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Abstract: The formation of the Qaidam Basin plays an important role in unraveling the growth
history of the Tibetan plateau. An extraordinary thick Cenozoic sedimentary succession of the
Qaidam Basin is a great contributor to the study of the basin’s evolution history. To date, there has
been disagreement on the southwestern boundary of the Paleogene Qaidam Basin. In this study, the
method of heavy mineral analysis was adopted to reconstruct the southwestern boundary of the
Qaidam Basin. The stable heavy minerals which represent the maturity of detrital sediments can
roughly reflect the distance between the source and the deposit area. Therefore, the isogram of the
stable heavy mineral index (ZTR = 20) was compiled to infer the location of the source area of the
southwestern Qaidam Basin. The isogram shows that the boundary of the southwestern Qaidam
Basin stretched southwesterly to the present-day Qiman Tagh Eastern Kunlun Mountains during the
Paleogene. Additionally, the isolines present a remarkable northward migration since the late Eocene,
which indicates the boundary of the Cenozoic Qaidam Basin that withdrew northward since the late
Eocene. The specific location of the southern source area of the Qaidam Basin can be deduced at the
Adatan fault, the middle of the present-day Eastern Kunlun Mountains. This result also supports the
idea that the Qaidam Basin was an independent basin during the early Cenozoic era, and the Eastern
Kunlun Mountains have already been exhumed during that time, serving as a prominent source of
clastic sediments in the southwestern Qaidam Basin.

Keywords: Qaidam Basin; heavy mineral analysis; ZTR index; basin boundary; sedimentary evolution

1. Introduction

Due to the effect of the India–Eurasia collision, a series of basin range geomorpholog-
ical systems have formed in the northeastern Tibet Plateau. Qaidam Basin is the largest
continental basin located in the northeastern Tibetan plateau. It contains an exceptionally
thick Cenozoic sedimentary succession, with an average thickness of up to 8 km [1–3].
Several critical geologic processes such as the growth mechanism and evolution history
of the Tibetan Plateau [4–6], the initiation and development of the Asian monsoon and of
Asian aridification [7–9], and the chemical weathering history of the Qaidam Basin [10–12]
are likely recorded in this thick Cenozoic sedimentary sequence.

A tremendous amount of work on this thick sediment flux has been performed,
which refers to the tectonic and paleoclimatic evolution in the Qaidam Basin during the
Cenozoic. However, several critical issues related to the evolution of the Qaidam Basin
remain controversial, one of which is the southwestern boundary of the Qaidam Basin
in the Paleogene [13]. Reconstructing the southwestern boundary of the Qaidam Basin
contributes to the understanding of the tectonic evolution of the Qaidam Basin, which
may shed light on the deformation pattern of the northern Tibetan plateau. The crux of
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this highly debated issue is whether the Eastern Kunlun Mountains were exhumed during
the Early Cenozoic. Some studies demonstrated that the Eastern Kunlun Mountains did
not uplift during Paleogene and the Qaidam Basin was integrated with the Hoh Xil basin
and Kumukuli basin, which is described as a wide Paleo-Qaidam Basin with negligible
topographic relief in the Eastern Kunlun Mountains [14–16]. In contrast, other studies
proposed that the Qaidam Basin and the Hoh Xil basin were mutually independent basins
during the Paleogene, with the exhumation of the Eastern Kunlun Mountains during
the Early Cenozoic [17–20]. Most studies of reconstructing the morphology of the basin
mainly focused on the seismic data and the thickness patterns [14,21,22], while the analyses
of clastic deposits are relatively scarce. In addition, a few studies on clastic sediments
to reconstruct the boundary of the southwestern Qaidam Basin mainly focused on the
comparison of their sedimentary characteristics and sequences between the Qaidam Basin
and the adjacent basins [15,23]. However, it is likely that the similar tectonic setting and
depositional environment may contribute to the similar sedimentary features, which may
lead to the misunderstanding of the reconstruction of the basin boundary.

Heavy mineral analysis has been widely used to analyze the source-sink system of the
basin [24,25] and has been successfully applied in sedimentological studies [26,27]. There-
fore, additional research associated with heavy minerals is necessary to complement the
sedimentology to acquire a comprehensive understanding of the scale of the Qaidam Basin
and the structural relations between the Eastern Kunlun Mountains and the Qaidam Basin.

In this study, the method of heavy mineral analyses (including heavy mineral assem-
blages and ratios), in combination with the studies on the provenance and the evolution of
sedimentary facies, was adopted to conduct a comprehensive analysis of the southwestern
boundary of the Qaidam Basin. The objectives of this paper are twofold: (1) to reconstruct
the southwestern boundary of the Cenozoic Qaidam Basin; (2) to reconstruct the evolution
of sedimentary filling of the Qaidam Basin.

2. Geologic Setting and Stratigraphy

The Qaidam Basin is located in the northeastern Tibetan Plateau (Figure 1a), with
altitudes mainly between 2700 and 3200 m [28]. This irregular diamond-shaped basin has
a wider western section and a narrower eastern section, with a total area of 121,000 km2.
The basin is confined by three mountain ranges: the Altun Mountains to the northwest,
the Qilian Mountains to the northeast, and the Eastern Kunlun Mountains to the south.
These three large mountain ranges are generally regarded as reliable provenances for the
Qaidam Basin [29]. Tectonically, the basin is structurally bounded by three large fault
systems: the left lateral strike-slip Altyn Tagh Fault to the northwest [3,30,31]; the South
Qilian Shan-Nan Shan thrust belt to the northeast [32–34], and the Kunlun thrust belt to
the south [35,36]. The Qimen Tagh Range was located in the northern part of the Eastern
Kunlun Mountains, and the left-lateral strike-slip of the Qimen Tagh fault systems was
initiated during the Pleistocene [36]. The main part of the Qimen Tagh Range and the
Eastern Kunlun Mountains were separated by the Adatan Fault (Figure 1b).

Generally, the Cenozoic sediments directly lie over the pre-Mesozoic basement in the
southwestern Qaidam Basin. According to the studies on paleomagnetism, paleontology,
geochronology, and petrology [37–39], the Cenozoic strata of the Qaidam Basin can be
successively divided into seven stratigraphic units compared with seismic reflectors (T0–T5
in Figure 1c). The lithostratigraphic formations from oldest to youngest are listed as follows:
the Lulehe Formation (Paleocene to early Eocene, ?–~45 Ma); the Xia Ganchaigou Formation
(middle to late Eocene, ~45 Ma–~35.5 Ma); the Shang Ganchaigou Formation (late Eocene
to Oligocene, ~35.5–~22 Ma); the Xia Youshashan Formation (early to middle Miocene,
~22–~15 Ma); the Shang Youshashan Formation (middle to late Miocene, ~15–~8 Ma); the
Shizigou Formation (late Miocene to Pliocene, ~8–~2.8 Ma); and the Qigequan Formation
(Quaternary, ~2.8 Ma–present).
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Figure 1. (a) Location of the Qaidam Basin on the Tibetan Plateau; (b) locations of sampling wells 
and outcrops in southwestern Qaidam Basin. XSQ: Xianshuiquan; SZF: Shizigou; YQZ: Youquanzi; 
YSS-YXL: Youshashan-Yingxiongling, GS: Gasi, YJ: Yuejin, ZHQ-LCT: Zhahaquan-Lvcaotan, WN: 
Wunan, DCS: Dongchaishan, YSS Outcrop: Youshashan Outcrop, YD Outcrop: Yingdong Outcrop, 
DC Outcrop: Dongchaishan Outcrop, HS Outcrop: Huangshi Outcrop; (c) generalized Cenozoic 
stratigraphy column and seismic reflectors (T0–T5) (modified after [2]). 
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and 7 long-interval exploration wells, which cover most of the study area. Depth correc-
tions for the drilling cores were conducted based on the well logging data. The outcrop 
sections and rock cores were investigated and described in detail for facies analysis. In 
addition, the well logging curves were collected to provide supplementary information 
on the interpretation of sedimentary facies. More than 100 samples were collected and 
were further ground into thin sections for petrography. Their petrological features, in-
volving mineral composition, grain size, shape, sorting, and fabric, were observed using 
a polarization microscope. 

Figure 1. (a) Location of the Qaidam Basin on the Tibetan Plateau; (b) locations of sampling wells
and outcrops in southwestern Qaidam Basin. XSQ: Xianshuiquan; SZF: Shizigou; YQZ: Youquanzi;
YSS-YXL: Youshashan-Yingxiongling, GS: Gasi, YJ: Yuejin, ZHQ-LCT: Zhahaquan-Lvcaotan, WN:
Wunan, DCS: Dongchaishan, YSS Outcrop: Youshashan Outcrop, YD Outcrop: Yingdong Outcrop,
DC Outcrop: Dongchaishan Outcrop, HS Outcrop: Huangshi Outcrop; (c) generalized Cenozoic
stratigraphy column and seismic reflectors (T0–T5) (modified after [2]).

3. Materials and Methods

Detailed sample collection for petrological and sedimentological analysis was carried
out from 2 outcrop sections (Figure 1b, Youshashan Outcrop and Dongchaishan Outcrop)
and 7 long-interval exploration wells, which cover most of the study area. Depth correc-
tions for the drilling cores were conducted based on the well logging data. The outcrop
sections and rock cores were investigated and described in detail for facies analysis. In
addition, the well logging curves were collected to provide supplementary information
on the interpretation of sedimentary facies. More than 100 samples were collected and
were further ground into thin sections for petrography. Their petrological features, in-
volving mineral composition, grain size, shape, sorting, and fabric, were observed using a
polarization microscope.

A total of 110 sandstone samples in this research were collected for heavy mineral
analysis from 37 drilling wells and 6 outcrops of 10 exploration areas (Yuejin, Youshashan,
Gasi, Yingdong, Zhahaquan, Dongchaishan, Wunan, Lvcaotan, Kunbei, and Wanxi) in
the southwestern Qaidam Basin (Figure 1b). These samples are from the Xia Ganchaigou
Formation to the Shang Youshashan Formation. Meanwhile, 20 Quaternary samples were
collected in the field, the locations of which are shown in Figure 1b.

The sandstone samples for heavy mineral analysis were selected from medium- to
coarse-grained sandstones with low weathering intensity (Figure 2j,k), which conforms to
the requirements of the heavy mineral analysis [40]. Each sample has undergone the pro-
cesses of crushing, oil removal, acidification, elutriation, drying, heavy mineral separation,
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and extraction. Subsequently, point-counting method [41] was adopted to calculate the
content of heavy minerals under the polarization microscope.

Minerals 2022, 12, 768 4 of 18 
 

 

A total of 110 sandstone samples in this research were collected for heavy mineral 
analysis from 37 drilling wells and 6 outcrops of 10 exploration areas (Yuejin, Youshashan, 
Gasi, Yingdong, Zhahaquan, Dongchaishan, Wunan, Lvcaotan, Kunbei, and Wanxi) in the 
southwestern Qaidam Basin (Figure 1b). These samples are from the Xia Ganchaigou For-
mation to the Shang Youshashan Formation. Meanwhile, 20 Quaternary samples were 
collected in the field, the locations of which are shown in Figure 1b. 

The sandstone samples for heavy mineral analysis were selected from medium- to 
coarse-grained sandstones with low weathering intensity (Figure 2j,k), which conforms to 
the requirements of the heavy mineral analysis [40]. Each sample has undergone the pro-
cesses of crushing, oil removal, acidification, elutriation, drying, heavy mineral separa-
tion, and extraction. Subsequently, point-counting method [41] was adopted to calculate 
the content of heavy minerals under the polarization microscope. 

 
Figure 2. Photographs and micrographs of the sandstones and heavy minerals. (a) Massive con-
glomerate (Well Yue 68, 2205.5 m); (b) Trough cross-bedding of Dongchaishan outcrop section; (c) 
coarse sandstone under plane-polarized light, the detrital grains are sub-rounded and sub-angular 
in shape (Dongchaishan outcrop); (d) fine sandstone, microwave-like bedding in the upper layer 
and small trough cross-bedding in the lower layer (Well LV13, 2525.5 m); (e) medium sandstone 
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Figure 2. Photographs and micrographs of the sandstones and heavy minerals. (a) Massive con-
glomerate (Well Yue 68, 2205.5 m); (b) Trough cross-bedding of Dongchaishan outcrop section;
(c) coarse sandstone under plane-polarized light, the detrital grains are sub-rounded and sub-angular
in shape (Dongchaishan outcrop); (d) fine sandstone, microwave-like bedding in the upper layer and
small trough cross-bedding in the lower layer (Well LV13, 2525.5 m); (e) medium sandstone under
plane-polarized light with subrounded to rounded grains (Dongchaishan outcrop); (f) fine sandstone
under plane-polarized light (Dongchaishan outcrop); (g) brownish-red mudstone, horizontal bedding
(Well LV13, 4308.2 m); massive grayish mudstone (h) and carbon debris (i) (Well W15, 3086.8 m);
(j) subangular to subrounded shaped garnet grains (Well Z2); (k) subangular to subrounded shaped
tourmaline grains (Well YD103).

4. Sedimentary Facies Analysis
4.1. Lithofacies
4.1.1. Facies 1: Massive Conglomerates

The massive conglomerate facies are mainly red-brown and gray, with a maximum
diameter of 10~30 cm and a minimum diameter of 1–2 mm. The gravel is generally rounded
and sub-rounded in shape and exhibits poor sorting. In most cases, the isolated gravel is
supported by silt and clay matrix. The composition of the gravel is complex, with visible
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quartz, feldspar, flint, etc. Trough cross bedding can be seen in some gravel beds (Figure 2a).
The conglomerate facies only occur in the Xia Ganchaigou Formation in the study area.

4.1.2. Facies 2: Massive Sandstone and Siltstone

Facies 2 is mainly composed of yellowish medium to fine sandstones with subordinate
coarse sandstones and siltstones. In the outcrop and drilling core scale, trough cross-
bedding and tabular cross-bedding can be observed (Figure 2b,d). The clasts are mainly
composed of quartz, with a small amount of feldspar and lithic fragments (mainly meta-
morphic) (Figure 2f). Detrital framework grains are mainly sub-rounded and sub-angular
in shape, with a largely grain-supported fabric, and show moderate sorting (Figure 2c,e). In
general, the textural maturity of the detrital grains is relatively low. Facies 2 is present in the
Xia Ganchaigou Formation, Xia Youshashan Formation, and Shang Youshashan Formation.

4.1.3. Facies 3: Massive Mudstone

In the study area, the color of the mudstone is mainly brownish red, purplish red,
purplish brown, gray-green, and gray, which reflects the different depositional environ-
ments (Figure 2g,h). The mudstone in this study is mainly in a massive structure with
limited laminations. Centimeter-sized plant remains and carbon debris are presented in
some greyish massive mudstone (Figure 2i). Facies 3 is predominantly present in the Shang
Ganchaigou Formation.

4.2. Sedimentary Facies

Based on the associations of lithofacies, five distinct sedimentary facies can be recog-
nized in the study area, i.e., alluvial facies, fan delta facies, fluvial facies, delta facies, and
lake facies. The major features of each sedimentary facies are stated as follows.

Alluvial facies are mainly composed of conglomerates, breccia, and argillaceous
conglomerates. The gravel is poorly sorted, with an extensive muddy matrix, which is
mainly brownish red and purple-red in color. The conglomerates and gravel sandstone are
mainly variegated, and the composition of the gravel is complex, including quartz, feldspar,
chert, granite, gneiss, limestone, and mudstone.

Fan delta facies mainly consist of medium and coarse-grained clastic rocks, most of
which are conglomerates, pebbly sandstones, and coarse sandstones interbedded with
mudstones. The composition of the gravel is complex and the roundness is mainly sub-
round and angular. Massive bedding, large cross-bedding, and sequence bedding are
usually exhibited in the facies.

The sediments of the fluvial facies mainly include medium-fine conglomerates, sand-
stones of different grain sizes, and some mudstones. The conglomerates are mainly retained
deposits of the riverbed with an imbricated arrangement and obvious erosion structures at
the bottom. The sorting and roundness of fluvial clastic sediments are medium to poor, and
the sedimentary structures are rich, including tabular and trough cross-bedding. Compared
with the meandering river facies, the braided river is more developed in the study area,
which is characterized by coarse-grained sediments and various cross-bedding (Figure 3b).

The rock types of delta facies are mainly composed of medium-fine sandstone, siltstone
and mudstone. Delta plain and frontal subfacies mainly represent the overwater part and
underwater part. In the delta plain subfacies, the channels mainly consist of conglomerates
and interdistributary bays mainly comprise mudstones and siltstones. Deltaic facies are
characterized by wavy bedding, horizontal bedding, lenticular bedding, and cross-bedding.
During the sedimentary periods, the delta can migrate and swing at times, and there will be
multiple erosion surfaces, and the sand bodies of the channel are superposed (Figure 3b).

According to the change in water level, the lacustrine facies can be divided into
lakeshore, shallow lakes, semi-deep lakes, and deep lake subfacies. The lakeshore subfacies
are often in an exposed environment, so oxidation color, exposed structures, and biological
remains can be observed in the sediments. The sediments of shallow lakes are usually
gray and grayish white, with fine siltstone and mudstone, and limestone. Wavy bedding,
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lenticular bedding, and veined bedding are developed in both lakeshore and shallow lakes.
Semi-deep and deep lakes mainly consist of gray-black mudstone, and the marl usually
developed horizontal bedding (Figure 3b).
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Based on the features of the five sedimentary facies described above, the evolution
of the sedimentary facies of the Dongchaishan outcrop section is discussed in this study
(Figure 3a). The lower part of the Xia Ganchaigou Formation is mainly composed of yellow-
ish medium-coarse sandstone, as well as greenish and brownish mudstone and siltstone.
The typical dual structure indicates the fluvial facies. During the Shang Ganchaigou For-
mation and the Xia Youshashan Formation, the sedimentary facies evolved into lacustrine
facies occasionally interlaced with delta facies, with the increasing proportion of the mud-
stone. In the upper part of the Xia Youshashan Formation, the contents of the sandstone
gradually increased, accompanied by the appearance of the purple-red mudstone. The vari-
ation of the lithology indicates the shrinkage of the lake, replaced by the delta facies. The
correlation results of different regions in the study area indicate that the lacustrine facies
mainly developed in the Xia Ganchaigou Formation and Shang Ganchaigou Formation.
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Since the Xia Youshashan Formation, the area of the lack contracted, with the appearance
of the fan delta, delta, and fluvial facies (Figure 4b).
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in Figure 1b.

5. Heavy Mineral Analysis
5.1. Heavy Mineral Assemblages

In general, the heavy mineral assemblages can be divided into three groups. The
heavy mineral assemblages of sandstone samples from Yuejin, Gasi, and Zhahaquan are
dominated by zircon and hematite, with averages of 16.6% and 15.6%, respectively. Garnet
and apatite share similar abundances, which comprise a major proportion of the total
heavy mineral assemblages, with averages of 10.6% and 11.9%, respectively. Other species
including ilmenite, chlorite, leucoxene, titanite, magnetite, epidote, tourmaline, pyroxene,
anatase, and rutile display relatively low abundances. While monazite, spinel, tremolite,
and hornblende serve as minor constituents, with averages of no more than 1%. Overall,
sandstone samples of these three locations are characterized by high abundances of zircon,
tourmaline, and rutile (ZTR minerals), with averages of 16.6%, 4.0%, and 2.1%, respectively,
Figure 5a.

The heavy mineral assemblages of samples from Dongchaishan, Wunan, Lvcaotan,
Kunbei, and Wanxi exhibit the highest contents of hematite, with an average of 32.6%.
Garnet and epidote are also major mineral phases, with averages of 11.7% and 8.2%,
respectively. In addition, ilmenite and zircon exhibit similar concentrations in these five
locations, with averages of 6.1% and 6.9%, respectively. Furthermore, apatite, titanite,
magnetite, tourmaline, pyroxene, hornblende, leucoxene, and chlorite serve as subordinate
components. Compared with samples in group one (Yuejin, Gasi, and Zhahaquan), the
abundances of ZTR minerals in these five locations are relatively low, with averages of
6.9%, 4.1%, and 1.1%, respectively, Figure 5b.
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mineral assemblages of sandstone samples from Yuejin, Gasi, and Zhahaquan. (b) The heavy mineral
assemblages of samples from Dongchaishan, Wunan, Lvcaotan, Kunbei, and Wanxi. (c) The heavy
mineral assemblages of samples from Youshashan and Yingdong. The data and abbreviations of
heavy minerals are shown in Table S1.

Samples of Youshashan and Yingdong have the highest percentages of hematite,
followed by titanite, with an average of 14.2%. Epidote, ilmenite, and garnet, which serve
as major components, share similar proportions of total heavy minerals, with averages
of 12.3%, 12.5%, and 11.3%. In addition, moderate constituents are comprised of zircon,
hornblende, apatite, leucoxene, and pyroxene, with averages between 3% and 10%. The
heavy mineral assemblages of this group are distinguished from others by the low content
of ZTR minerals, with averages of 7.2%, 1.5%, and 0.9%, respectively, Figure 5c.

5.2. Heavy Mineral Ratios

The ZTR index (zircon + tourmaline + rutile/opaque heavy minerals) and stability
index (stable heavy minerals/unstable heavy minerals) are able to characterize the maturity
of the samples [42–44]. According to the heavy minerals in the research area, the stability



Minerals 2022, 12, 768 9 of 18

index of heavy minerals adopted in this paper shall be (zircon + tourmaline + rutile +
leucoxene + anatase + titanite + garnet + spinel + monazite)/(apatite + epidote + chlorite +
pyroxene + kyanite + hornblende + tremolite). The ZTR index and stability index of the
samples for each formation in the research area are shown in Tables S2–S5. Meanwhile, the
ratios of all the formations in different areas are shown in Figure 6.
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The characteristics of the heavy minerals can reflect the type of source rock [45,46].
However, in some cases, the heavy mineral data will be affected by the process of trans-
portation, weathering, separation, diagenesis, and other factors. In order to reduce such
impacts and provide a more accurate provenance result, some researchers [45,47] assem-
bled some stable heavy minerals which display similar densities and stability of burial
diagenesis, and further proposed some sorts of heavy mineral ratios that are sensitive to
the sources of heavy minerals (such as the ATi index, GZi index and RuZi index), so as to
minimize the impact of sedimentary and diagenesis processes. According to the relatively
high contents of garnet, apatite, rutile, zircon, and tourmaline in the analyzed sandstone
samples in this study, a series of heavy mineral ratios were acquired using stable heavy
minerals with similar densities, such as the ATi index (=100 × apatite/the total amount
of apatite and tourmaline), the GZi index (=100 × garnet/ the total amount of garnet and
zircon) and the RuZi index (=100 × rutile/the total amount of rutile and zircon). The heavy
mineral ratios of the samples for each formation are shown in Tables S2–S5. The ratios of
all the formations in different areas are shown in Figure 7a–h.
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In general, the ATi, GZi, and RuZi indexes in the Xia Ganchaigou Formation range
from 14.3 to 100.0, 0 to 94.6, and 1.6 to 46.8, respectively (Figure 7a,e), with an average
of 55.4, 45.6 and 18.2, respectively (Figure 7i). The ATi, GZi, and RuZi indexes in the
Shang Ganchaigou Formation range from 13.4 to 97.7, 0 to 81.6, and 0 to 29.4, respectively
(Figure 7b,f), with an average of 77.5, 40.6 and 11.8, respectively (Figure 7i). The ATi, GZi,
and RuZi indexes in the Xia Youshashan Formation range from 10.1 to 100.0, 37.3 to 92,
and 0 to 29.7, respectively (Figure 7c,g), with an average of 71.5, 64.1 and 13.0, respectively
(Figure 7i). The ATi, GZi, and RuZi indexes in the Xia Youshashan Formation range from
20.8 to 90.9, 33.3 to 83.8, and 4.5 to 36.8 (Figure 7d,h), respectively, with an average of 56.2,
62.1 and 13.3, respectively (Figure 7i).

Since the ZTR index values exhibit greater variation among formations and regions,
and the subsequent discussion about basin boundary requires more detailed ZTR index
values, the ZTR indexes of each formation in different areas are stated in detail as follows.

5.2.1. Xia Ganchaigou Formation Samples

For the Xia Ganchaigou Formation, 21 effective samples were acquired in seven
locations in the study area. In general, the ZTR indexes in the Xia Ganchaigou Formation
range from 10.5 to 84.2, with an average of 43.2; the stability indexes range from 0.8 to
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26.0, with an average of 6.4 Figure 6a. Sandstone samples of Gasi exhibit high ZTR indexes
(ranging from 71.6 to 75.8) and stability indexes (ranging from 10.5 to 26.0). Samples of
Yuejin, Dongchaishan, and Kunbei display variable ZTR indexes (ranging from 10.5 to 64.4)
and stability indexes (ranging from 0.8 to 18.7). Sandstone samples of Zhahaquan display
moderate ZTR indexes (ranging from 57.6 to 64.7) and stability indexes (ranging from 3.8
to 4.2).

5.2.2. Shang Ganchaigou Formation Samples

For the Shang Ganchaigou Formation, 22 effective sandstone samples were collected in
six locations. Overall, the ZTR indexes in the Shang Ganchaigou Formation range from 10.9
to 65.9, with an average of 41.0; the stability indexes range from 1.0 to 26.0, with an average
of 6.4 Figure 6b. Sandstone samples from this formation are characterized by variable ZTR
indexes, especially in Zhahaquan and Dongchaishan (ranging from 18.1 to 65.9). However,
the range of stability indexes is quite narrow, and is no more than six.

5.2.3. Xia Youshashan Formation Samples

Fifty effective samples were acquired from the Xia Youshashan Formation in ten
locations in the study area. In general, the ZTR indexes in the Lower Youshashan Formation
range from 0.9 to 51.9, with an average of 20.5; the stability indexes range from 0.3 to 36.6,
with an average of 6.8, Figure 6c. In this formation, most sandstone samples of Yingdong
reveal high ZTR indexes (ranging from 6.7 to 51.9) and stability indexes (ranging from 0.6
to 33.9). In contrast, samples of Gasi, Youshashan, and Yuejin display low ZTR indexes
(ranging from 0.9 to 21.9) and stability indexes (ranging from 0.3 to 2.5).

5.2.4. Shang Youshashan Formation Samples

For the Upper Youshashan Formation, 17 effective samples were obtained in five
locations in the study area. In general, the ZTR indexes in the Upper Youshashan Formation
range from 4.5 to 30.1, with an average of 15.4; the stability indexes range from 0.4 to 4.8,
with an average of 1.7. Overall, sandstone samples from this formation are characterized
by relatively low ZTR indexes and stability indexes, Figure 6d.

6. Discussion
6.1. The Effectiveness of the Heavy Mineral Data

ZTR index and stability index could reflect the compositional maturity of the sandstone
samples, which can help to infer the transportation distance of the clastic deposits [43,48].
As the increase in the transportation distance, the relative contents of the stable heavy
minerals will rise, which will lead to a high ZTR index and stability index. From the ZTR
index and stability index analyses of different formations (Figure 6), we found that the
compositional maturity of the sandstone samples in the Xia Ganchaigou Formation and
Shang Ganchaigou Formation are generally higher. Since the Miocene (the Xia Youshashan
Formation), the values of these two indexes have been gradually declining, displaying the
tendency of concentrated distribution, which indicates the distance from the sedimentary
area to the source area gradually decreased. As shown in Figure 6, with the increase in
the ZTR index, the stability index also increases, which represents a coordinated variation
of these two indexes. Therefore, the ZTR index could serve as an effective indicator to
represent the compositional maturity features.

It can be observed that the values of the ATi, GZi, and RuZi index of each forma-
tion maintain relatively stable with slightly varieties (Figure 7). Therefore, it could be
assumed that the heavy minerals in this study are rarely influenced by the sedimentary
and diagenetic processes and could be regarded as accurate provenance analysis data.

6.2. Provenance of Southwestern Qaidam Basin in Cenozoic

Before the discussion of the southwestern boundary of the Qaidam Basin, provenance
analyses are necessary for two reasons: the first objective is to infer that the Eastern Kunlun
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Mountains has already been exhumed during the Paleogene time [17–19]; the second
objective is to determine the direction of the source of the clastic material deposited in
southwestern Qaidam Basin, which would ensure the effectiveness of using the heavy
mineral ratios to reconstruct the southwestern boundary of the Qaidam Basin. The Altun
Mountains and the Eastern Kunlun Mountains are generally regarded as the two reliable
provenances for the southwestern Qaidam Basin, according to heavy mineral data [49,50],
detrital mineral chemistry [51], and zircon U-Pb ages [52].

Heavy mineral assemblages in the southwestern Qaidam Basin are commonly consid-
ered one of the significant indicators of provenance. Meanwhile, topography and landform
are closely related to the heavy mineral accumulation in the modern deposit environ-
ment [53–55], thus, the heavy mineral assemblages in the deposit area may contribute
to the understanding of the uplift of the provenance in the Paleogene. Sandstones from
the study area have similarities that are dominated by some specific heavy minerals, e.g.,
zircon, tourmaline, leucoxene, titanite, hematite, garnet, ilmenite, apatite, epidote, and
chlorite (Figure 5). In addition, pyroxene mainly occurs in samples from Yuejin, Wunan,
and Youshashan. Note that there are extremely variable concentrations of some opaque
heavy minerals in these sandstone samples, such as magnetite (maximum 38.4% in Kunbei,
minimum of 0 in some areas), owning to the rapid variations of the sedimentary facies in
some regions in the southwestern Qaidam Basin. These opaque heavy minerals with great
variations in abundances may blur the indications of provenances. Therefore, in this study,
we only choose the transparent heavy mineral assemblages to make further analyses.

Zircon, tourmaline, rutile, anatase, titanite, apatite, garnet, epidote, chlorite, pyroxene,
and hornblende are the eleven significant transparent heavy minerals in the southwestern
Qaidam Basin. Some minerals in the heavy minerals can indicate the specific type of source
rock and the nature of the source area. For example, zircon, titanite, and apatite mainly
come from the intermediate-acidic magmatic rocks, while pyroxene generally presents
in many sorts of ultramafic–intermediate magmatic rocks [41,56]. The Zrn-Ttn-Ap-Px
assemblage that originated from the magmatic rocks is called the ZTAP minerals for short.
While garnet, epidote, rutile, and chlorite are commonly found in the metamorphic rocks
with variable metamorphic grades [41,56], epidote and chlorite are often derived from
metamorphic source rocks with medium- to low-grade, particularly, epidote is common
in rocks of greenschist and epidote–amphibolite facies [56]. Rutile is mainly found in
schist, gneiss, and amphibolite [56]. In general, the Grt-Ep-Rt-Chl assemblage is known
as the GERC minerals for short. Among these eleven transparent heavy minerals (the
blue part of the pie charts in Figure 8), ZTAP and GERC minerals are the predominant
components. In addition, the proportions of these two heavy mineral assemblages are quite
similar in all study areas, which reflects the similarity of the provenances for these areas
in the southwestern Qaidam Basin. The dominating heavy mineral assemblages of ZTAP
and GERC minerals indicate that igneous rocks and metamorphic rocks were the primary
sources of these heavy mineral assemblages. The Eastern Kunlun Mountains, located to
the south of the southwestern Qaidam Basin, are mainly composed of pre-Cambrian to
Paleozoic and Mesozoic intermediate–acidic igneous rocks, Paleozoic to Mesozoic marine
sedimentary rocks [52,57–59], and the Mesoproterozoic–Neoproterozoic strata had probably
experienced a medium to low metamorphism [24]. Thus, the lower Paleozoic and Lower
Mesozoic igneous rocks as well as the Mesoproterozoic–Neoproterozoic metamorphism in
the Eastern Kunlun Mountains might be the sources of the heavy mineral assemblages of
the study area. Although the Altun Mountains also comprise the late Cambrian to Early
Devonian intermediate–acidic igneous rocks [37,52,58] as well as the Lower Paleozoic and
Paleoproterozoic metamorphic rocks [60,61], the depositional center in the Shizigou area
(Figure 1b) in the Xia Ganchaigou Formation and Shang Ganchaigou Formation [9,62]
indicates that Altun Mountains could not be a sustainable source for the study area during
the Cenozoic period. Therefore, according to the heavy mineral assemblages discussed
above and the locations of the study area which are in front of and parallel to the Eastern
Kunlun Mountains, the Eastern Kunlun Mountains should be the primary source region
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for the southwestern part of the Qaidam Basin during the Cenozoic period. Additionally,
this provenance result is also supported by the zircon U-Pb ages of the samples in the
southwestern Qaidam Basin [49].
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The evidence from the paleocurrents indicates an identical result. The past research [39]
investigated the paleocurrents of the Mang’ai section (Figure 1b) during Oligocene-early
Miocene by measuring imbricated clasts and oscillatory ripples. The result shows a general
south–north trending direction, indicating the source area was located in the Eastern Kun-
lun Mountains. Another study [63] also suggested that the paleocurrent directions of areas
in front of the Eastern Kunlun Mountains are the SE-NW and SW-NE, which proves the
reliability of the southern provenance. In addition, the sedimentary facies of the Wanxi,
Dongchaishan, and Kunbei areas are mainly fluvial facies with coarser sediments in Xia
Ganchaigou Formation, while the Lvcaotan and Gasi areas are dominated by lacustrine
facies (Figure 4b). The variation of the sedimentary environment from south to north in
front of the Eastern Kunlun Mountains also indicate the provenance area derived from
the south.

6.3. Southwestern Boundary of Qaidam Basin

Zircon, tourmaline, and rutile belong to the assemblage of clastic heavy minerals with
high mineral maturity [27,45], and this assemblage can reflect the sandstone maturity which
is mainly controlled by transportation distance and some other geological processes [45,47].
According to the distribution patterns of the ZTR minerals with spatial changes, the distance
to the provenance could be effectively estimated by using the ZTR index. Therefore, the
ZTR = 20 contour was selected to characterize the distance from the provenance to the
sedimentary area in this study. The southern sedimentary area of the Qaidam Basin
had mainly developed the approximate S–N trending paleocurrents system during the
Oligocene early Miocene period, at the same time, the southern ancient shoreline was
almost in parallel with the Qimen Tagh Range [39].

Based on the provenance direction of the southwestern Qaidam Basin, the contour
distribution map of ZTR = 20 is shown in Figure 6. During the late Eocene–Oligocene
period, the ZTR index in front of the present Qimen Tagh Range is as high as 20–30.
During the period of the Upper Xia Ganchaigou Formation, the ZTR = 20 contour at the
southern research area had already reached and even exceeded the present Qimen Tagh
Range. However, during the Miocene, the ZTR = 20 contour was generally located in the
Yingxiongling–Huangshi area. From the deposition period of Xia Ganchaigou formation to
the Quaternary, the contour exhibits a gradual movement towards the interior of the basin.
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This indicates that the sedimentary stability in the same region may gradually decline over
time, while the corresponding source area may gradually withdraw towards the center of
the basin.

According to the distance from the ZTR = 20 contour in Quaternary to the current
Qiman Tagh Mountain (as shown by the black bidirectional arrow in Figure 9), and in
combination with the position of ZTR = 20 during the late Eocene, the position of southern
provenance during the late Eocene could be generally inferred. As shown in Figure 9,
the southern source area of the basin before the Miocene was located in the southwest of
the Adatan fault, and the position of the southwestern boundary of the basin was in the
middle of the present Eastern Kunlun Mountains. Therefore, it is inferred that Eastern
Kunlun Mountains had already been a relatively stable provenance during the late Eocene–
Oligocene and provided sediments to the southwestern Qaidam Basin. This result supports
the idea that the Eastern Kunlun Mountains were already exhumed during the Paleogene
and separated the Qaidam Basin from the Hoh Xil basin to the south [13,17–19].
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6.4. Sedimentary Evolution

The study of the sedimentary facies of the southern Qaidam Basin demonstrates that
the basin had been in an expansion phase during the late Eocene–Oligocene and had
been in the relatively stable phase during the late Oligocene. In general, the sedimentary
characteristics from the upper part of the Xia Ganchaigou Formation to the Shang Gan-
chaigou Formation reflect the transgression of lacustrine facies. The range of the lake is
gradually increasing. The maximum flooding period occurred roughly in the middle of
the Shang Ganchaigou Formation. After the Miocene, the lake had gradually withdrawn,
and the southern shoreline had gradually pushed towards the basin center over time
(Figure 10). The movement of the lake shoreline shared a similar trend with the ZTR
contour. Therefore, the variation of the ZTR index was subject to the control of the basin’s
structural–sedimentary process, which also demonstrated that it is proper to infer the basin
boundary by the contour. In combination with the sedimentary facies and heavy mineral
analysis, it was found that the southern provenance during the Paleogene was located at
the present southwestern Qiman Tagh Mountain and had gradually moved towards the
basin during the Neogene.
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Ganchaigou, Xia Youshashan, and Shang Youshashan Formation, respectively. Note that the position
of the mountain in the picture is the location of the present Qimen Tagh Range and Eastern Kunlun
Mountains. Note that clear sampling location refer to Figure 1b.

7. Conclusions

The ZTR index can effectively reflect the maturity of sediments, and further facili-
tates the inference of the distance to the provenance. This paper intends to reconstruct
the position of the southwestern boundary of the southwestern Qaidam Basin during
the Paleogene–Neogene period based on the isoline of the ZTR = 20. The study results
demonstrated that the southern provenance during the late Eocene was located southwest
of the present Eastern Kunlun Mountain, and approximately reached the present Adatan
fault of the Middle Eastern Kunlun Mountain. Combining the results of the provenance
analysis and the sedimentary facies analysis, the Eastern Kunlun Mountain had already
been a relatively stable provenance during the late Eocene–Oligocene period and provided
sediments to the southwestern Qaidam Basin. In addition, the distribution pattern of the
shoreline and the isogram of the ZTR = 20 indicate the southwestern boundary of the basin
has moved towards the northeast direction since the Xia Ganchaigou Formation, which
reduced the scope of the basin.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min12060768/s1, Table S1: The heavy minerals of each location
during Cenozoic in southwestern Qaidam Basin; Table S2: The heavy minerals of each location in Xia
Ganchaigou Formation in southwestern Qaidam Basin; Table S3: The heavy minerals of each location
in Shang Ganchaigou Formation in southwestern Qaidam Basin; Table S4: The heavy minerals of each
location in Xia Youshashan Formation in southwestern Qaidam Basin; Table S5: The heavy minerals of
each location in Shang Youshashan Formation in southwestern Qaidam Basin.
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