on the research background of Sanxin gold and copper mine, deep hole blasting parameters
were determined by single-hole, variable-hole pitch, and oblique hole blasting tests, further using the
inversion method to determine the optimal deep hole blasting parameters. Meanwhile, the PSO-BP
neural network method was used to predict the block rate in deep hole blasting. The results of the
study showed that the optimal minimum resistance line was 1.24–1.44 m, which was lower than
1.6–1.8 m in the original blasting design, which was one of the reasons for the higher blasting block
rate. In addition, the PSO-BP deep hole blasting fragmentation prediction model predicts the block
rate of the optimized blasting parameters and predicted a block rate of 6.83% after the optimization
of hole network parameters. Its prediction accuracy is high, and the blasting parameter optimization
can effectively reduce the block rate. It can reasonably reduce the rate of large pieces produced by
blasting, improve blasting efficiency, and save blasting costs for enterprises. The result has wide
applicability and can provide solutions for underground mines that also have problems with blasting
large block rate.

Keywords: deep hole blasting parameters; blasting funnel; blasting fragmentation; neural network

1. Introduction

As a large industrial country, mineral resources play an important role in social
infrastructure construction. However, due to over-exploitation, shallow mineral resources
have been facing depletion, affected by mining equipment and mining technology. There
are a certain number of hidden resources in the process of recovery. In order to meet the
sustainable development of mines, mining enterprises often need secondary mining of
these resources, and these hidden resources often present extremely complex conditions,
especially in the filling body for recovery, in the surrounding filling body strength, poor
stability of the quarry, difficulty in recovery, etc. How to ensure the stability of the filling
quarry under the conditions of dynamic explosive load is a key technical problem facing
the mining industry.

Blasting is the most important part of mine production. Its quality and efficiency
are not only related to the production efficiency of the entire mining process, but also
determine the economic benefits of the enterprise. In the blasting process, the control of
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blasting fragmentation is very important. The fragmentation of blasting is an important
indicator for evaluating the effect of blasting. Scholars have carried out a lot of research
on the theory of fragmentation of rock blasting and have summarized a variety of control
methods [1]. Shi Xiaopeng systematically studied the effect of blasting vibration on the fill-
ing body of large-diameter deep holes in Anqing copper mine using regression calculations
and theoretical analysis, and then proposed technical measures to reduce the vibration
intensity of large-diameter deep holes in Anqing copper mine based on the actual situation
of blasting production [2]. In the case of Jinchuan’s second mine, where the roof and the
left and right helpers of the working face are filled bodies, Wang Xianlai made a series of
elaborations on rock drilling, blasting material selection, hollowing method, number of
holes, single shot dosage, and micro-difference time for blasting operations in the mining
process, and concluded and optimized blasting parameters, which improved the safety of
underground workers working under filled bodies and provided experience for reducing
mine casualties [3]. However, the blasting process is very complicated, and the mining tech-
nology of different mines is different, resulting in a big difference between the prediction
results of the fragmentation model and the actual ore fragmentation after blasting.

The degree of damage to the rock by explosives and the process control are mainly
realized by blasting parameters. These parameters mainly include the nature of the explo-
sives, the unit consumption of explosives, deep hole density factor, the minimum resistance
line, the bottom distance of the hole, etc. These factors are in series with each other and
determine the volume of the blasting funnel, which in turn affects the block size produced
by blasting. Regarding the determination of blasting parameters, scholars have made a lot
of explorations on the research of blasting parameters, optimizing blasting parameters from
theoretical analysis, physical test (funnel test), engineering analogy, numerical simulation,
and machine learning calculations. For example, Akande and Lawal examine optimization
of blasting parameters for economic production of granite aggregates in Ratcon and NSCE
quarries located at Ibadan using regression models [4]. Rezaeineshat et al. used robust
techniques to design the blasting parameters in open-pit mine with the aim to reducing
ground vibration [5]. Inanloo Arabi Shad and Ahangari proposed an empirical relation to
calculate the proper burden in blast design of open-pit mines and promoted this method to
other mines [6]. Wang et al. proposed a method combining UDEC and LS-DYNA to study
the effects of parameters on the blasting effects [7]. Messaoud et al. classified the quality
of rock mass through cluster analysis, and then studied the influence of different rock
parameters on blasting through principal component analysis [8]. Monjezi and Dehghani
used the neural network to analyze the relationship between the physical and mechanical
properties of the rock mass, the performance of the explosive, the hole network parameters
and the blasting backlash, optimize the blasting parameters, reduce the damage of the
blasting backlash, and the optimization effect is obvious [9]. Sadollah et al. uses reverse
neural network to optimize rock drilling and blasting parameters [10]. Similar research can
be found in many other studies [11–13].

With the development of computer technology, in recent years, traditional theory com-
bined with machine learning to predict the distribution of rock blasting fragmentation has
gradually been recognized by everyone. Monjezi et al. established a 4-layer feed-forward
artificial neural network (ANN) model to predict the distribution of fragmentation [14].
Ghiasi et al. predicted the large block rate generated in the open-pit blasting operation
of Golegohar Iron Mine by using multiple regression methods and artificial neural net-
work [15]. Ghaeini et al. and Ghaeini Hesarouieh et al. used the Mutual Information (MI)
method to predict the blasting fragmentation of the Meydook Mine and compared it with
the Kuz-Ram empirical model and statistical model. The results show that the MI model has
higher accuracy than the Kuz-Ram and statistical models [16,17]. Based on meta-heuristics
and machine learning algorithms, Xie et al. predicted the rock size distribution in mine
blasting using various novel soft computing models [18]. Bahrami et al. implemented
artificial neural network method to develop a model to predict rock fragmentation due
to blasting in an iron ore mine [19]. Murlidhar et al. proposed a new hybrid imperialism
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competitive algorithm (ICA)-artificial neural network (ANN) and found the proposed ICA-
ANN model can be implemented better in improving the performance capacity of ANN
model in estimating rock fragmentation during blasting [20]. Ouchterlony and Sanchidrián
reviewed the prediction equations for blast fragmentation [21]. These models include some
early fragmentation models, first Kuz-Ram models [22], crush zone model (CZM) and
the two-component mode l(TCM) [23–25], extended Kuz-Ram model [26] and Swebrec
function [27]. Some other methods were also adopted to predict rock fragmentation by
many studies, for example, statistical modelling approach [28], muck-pile model [29], KCO
model [30], and deep learning approach [31].

In fan-shaped deep hole blasting, the boulder yield is relatively high. How to take
effective measures to reduce the output rate of boulders in deep hole blasting and improve
the economic benefits of the mine is an urgent problem. Take Sanxin gold-copper mine
as an example, the boulder yield is higher than 12%, in some stopes boulder yield even
reached more than 20%. High boulder yield is not good for safe production and increases
the workload of secondary blasting. This study takes Sanxin gold-copper mine as the
research background and aims at reducing the boulder yield of this mine. Funnel tests [32]
were conducted to determine the optimal blasting parameters including hole distance,
explosive unit consumption, and row space. A combined particle swarm optimization
(PSO) and BP neural network model was established to predict the boulder yield [33]. A
targeted study was conducted to explore the effect of the maximum single-section charge
on the filling body, and the safe distance of the filling body at different charges from the
perspective of safe vibration speed, which provides a basis for the optimization of blasting
parameters in the field.

2. Blasting Funnel Test
2.1. Test Equipment

Measuring tools include: weighing instrument (platform scale with weighing
capacity ≥ 100 kg, electronic scale with sensing capacity ≤ 20 g), 50 m soft leather ruler,
5 m steel tape, shovel, gun stick and lattice screen (50 mm) × 50 mm, 100 mm × 100 mm,
200 mm × 200 mm, 300 mm × 300 mm, 400 mm × 400 mm grid).

2.2. Selection of Test Site

The selection of the blasting funnel test site should take into account that the ore
lithology of the test orebody should be same or as close as possible to the mined area.
According to the field investigation, the test site is selected at 8–3 rock drilling roadway
at −609 m level in Sanxin Gold and Copper Mine. The funnel test site is shown in Figure 1.
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The physical and mechanical properties of the rock at the test site are shown in Table 1,
and the performance parameters of the explosives used are shown in Table 2.

Table 1. Results of physical and mechanical properties of 609 horizontal ore and rock.

Lithology Bulk Density
(N/m3)

Tensile
Strength (MPa)

Elastic Modulus
(GPa) Poisson’s Ratio Cohesion

(MPa)
Internal Friction

Angle (◦)

Ore bearing
marble 32,300 6.01 41.007 0.24 17.88 50.5

Table 2. Main performance parameters of ANFO explosive.

Explosive Type Density (g/cm3)
Explosion

Velocity (m/s) Stiffness (mm) Explosive Force
(ML)

Explosive Weight
(g)

ANFO explosive 1 3000 12 260 400

2.3. Single Hole Blasting Funnel Test

The designed blast hole depth is: there are 9 boreholes numbered 1–9 in 0.4 m, 0.5 m,
0.6 m, 0.7 m, 0.8 m, 0.9 m, 1.0 m, 1.1 m, and 1.2 m. Due to the errors in site construction
and the sinking of the overlying rock layer caused by ground pressure, the actual depth
of the blast hole is 0.4 m, 0.5 m, 0.6 m, 0.65 m, 0.7 m, 0.82 m, 0.9 m, 1.0 m, 1.1 m. The
distance between holes is 2.4 m, the diameter of blast hole is 60 mm, and the charging
length is 200 mm. Before charging, the individual deep hole is adjusted to the designed
charge depth with gun mud, then the charge package is filled with gun stick, and finally the
hole is plugged with 0.2 m gun mud. The ANFO explosive is initiated in reverse with the
bottom of the detonator hole to reduce the blasting influence between the adjacent holes,
and there are two non-adjacent holes in each blasting.

The layout of the blasthole is shown in Figure 2 below:
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Figure 2. Schematic diagram of plane layout of blast holes in funnel test of single-hole blasting. (In
the figure, ‘#’ is for the convenience of numbering the holes, 1# represents hole number one, and
so on).

2.4. Variable Hole Spacing Multi Hole Blasting Funnel Test

Six blastholes numbered 10–15 are arranged. The hole distance is 1.75, 2, 2.25, 2.5,
and 2.75 times of the optimum funnel radius (the specific blasthole distance is 1.03 m,
1.18 m, 1.33 m, 1.48 m, 1.62 m), respectively. There are six holes in a group. The blasthole is
arranged on the vertical free surface, and the hole diameter is 60 mm. The length of the
charge is 200 mm. After blasting, the measuring process of single-hole blasting funnel test
is repeated, and the funnel profile is drawn based on the paint on the grid.
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The layout of the blasthole is shown in Figure 3 below:
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2.5. Inclined Bench Blasting Test

The design scheme is shown in Figure 4, and the blasthole layout is shown in
Figure 5 below:
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In the drawing, AB is the roadway wall, L is the hole depth, m;
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h—the distance between the bottom of the blasthole and the roadway wall (free

surface), m;
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s—blasthole clogging depth, m;
Wmax—maximum resistance line of blasting, m;
α—is the angle between the blasthole and the free surface AB.
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There are three blastholes in the inclined bench blasting experiment, numbered 16–18,
drilling depth is the same, and the angles between them and the wall of the roadway are
30◦, 40◦, and 50◦, respectively.

2.6. Test Data Collection

The measurements before and after blasting are as follows:

1. Before blasting, the blasthole diameter, blasthole depth, explosive filling depth and
packing length are measured respectively with steel tape measure, the explosive
burying depth is recorded, and the colored stripe cloth is laid at the bottom of the
roadway to ensure that the ore falling after blasting falls on the colored stripe cloth.

2. After blasting, 200 mm × 200 mm grid is used to cover the blasting funnel surface,
the grid is kept perpendicular to the roadway floor, the original free surface position
was replaced with the grid plane, and the residual hole depth of the blasting funnel
and the straight line distance between the bottom of the hole and the grid plane
was measured.

3. Deducting the falling part of the rock around the funnel mouth, taking the center line
of the blasthole as the axis, the distance between the funnel boundary and the axis
of eight different directions is directly measured every 45◦, and the average value is
taken as the blasting funnel radius.

4. The grid is used to screen the ore after blasting, and the ores of different sizes after
screening are weighed and recorded respectively.

5. The rock fragmentation of blasting funnel test is screened. According to the actual
production situation of the mine, the bulk above 400 mm is defined as unqualified. By
weighing the ores of different sizes, the percentage of the total rock mass in blasting is
calculated, and the blasting effect of blasting funnel test is compared.

6. After inclined bench blasting, in order to ensure the accuracy of the measured data,
a gun stick is inserted into the residual hole, and a tape measure is used to measure
the resistance line at the opening formed by blasting, and the average value of the
resistance line is the maximum resistance line Wmax.
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3. Data Processing and Blasting Parameter Inversion
3.1. Data Processing of Single-Hole Blasting Funnel

The hole 9 was blown up in the field blasting so that the data could not be measured;
the single-hole blasting funnel test results were only obtained for single-hole blasting 1 to 8.
The test results of single-hole blasting funnel are shown in Table 3.

Table 3. Funnel test results of single-hole blasting.

Blasthole
Number

Blasthole
Depth (m)

Explosive
Package

Length (m)

Explosive
Package

Depth (m)

Funnel
Volume

(m3)

Funnel
Depth (m)

Funnel
Radius (m)

Buried
Depth
Ratio

Unit
Explosive
Blasting

Volume (m3)

1# 0.4 0.2 0.3 0.1305 0.27 0.371 0.29 0.3263
2# 0.5 0.2 0.39 0.1729 0.27 0.428 0.37 0.4322
3# 0.6 0.2 0.5 0.2166 0.33 0.606 0.48 0.5415
4# 0.65 0.2 0.55 0.2463 0.38 0.573 0.52 0.6157
5# 0.7 0.2 0.45 0.1963 0.3 0.523 0.43 0.4908
6# 0.82 0.2 0.72 0.1761 0.22 0.396 0.69 0.4402
7# 0.9 0.2 0.76 0.111 0.29 0.333 0.72 0.2775
8# 1 0.2 0.85 0.0916 0.16 0.298 0.81 0.229

The characteristic curve of the blasting funnel (V-L curve) and the curve of the rela-
tionship between the radius of the funnel and the burial depth of the explosive package
(R-L curve) are generally characterized by polynomials, while the curve polynomials can
be fitted based on the principle of least squares, and the accuracy of the test curve fit is
mainly expressed by the sum of squares of the errors between the fitted and the test values
of the polynomials. After the observation of the experimental data, the quartic polynomial
is used to fit. MATLAB software was used to make the blasting funnel characteristic curve
and the relationship curve between funnel radius and explosive package burial depth, as
shown in Figures 6 and 7.
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According to the principle of the least square method, the test data of the blasting
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Table 4. Test results of multi hole blasting funnel with variable hole spacing.

Blast Hole
Number

Medicine Bag
Buried Depth/m

Blast Hole
Spacing/m

Unit Explosive
Blasting Volume

(m3)

Volume of
Blasting Funnel

(m3)

Description of Blasting
Fragmentation

10~11# 0.56 1.05 0.9483 0.3793 Small and uniform lumpiness
11~12# 0.56 1.24 1.0478 0.4191 Small and uniform lumpiness
12~13# 0.56 1.43 1.0601 0.4243 Small and uniform lumpiness

13~14# 0.56 1.55 0.7503 0.3001 The lumpiness is uniform, and
there is basically no large block

14~15# 0.56 1.80 1.1315 0.4526 Large fragmentation

From the blasting effect observed in the field, it is known that a group of blastholes
with a distance of 1.80 m are not connected into grooves after blasting, and basically form
independent blasting funnels. After blasting, the four groups of blastholes with hole
spacing of 1.05 m, 1.24 m, 1.43 m, and 1.55 m are connected to form grooves along the
center line of the blasthole.

The above results show that when the hole spacing is small, the explosive blasting
energy can be superimposed on each other, and the blasting effect is good, and there is
basically no inter-hole spine. With the increase of hole spacing, the explosive blasting energy
becomes weaker and the blasting effect becomes worse gradually. The spine between the
holes gradually appears. When the hole spacing increases to a certain value, the line in the
center of the hole no longer communicates to form a strip blasting groove, but develops
into an independent blasting funnel in the triangular spine between the two holes.

According to the test results of porous blasting funnel in the same section, if the blast-
ing parameters such as reasonable blasting hole spacing and explosive unit consumption
are selected, the triangular spine between adjacent blasting funnels can be broken better.
In order to ensure the blasting crushing effect, it is recommended that the hole spacing is
2.5 times of the optimum blasting funnel radius according to the blasting funnel test results,
and hole spacing is 1.55 m. According to the above situation, under the test conditions, the
optimum hole bottom distance is 1.43 to 1.55 m, and the blasting volume per unit explosive
is 0.7503 m3.

3.3. Data Processing of Inclined Bench Blasting Test

In the experiment of inclined bench blasting, there are three blastholes, numbered
16#, 17#, and 18#. The destruction of the 16# blasthole during blasting, the data could not
be measured. So only the data for blastholes 17# and 18# were obtained, and the angles
between them and the wall of the roadway are 40◦ and 50◦, respectively. Generally speaking,
before blasting, the optimum burying depth obtained from the single-hole blasting funnel
experiment is taken as the predicted median of the blasting funnel length. The hole length
of the inclined bench blasting funnel experiment is 1.6 m and the explosive filling depth is
1.25 m. The layout and results of the test holes are shown in Table 5. The test results show
that the average value of the best resistance line under the test conditions is 0.712 m.

Table 5. Test results of inclined bench blasting funnel.

Blasthole
Number Hole Depth/m Inclination

Angle/◦
Orifice

Resistance
Line/m

Hole Bottom
Resistance

Line/m

Charge
Length/m

Best Resistance
Line/m

17# 1.6 40 0.8 1.02 0.36 0.804
18# 1.6 50 0.96 1.22 0.34 0.62

average 1.6 45 0.88 1.12 0.35 0.712
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3.4. Inversion of Stope Deep Hole Blasting Parameters

On the basis of several blasting funnel tests in the field, the following blasting parame-
ters are obtained when the blasthole diameter is 60 mm:

Optimum embedding depth: Lj = 0.56 m;
Optimum funnel radius: Rj = 0.59 m;
Critical buried depth of charge: Le = 0.57 m
Volume of blasting funnel at optimum burial depth: Vj = 0.24 m3;
Optimum hole bottom distance: a = 1.43~1.55 m;
Weight of spherical charge: Q0 = 0.4 kg;
According to Livingston’s blasting funnel theory and based on the blasting energy

balance criterion and similarity principle, many parameters suitable for deep-hole sector
blasting in Sanxin Gold and Copper Mine need to be further deduced so as to provide
scientific basis for the design of deep-hole sector blasting in the future.

The strain energy coefficient E and the optimum burial depth ratio ∆j can be deter-
mined by single-hole blast funnel tests:

E =
Le

Q0
1
3

(3)

∆j =
Lj

Le
(4)

where,
Le—critical buried depth, m;
E—strain energy coefficient, which is constant for specific rocks and explosives;
Q0—weight of spherical charge, kg;
Lj—optimum buried depth, m;
∆j—optimum burial depth ratio. ∆j is constant for specific rocks and explosives.
By substituting the Parameters (3) and the Equation (4), the strain energy coefficient

E = 0.77 and the optimum buried depth ratio ∆j = 0.98 are obtained.

3.4.1. Row Spacing

The row spacing (minimum resistance line) is an important basic parameter for the
design of deep hole blasting, based on the principle that the amount of charge that can be
loaded into a deep hole (Q = πd2L∆/4) and the amount of charge required for a deep hole
(unit volume of explosive consumption multiplied by the amount of blasting square that
the hole is burdened with (Q = WaLq) are equal, obtaining the equation:

W = d

√
0.785∆τ

mq
(5)

In the equation:
d—aperture, d = 0.060 m:
∆—charge density, ∆ = 1.0 × 103 kg/m3;
τ—deep hole charge coefficient, τ =

Charge length
Gun hole length = 0.85

m—deep hole density factor, m = 1.0 ∼ 1.2
q—single consumption of explosives.
The effective explosive unit consumption approved by conventional blasting theory is:

q =
Q

f (n)W3 (6)

where: f (n)—exponential function of blasting action, f (n) = 0.4 + 0.6n3,
n—blasting action index, n = R

LJ
.

Q—weight of spherical charge, 0.4 kg;
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Combining the two Equations (5) and (6) yields the following equation:

W =
mQ

0.785d2∆τ f (n)
(7)

Therefore, according to the above equation, the minimum resistance line W = 1.24~1.44 m
can be determined.

It can be seen that the minimum resistance line of 1.6 to 1.8 m used in the original
blasting parameters is too large, which may be one of the reasons for the high blasting
block rate.

Vertical sector holes have a hole diameter of 75 mm, according to the slant hole blasting
funnel test results and blasting cube root similarity law, when the blasting funnel test package
in the best burial depth W1 = 0.712 m, package radius r1 = 30 mm. When the diameter of the
blasthole is 75 mm (prototype), the radius of explosive charge is r2 = 37.5 mm (prototype),
and the blasting resistance line is W2 (prototype). The Equation (13) should be satisfied:

W1

W2
=

r1

r2
(8)

Substitute the relevant data into the equation to obtain: b = W2 ≈ 0.88 m.
Therefore, the best minimum resistance line for the prototype spherical explosive

package can be calculated by the spherical explosive package model test. According to
other scholars’ studies, the blasting effect of columnar charge in blastholes is different from
that of spherical explosive packages. When the blasting effect is the same, the resistance
line of the pillar charge package is greater than that of the spherical charge package if the
amount of the charge is also the same.

Wz = KwWa (9)

where: Wz—resistance line of cylindrical charge;
Wa—resistance line of spherical charge;
Kw—coefficient, Kw = 1.2~1.6, take Kw = 1.25
Substitute the relevant data into Equation (9) to obtain the minimum resistance line W

(row distance b) W = b = 1.4 m.

3.4.2. Hole Bottom Distance

The bottom distance of the hole a and the minimum resistance line W (or row distance
b) of the fan-shaped gun hole satisfy the Equation (10).

a = m×W (10)

where: m is the density coefficient, which is the ratio of the distance between the bottom of
the hole and the minimum line of resistance.

As shown in Figure 9, W < R, a > R, the rock breaking area of a single hole is S (a, W),
and the two-hole blasting fragmentation zone just covers all the rock mass in the single-
hole blasting area, and the superposition zone of the two-hole blasting fragmentation zone
eliminates the area where the crushing force cannot be reached. It can be considered that all
the rock masses in the single hole blasting area have been fully broken at this time, which
is the ideal condition of rock mass fragmentation, and it is also the situation that the design
wants to achieve. For this reason, the function S (a, W) can be defined: 0 < W< R, 0 < a < 2R,
make S obtain the maximum value as far as possible and the previously determined w to
determine the optimal value of a. According to the geometric relationship in Figure 9, the
explicit function expression of hole network area S (a, W) can be obtained:

S = 2
(

πR2

2
− R2arctan

a
2w

+
aw
4

)
(11)
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Because: 1
4 a2 + W2 = R2, in order to maximize the value of pore network area s, let

the first derivative of s be zero, and according to the empirical calculation:

a = 1.23R (12)

W = 0.789R (13)

Then the deep hole density coefficient is: m = a/W = 1.559.
Based on the above equation calculation as well as the wide hole spacing multi-hole

with section blasting funnel test, m = 1.6 is taken here, and small resistance line with large
hole bottom distance blasting is implemented.

a = 1.6× 1.4 = 2.24 ≈ 2.2 m (14)

3.4.3. Explosive Unit Consumption

From the single-hole and multi-hole with the same section blasting funnel test, it is
known that when the explosive package is the best burial depth ratio and the blasting
funnel volume is the largest, the explosive unit consumption is optimal. The best unit
explosive consumption approved for single-hole and variable-pitch multi-hole tests by the
optimal burial depth of the explosive package funnel blasting volume are q1 = 0.65 kg/m3

(q1 = 0.4/0.6157 = 0.65 kg/m3), q2 = 0.53 kg/m3 (q2 = 0.4/0.7503 = 0.53 kg/m3). However,
the analysis shows that the test condition of explosive charge funnel blasting is the condition
of full opening and free surface, and the cutting action of joints and fissures will increase
the blasting ballast quantity to a certain extent, and the calculated explosive consumption
index is low. At the same time, industrial production back blasting blocks up and down the
disk for silica or quartz orthoclase diorite, the rock is loose and broken, its detonability is
worse than the test lithology, and back blasting for extrusion blasting, and full free surface
conditions are very different. Therefore, the test results must be corrected to ensure that the
quality of recovery blasting and reduce the rate of large blocks.

Substitute relevant data into the Equation (6) to obtain: q3 = 0.706 kg/m3.
The average explosive unit consumption obtained from the above three calculation

methods is chosen as the average explosive unit consumption for the blasting design of the
test section, which is taken as

q =
q1 + q2 + q3

3
= 0.629 kg/m3 (15)

4. Prediction of Blasting Fragmentation Based on PSO-BP Neural Network Algorithm
4.1. PSO Optimized BP Neural Network Algorithm

Due to the random selection of initial weights and thresholds during the application of
BP networks, local convergence minima occur, which reduces the fitting effect, and to solve
this problem, the initial weights and thresholds of the PSO optimized BP neural network
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(PSO-BP) algorithm are used to solve the local minima problem and improve the prediction
accuracy of the BP neural network algorithm. In PSO, D is the dimension of the whole
search space. See Equation (16) for the position of the i particle.

Xi = [xi1, xi2, · · · , xiD]
T =


ω11 · · · ωnl

ω1m · · · ωnm
θ1

1 · · · θn
1

θ1
2 · · · θn

2


T

(16)

D = (n + m)k + k + m (17)

where: the elements of ω11 · · · ωnl −ω1

the elements of ω1m · · · ωnm −ω2

the elements of θ1
1 · · · θn

1 − θ1

the elements of θ1
2 · · · θn

2 − θ2

D is the dimension of this search space as the sum of all weights and thresholds in the
BP neural network.

A population is randomly initialized with each particle setting a maximum veloc-
ity Vmax corresponding to an initial position maximum Xmax and each particle setting a
minimum velocity Vmin corresponding to an initial position minimum Xmin, and the po-
sitions and velocities of the particles are randomly selected in the interval [−Xmax, Xmax],
[−Vmax, Vmax] for initialization, and each particle in the D-dimensional space in this popu-
lation is represented by a set of weights and thresholds of the BP neural network. Set the
termination condition of PSO optimization, the number of iterations N, the population size
M, the initial value of inertia weight ω, the initial value of acceleration factor c1, c2, and so
on. According to the initial position of each particle, the fitness value F(i) of each particle is
obtained by the fitness function, see Equation (18).

F(i) = k(
n

∑
i=1

abs(yi − oi)) (18)

where: n—number of output nodes;
yi—expected output of the i node of the neural network;
oi—predicted output of the i node;
k—coefficient.
Set the extreme value PgBest of each particle population to the optimal value of the

objective function; calculate the fitness value of each particle, if F(i) > PiBest, F(i) replaces
PiBest and optimize the group extreme value PgBest; update the speed and position of
particles according to Equations (17) and (18) in each iteration; after the termination of PSO
optimization, get the optimal weight and threshold of BP neural network; replace the BP
neural network to initialize the initial weight and threshold of BP neural network, and
input sample data. The BP neural network trains the model in the way of error reverse
transmission. When the error between the output value of the BP neural network and
the real value is large, the reverse error is calculated to reverse forward to update the
connection weight and threshold between the layers until the termination condition is
reached. The algorithm flow of PSO-BP is shown in Figure 10.
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4.2. Neural Network Model Structure

There are many factors that affect the fragmentation distribution of blasting, and it is
difficult to establish a mathematical expression to establish a relationship. How to highlight
the principal contradiction from many influencing factors and select the main influencing
factors to simplify the model as far as possible on the basis of ensuring the reliability of the
data without reducing the prediction accuracy of the model is a problem that we should
carefully consider before establishing the model.

1. There are many factors in the rock that can affect the blasting effect, and this model
does not consider all the factors affecting the rock, but only selects some factors that have
a significant impact on the blasting effect, such as the tensile strength of the rock, the
compressive strength of the rock, and the spacing between the joints of the rock.
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2. In terms of blasting technology and blasting parameters, combined with the existing
equipment in the mine, this model only considers the simple blasting technology of regular
hole layout, uniform charge and millisecond initiation with detonating cord, which is
also the conventional production technology of the mine; in fact, the design of blasting
technology is an art of flexible change.

3. There is no full consideration as to whether the charge is explosive coupled with
blasting rock mass and whether the blasting energy can be fully utilized. At the same time,
in the process of construction, many man-made uncertainties and equipment uncertainties
cannot be fully considered.

4. The original data were normalized with x′ = 2× x−xmin
xmax−xmin

− 1 because of different
input factor magnitudes and large differences in order of magnitude, and the output data
calculated by the network model are the normalized results, and the final data are obtained
by reverse normalization for easy reading.

Determine the BP neural network structure of the deep hole blasting block degree
prediction model; determine the initial position and velocity of the particle in space ac-
cording to the BP neural network; set the termination condition of the particle population
optimization, the number of iterations N, the population size, the initial value of inertia
weight ω, maximum particle speed Vmax, the initial value of acceleration factor c1, c2, etc.
According to Equation (18) calculate the particle’s F(i); according to F(i) update PiBest, PgBest;
according to Equations (1) and (2) update the particle position and velocity; calculate the
new position of the particle F(i); if F(i) > PiBest, then F(i) replaces PiBest; optimize the
population extremum PgBest; in each iteration according to Equations (1) and (2) update
the velocity and position of the particle; determine whether to reach the minimum error.
If the error requirement is satisfied then PSO optimization is terminated, and after PSO
optimization is terminated, the global optimal particle position is output, the optimal initial
weights and thresholds of the deformation prediction BP network are obtained, and the
training of the highway plane vertical deformation PSO-BP network is started.

Selection of input layer neuron parameters: rock characteristic parameters (density,
compressive strength, joint spacing); seven blasting design parameters (explosive unit
consumption, hole diameter, hole bottom distance, minimum resistance line) are used as
the input layer of the neural network model. The data of the orthogonal experiments are
shown in the following Table 6.

Table 6. Field orthogonal experimental data.

No. Density/(t·m−3) Compressive
Strength/Mpa

Joint Crack/
(Strip m−1) Aperture/mm Hole Bottom

Distance/m
Minimum
Line of Re-
sistance/m

Unit
Consumption of

Explosives/(kg·m−3)

Test Block
Rate/%

1# 2.94 92.7 1.07 65 1.6 1.4 0.579 14.8
2# 2.94 92.7 1.3 70 1.9 1.6 0.629 12.62
3# 2.94 92.7 1.07 65 2.2 1.8 0.579 18.24
4# 2.94 92.7 1.3 70 1.9 1.4 0.629 18.02
5# 3.14 98.4 1.07 65 1.6 1.8 0.579 13.34
6# 3.14 98.4 1.3 70 1.9 1.6 0.629 12.68
7# 3.14 98.4 1.76 75 2.2 1.4 0.679 17.36
8# 3.14 98.4 1.3 70 1.9 1.6 0.629 13.48
9# 3.23 104.8 1.07 65 2.2 1.8 0.579 14.95
10# 3.23 104.8 1.07 65 1.6 1.4 0.579 14.32
11# 3.23 104.8 1.3 70 1.9 1.6 0.629 11.35
12# 3.23 104.8 1.76 75 2.2 1.8 0.679 13.56
13# 2.94 92.7 1.76 75 2.2 1.8 0.679 15.28
14# 3.14 98.4 1.76 75 1.6 1.4 0.679 15.65
15# 3.23 104.8 1.76 75 2.2 1.4 0.679 15.46
16# 2.94 92.7 1.76 75 1.6 1.6 0.679 13.35
17# 2.94 92.7 1.07 65 1.6 1.8 0.579 16.34
18# 3.14 98.4 1.07 65 2.2 1.8 0.579 13.85
19# 3.14 98.4 1.3 70 1.9 1.6 0.629 14.36
20# 3.23 104.8 1.3 70 1.9 1.6 0.629 17.65
21# 3.23 104.8 1.76 75 1.6 1.4 0.679 14.5
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The data sets 1 to 12 in the orthogonal test table of the input data are used as the
training sample set of the model, 13–15 as the validation set of the model and the data sets
16 to 21 and other 6 groups are also used as the test sample set. The experimental factor is
used as the input factor of the network, and the result is used as the output factor.

4.2.1. Determine the Number of Hidden Layer Nodes

A three-layer neural network with infinite hidden layer nodes can realize the selection
of the number of hidden layer nodes when constructing any neural network. If the number
of hidden layer nodes is too small, the network cannot establish a complex mapping
relationship, and the network prediction error is large. However, if there are too many
nodes, the network learning time system will increase, and the phenomenon of “over-
fitting” may occur, that is, the prediction of training samples is accurate, and the prediction
error of other samples is larger. At present, there is no theoretical equation for calculating
hidden layer neurons, but in the process of practical use, it is generally based on empirical
Equation (19):

l <
√
(m + n) + a (19)

where, n—number of nodes of input layer;
l—number of hidden layer nodes;
m—number of output layer nodes;
a—the constant of 0–10, where n is 7 and m is 1,
From Equation (19), the interval of the number of neurons in the hidden layer BP

network can be determined as [2,13]. Analyze the effect of different number of neurons
in the hidden layer on the prediction performance of the BP model. As can be seen from
Figure 11, with the increasing number of hidden nodes, the standard deviation of the
training error of the BP model gradually decreases, and the standard deviation of the
simulation error also shows an overall decreasing trend; while the standard deviation of
the average simulation error shows a trend of first decreasing and then increasing. This
indicates that the network gradually transitions from the “under-learning” state to the
“over-learning” state as the number of implicit neurons increases. When the number of
hidden nodes is 10, the training standard deviation, the simulation standard deviation, and
the average error all achieve the best results.
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4.2.2. Determining Inertia Weights ω

It is shown [34] that the particle swarm algorithm performs best and has the highest
probability of finding the global optimal solution when 0.8 < ω < 1.2. Take ω as 0.8, 0.9,
1.0, 1.1, 1.2, run ten times, and calculate the average value of the fitness, and the impact



Minerals 2022, 12, 788 17 of 22

results are shown in Figure 12. When ω = 0.9, the global best fitness value calculated by the
debugging parameters is the smallest and the model has the best solution performance.
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4.2.3. Determining the Size of the Population

The population size M is generally taken from 20 to 90, and can be increased appro-
priately for complex or class-specific problems. However, the study shows that too large
M values have no significant effect on improving the convergence accuracy of the model,
while the computational complexity increases and the effect of finding the best becomes
worse. M was divided into 15 groups and each group was run ten times to calculate the
average value of the fitness, and the impact results were obtained as shown in Figure 13.
When M = 70, the model had the best solution performance.
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4.2.4. Determine the Maximum Velocity of the Particle

To speed up the model computation and prevent the model from diverging or falling
into local optimum in the iteration, the maximum velocity Vmax = kXmax (0.1 ≤ k ≤ 1) is
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generally set, Xmax is the maximum search space, and Xmax is taken as 7. The k values are
divided into ten groups and run ten times to calculate the average value of the fitness, and
the impact is derived as shown in Figure 14, when k = 0.7 and Vmax = 4.9 the model has the
best solution performance.
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4.2.5. Number of Iterations

The PSO-BP algorithm is used to track the change of the fitness value of the objective
function, and the change curve of the optimal individual fitness value of the particle swarm
algorithm with the number of iterations is obtained, when the number of iterations reaches
15, the model gradually stabilizes, as shown in Figure 15.
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The acceleration factors c1, c2 are dynamically adjusted with time [34] In summary, the
model parameters are set as follows: number of nodes in the implicit layer l = 10, inertia
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weight ω = 0.9, population size M = 70, maximum velocity Vmax = 4.9, c1, c2 ∈ [0.5, 2.5].
The structure of the PSO-BP neural network model is as Figure 16.
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4.3. PSO-BP Deep Hole Blasting Block Prediction

The test sample Table 6 was input into the optimized PSO-BP neural network model,
and the output values were compared as shown in the figure, trends almost overlap and
the difference between the actual and predicted values was between 10−2 and 10−4.

The calculation results of error are shown in Figures 17 and 18. It can be seen from
Figure 17 that the error between the real value and the predicted value obtained by PSO-BP
neural network algorithm optimized by particle swarm optimization is very small. The high
accuracy of parameters obtained by learning sample inversion shows that the algorithm is
feasible and can be used to predict the fragmentation of deep hole blasting. As we can see
from Figure 18, the test data one of the model regression plot has reached 0.88316. This
shows the high accuracy of the prediction, which can be used for practical applications.
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Figure 18. PSO-BP plot regression.

Further subdivision of hole bottom distance and minimum resistance line to predict
blast block rate based on production accuracy requirements. Input the design samples
for predicting the fragmentation of deep-hole blasting, and output the PSO-BP network
prediction results of the fragmentation of deep-hole blasting after meeting the requirements
of maximum iteration times or errors. Use PSO-BP network to calculate the data in Table 7.
When the rock density is 3.14 t·m−3, the compressive strength of the rock is 98.4 Mpa, and
the Joint crack is 1.76 strip m−1, the optimal blasting block rate of 6.83% can be achieved
by arranging 75 mm drill holes, setting the bottom distance of the holes at 2.2 m, the
minimum resistance line at 1.4 m, and the primary explosive unit consumption is taken as
0.629 kg·m−3. This parameter has been applied to Sanxin Gold and Copper Mine Company.

Table 7. Predictive design data.

No. Density/(t·m−3) Compressive
Strength/Mpa

Joint Crack/
(Strip m−1) Aperture/mm Hole Bottom

Distance/m
Minimum
Line of Re-
sistance/m

Unit
Consumption of

Explosives/(kg·m−3)

Predicted
Block

Rate/%

1# 2.94 92.7 1.07 65 1.6 1.4 0.579 17.85
2# 2.94 92.7 1.3 70 1.75 1.5 0.679 14.05
3# 2.94 92.7 1.76 75 1.9 1.6 0.629 15.78
4# 2.94 92.7 1.07 70 2.05 1.7 0.604 11.50
5# 2.94 92.7 1.3 75 2.2 1.8 0.654 12.31
6# 3.14 98.4 1.07 65 1.6 1.8 0.579 14.30
7# 3.14 98.4 1.3 70 1.75 1.7 0.679 12.41
8# 3.14 98.4 1.76 75 1.9 1.6 0.659 15.71
9# 3.14 98.4 1.3 70 2.05 1.5 0.604 11.35
10# 3.14 98.4 1.76 75 2.2 1.4 0.629 6.83
11# 3.23 104.8 1.07 65 1.6 1.4 0.579 13.74
12# 3.23 104.8 1.3 70 1.75 1.5 0.604 13.01
13# 3.23 104.8 1.76 75 1.9 1.6 0.654 12.09
14# 3.23 104.8 1.3 70 2.05 1.7 0.629 17.78
15# 3.23 104.8 1.76 75 2.2 1.8 0.679 19.52
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5. Conclusions

In this paper, the blasting parameters were optimized using blast funnel tests to
address the problem of high blast block rate in the actual production of Sanxin gold and
copper mine, and the blast parameters were optimized using PSO-BP neuron algorithm to
predict the blast bulk output rate of sector deep hole blasting after the optimization of blast
parameters, and the following conclusions were obtained in this study:

(1) Blast funnel tests were carried out in the 609 level to determine deep hole blasting
parameters. In the field application of ammonium explosives, blasting funnel characteristics
curve, blasting funnel volume and explosives burial depth relationship, funnel radius and
explosives burial depth relationship, the best burial depth and critical burial depth of the
blasting funnel, bursting pile block degree, and other content analysis and research were
carried out, and then the deep hole blasting hole bottom distance, row spacing (minimum
resistance line), and explosives unit consumption and other parameters were estimated.
The final determination of the bottom distance of the hole is 2.2 m, the unit consumption of
explosives is 0.629 kg/m3, and the row spacing is 1.4 m.

(2) Establishment of PSO-BP deep hole blasting block prediction model, the rock
properties and blast design parameters are selected as the input layer of the neural network,
and the block rate as the output layer, the optimal number of hidden layer nodes is
determined as 10, block prediction for deep sector blasting after optimization of hole
network parameters, predicted block rate of 6.83% after optimization of orifice network
parameters. It is predicted that its prediction accuracy is high and that blasting parameters
can be optimized to effectively reduce the block rate.

(3) For underground mines with high blasting block yield, the results of the thesis
can be applied with slight modifications based on the combination of the mine’s own
geological conditions, which can effectively reduce the generation of blasting block rate at
the site, improving the mine’s efficiency, and providing guidance to underground mining
enterprises to reduce the blasting block rate in blasting construction.
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