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Abstract: The Uragen giant sandstone-hosted Zn–Pb deposit has a proven reserve of 5.90 Mt metals
in the southern ore zone and potentially 10 Mt metals for the whole deposit, and orebodies are strictly
confined to the bleached clastic rocks of the Lower Cretaceous red beds. The bleaching has been used
to guide lead–zinc exploration; however, its nature and origin, as well as the relationship with Zn–Pb
mineralization, remains unclear, although it is closely related to regional oil–gas infillings. Detailed
field investigation and petrographic observation, TESCAN-integrated mineral analyzer (TIMA), and
X-ray fluorescence (µ-XRF) analysis of the red and bleached sandstone at the same sedimentary layer
demonstrate that the bleaching is mainly caused by the reductive dissolution of hematite pigment,
which probably resulted from the interaction with H2S formed by in situ sulfate reduction during
hydrocarbon migration. The calcite cements in the bleached sandstones show δ13C and δ18O values
of −5.36~−5.94‰ and 20.94~27.91‰, respectively, and these samples fall close to the evolution line
of decarboxylation of organic matter in δ13C-δ18O diagram, also suggesting a genetic relationship
between the bleaching and hydrocarbon-bearing fluids. Petrol–mineral composition changes and
sulfide characteristics of red, bleached, mineralized zones, as well as pyrite locally replaced by
coarse-grained galena in the mineralized zone, imply that the bleaching may occurred before Zn–Pb
mineralization. Mass balance calculation and µ-XRF analysis indicate that large amounts of Fe and
minor Zn were extracted from red beds with little or no sulfates; however, the red beds with abundant
sulfates may be a sink for leached ore metals during the bleaching process. We therefore propose that
the former accumulations of iron sulfides and reduced sulfur in the bleached zones may provide an
ideal chemical trap for later Zn–Pb mineralization, and the bleached zones with high ∑S contents are
the favorable prospective targets of the Uragen-style sandstone-hosted Zn–Pb deposits.

Keywords: bleaching; red bed; hydrocarbon-bearing fluids; H2S; Uragen Zn–Pb deposit

1. Introduction

Continental red bed basins contain abundant oil and gas resources and sandstone-
hosted Cu, Pb-Zn, U deposits [1–5], and bleaching of continental red beds is closely related
to hydrocarbon micro-seepages and its migration [6,7], as well as to the formation of
these sandstone-hosted ore deposits and location of their orebodies [8–13]. The bleaching
therefore has become an important prospective indicator [11–13]. However, there are still
some uncertain questions regarding the role of the bleaching in sandstone-hosted metal-
lic mineralization, having been classified as either chemical traps including enhancing
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porosities and permeabilities [14,15] and providing a reduced environment for later miner-
alization [8,10,11,15] or leaching of ore metals from the fertile red beds during the bleaching
process [13,16].

The Ulugqat basin in the Kashgar thrust-fold belt in front of the South Tianshan
Orogen contains many oil–gas fields and sandstone-hosted lead–zinc, copper, uranium
ore deposits, including the Uragen giant Zn–Pb deposit, the Kangxi medium-scale Zn–Pb
deposit, the Sarek large-scale Cu-Ag deposit and the Bashibulake large-scale U deposit, and
it has become an important energy and non-ferrous metal mineral base in northwestern
China [3,4,13]. Of these metallic deposits, the Uragen Zn–Pb deposit is the largest one
with a proven reserve of 5.90 Mt metals in the southern ore zone and potentially 10 Mt
metals for the whole deposit [17,18]. The large-scale Zn–Pb mineralization is strictly
confined in the bleached sandstone and conglomerate within the fifth member of the
Lower Cretaceous Kezilesu Group, which is probably the fertile source beds of ore metals
indicated by the similar Pb isotopic compositions and uniform chondrite-normalized REE
distribution patterns with ore sulfides [13,19,20]. Substantial amounts of leachable Fe–
Zn–Pb may have been extracted from the red clastic rocks of the fifth member of the
Lower Cretaceous Kezilesu Group in the periphery of the mining area during the bleaching
process based on mass balance calculations [13]. The bleaching is therefore used as an
important prospective indicator for regional sandstone-hosted Zn–Pb deposits of Uragen
style [12,13,18,21]. However, the origin of bleaching and its relationship with Zn–Pb
mineralization are still unclear due to a lack of geological and geochemical characteristics
studies, although the bleaching is generally attributed to natural oil–gas seepage in the
Ulugqat basin [12,13,17,22–24]. A large number of residual red sandstone patches or blocks
was recently observed in the bleached clastic rocks of the fifth member of the Lower
Cretaceous Kezilesu Group without intense Zn–Pb mineralization, which provides an
excellent opportunity to study the origin of the bleaching and its relationship with the
sandstone-hosted Zn–Pb mineralization.

In this study, the geological and geochemical characteristics of the bleaching were
determined based on detailed field investigation and petrographic observation, TESCAN-
integrated mineral analyzer (TIMA), and X-ray fluorescence (µ-XRF) analysis of the red
and bleached sandstone at the same sedimentary layer. The mass transfer during the
bleaching process was also evaluated through mass balance calculations of whole-rock
major and trace elements. Combined with previous studies, these results are aimed to
decipher the genetic model of the bleaching and its relationship with the sandstone-hosted
Zn–Pb mineralization, as well as its significance for regional mineral exploration of similar
types in the thrust-fold belts in front of the South Tianshan Orogen.

2. Geological Setting
2.1. Regional Geology

The Ulugqat basin is a typical Meso-Cenozoic intracontinental subbasin in the west-
ernmost part of the southwestern Tarim basin (Figure 1a) [2,17,25], and its formation and
evolution were controlled by the South Tianshan Orogen to the north, the Pamir salient
to the south, and the Talas–Fergana strike-slip fault (Figure 1a) [17,25,26]. The basin con-
tains a thick section of Jurassic to Quaternary sedimentary series overlying the Paleozoic
sedimentary rocks that rest on a Precambrian metamorphic basement (Figure 1b) [17]. The
Jurassic–Quaternary sedimentary sequences in the basin are characterized by a ternary
basin structure, forming regional well-developed source–reservoir–cap assemblage [13].
The Lower Cretaceous continental red beds are the regional oil and gas reservoir and ore-
bearing rocks of reginal sandstone-hosted Zn–Pb, Cu and U deposits [13]. The underlying
Middle-upper Jurassic lacustrine coal-bearing successions were regarded as important
regional source beds for the Yangye oil showing and the Akmomu oilfield in the basin
and its periphery based on detailed petroleum geochemistry [22,23], while the overlying
Paleocene thick evaporative and argillaceous dolomite were considered as good sedimen-
tary cap rocks [27,28]. Various mineral deposits and energy resources were proven in the
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sedimentary sequences of the basin, including copper (Upper Jurassic, Lower Cretaceous
and Miocene), zinc-lead (Lower Cretaceous and Paleocene), uranium (Lower Cretaceous),
halite (Paleocene), strontium (Lower Cretaceous), coal (Lower Jurassic), and oil and gas
(Lower Cretaceous) [17,21,29].
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Figure 1. (a) Tectonic framework of central Asia showing the location of the Ulugqat basin in the
southwestern Tarim basin and relationships with Tianshan and Western Kunlun orogens (modified
after [13,26]). (b) Geological and tectonic sketch map of the Ulugqat foreland basin in front of the
South Tianshan Orogen (modified after [2,13]). MPT, Main Pamir Thrust; PFT, Pamir Frontal Thrust;
TFF, Talas–Ferganna Fault; KST, Kangsu South Thrust; 1, Sahaer Cu deposit; 2, Jiangejieer Zn–Pb
deposit; 3, Sareke Cu–Ag deposit; 4, Jiasi Zn–Pb deposit; 5, Bashibulake U deposit; 6, Xiaoruobulake
Cu deposit; 7, Kangxi Zn–Pb deposit; 8, northern zone of the Uragen Zn–Pb deposit; 9, southern zone
of the Uragen Zn–Pb deposit; 10, Jilege Zn–Pb deposit; 11, Huayuan Cu deposit; 12, Wudong Cu
deposit; 13, Shalitashi Zn–Pb deposit; 14, Heiziwei Zn–Pb deposit; 15, Sawayaerdun Au deposit.

2.2. Geology of the Uragen Zn–Pb Deposit

The Uragen Zn–Pb deposit is located in the eastern segment of the Ulugqat basin
(Figure 1b). The strata outcropping comprises the Proterozoic Akesu Group and sedimen-
tary sequences from the Lower Jurassic to the Quaternary in ascending order (Figures 2
and 3) [13,17]. The Lower Cretaceous Kezilesu Group is composed of alluvial and braided
fluvial red bed sediments that were deposited in a warm arid to semi-arid climate, which
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is the sedimentary response to the collision between Lhasa and Qiangtang blocks [30].
The Kezilesu group is divided into five members from bottom to top [17,31], and the
fifth member (ore-bearing horizon) is characterized by conglomerate, pebbly sandstone,
gravelly sandstone, and sandstone with intercalated mudstone [13]. These coarse-grained
clastic rocks were probably derived from the Proterozoic metamorphic basement and the
Paleozoic sedimentary rocks with high Zn–Pb contents in the South Tianshan Orogen based
on a comprehensive provenance study on sedimentology, petrology and detrital zircon
U–Pb geochronology [30], and they formed the most important fertile source beds for the
Uragen sandstone-hosted Zn–Pb deposit.
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Figure 2. Geological map of the Uragen Zn–Pb deposit and surrounding area (modified after [17,24]).
The location of profile A–A’ has been outlined.

The deposit is divided into northern and southern ore zones by the axis of the east/west-
trending Uragen syncline (Figures 2 and 3). The northern ore zone has an average thick-
ness of ~100 m, a trending length of more than 3.5 km and grades of 0.03–0.47% Pb and
2.24–3.41% Zn [17]. The southern ore zone has an average thickness of ~150 m, a trending
length of more than 4.0 km and grades of 0.23–0.89% Pb and 1.69–3.64% Zn [17]. The
orebodies are stratiform, tabular and developed on both limbs of the Uragen syncline
(Figure 2), as well as in the hinge area at depth (Figure 3), where Zn–Pb mineralization
was detected by the deepest drill holes, indicating that the two ore zones are connected
spatially (Figure 3) [13,17].
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Figure 3. Profile A–A’ of the Uragen Zn–Pb deposit and the location is shown in Figure 2 (modified
after [17]).

The orebodies are mainly hosted in the bleached coarse-grained sandstone and con-
glomerate of the fifth member of the Lower Cretaceous Kezilesu Group due to the reduction
by oil–gas infillings [13,17,22–24] and hosted to a lesser extent in the slump breccia of the
grey argillaceous dolomite of the Paleocene Aertashi Formation because of dissolution of
the lower massive gypsum (Figures 3 and 4) [13,24]. Overall, the orebodies are strictly
confined to the bleached zones within the fifth member of the Lower Cretaceous Kezilesu
Group, indicating that mineralization in the Uragen deposit has a close spatial relationship
with the bleaching [13]. The Zn–Pb mineralization occurs mainly as disseminated sulfides
in the matrix and cements of sandstones and conglomerates, and locally as massive sulfides,
patches and veinlets of sulfides in some open spaces of the sandstone, conglomerate or
dolomite breccia [13,17,32]. Petrographic observations have revealed that iron sulfides
formed before Zn–Pb mineralization, indicated by pyrite and marcasite replaced and/or
enclosed by sphalerite and galena [13,17]. The overall paragenetic sequence is summarized
in Figure 4.

Minerals 2022, 12, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 4. Paragenetic sequence of ore and gangue minerals from the Uragen Zn–Pb deposit (modi-
fied after [13]). 

2.3. Bleaching of the Lower Cretaceous Red Beds 
Bleaching of the Lower Cretaceous Kezilesu Group in the Uragen Zn–Pb deposit is 

generally attributed to natural oil–gas seepage based on the spatial relationship of organic 
matter and the bleaching [12,13,17,22,23], including organic matter on the interface be-
tween the bleached and red sandstone [13], oil fillings or stains, and solid bitumen in the 
pore spaces and fractures [17,22], and hydrocarbon-bearing fluid inclusions in sphalerite, 
detrital quartz and calcite cements of bleached sandstones [23,24]. The bleached zones are 
prominently distributed in the fifth member (uppermost parts) of the Lower Cretaceous 
Kezilesu Group (Figure 5a) with residual preserved red mudstone interlayers containing 
the bleached “veins” (Figure 5b) and irregular or patchy red mudstone (Figure 5c), sand-
stone (Figure 5d,e) and pebbly sandstone (Figure 5f). Field investigation reveals that the 
bleaching crosscut sedimentary bedding (Figure 5d,e) and the bleached “veins” locally 
crosscut the red beds (Figure 5b), indicating that the bleaching occurred after the sedimen-
tation. The bleaching may result from the dissolution of ferric iron oxide and hydroxide 
such as hematite pigment during the oil–gas infilling stage based on detailed petrographic 
observations [13]. 

Figure 4. Paragenetic sequence of ore and gangue minerals from the Uragen Zn–Pb deposit (modified
after [13]).



Minerals 2022, 12, 740 6 of 19

2.3. Bleaching of the Lower Cretaceous Red Beds

Bleaching of the Lower Cretaceous Kezilesu Group in the Uragen Zn–Pb deposit
is generally attributed to natural oil–gas seepage based on the spatial relationship of
organic matter and the bleaching [12,13,17,22,23], including organic matter on the interface
between the bleached and red sandstone [13], oil fillings or stains, and solid bitumen in the
pore spaces and fractures [17,22], and hydrocarbon-bearing fluid inclusions in sphalerite,
detrital quartz and calcite cements of bleached sandstones [23,24]. The bleached zones are
prominently distributed in the fifth member (uppermost parts) of the Lower Cretaceous
Kezilesu Group (Figure 5a) with residual preserved red mudstone interlayers containing the
bleached “veins” (Figure 5b) and irregular or patchy red mudstone (Figure 5c), sandstone
(Figure 5d,e) and pebbly sandstone (Figure 5f). Field investigation reveals that the bleaching
crosscut sedimentary bedding (Figure 5d,e) and the bleached “veins” locally crosscut
the red beds (Figure 5b), indicating that the bleaching occurred after the sedimentation.
The bleaching may result from the dissolution of ferric iron oxide and hydroxide such
as hematite pigment during the oil–gas infilling stage based on detailed petrographic
observations [13].
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Figure 5. Photographs of the bleaching phenomenon from the fifth member of the Lower Cretaceous
Kezilesu Group in the Uragen Zn–Pb deposit. (a) Field photographs of outcropping formations in the
west slope of the open pit in the southern ore zone. (b) Red mudstone interbed crosscut locally by the
bleached veins. (c) Residual patches of red mudstone in bleached pebbly sandstone. (d,e) Residual
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patches of red sandstones in the bleached sandstone and sedimentary bedding crosscut by the
bleached zones. (f) Residual patches of red sandy conglomerate in the bleached sandy conglomerate.
The location of sample WG-18 in Figure 6a has been outlined. Lithostratigraphic abbreviations:
K1kz5, fifth member of Kezilesu Group, Lower Cretaceous; E1a, Aertashi Formation, Paleocene; E1-2q,
Qimugen Formation, Paleocene–Eocene; E2k, Kalataer Formation, Eocene; E2w, Uragen Formation,
Eocene; E2-3b, Bashibulake Formation, Oligocene-Eocene; E3N1k, Keziluoyi Formation, Miocene–
Oligocene.

3. Samples and Analytical Methods

Thirty-two red and bleached sandstone samples were collected from the south ore
zone in the Uragen Zn–Pb deposit and were made into polished thin sections for de-
tailed petrographic observations. Zeiss Axioscan 7 fully automatic petrographic analysis
microscope was also employed for fluorescence observation using X-Cite Xylis LT720L
fluorescence light source, wavelength of 455 nm and intensity of 15%. Of all these samples,
WG-18 sample from the slightly mineralized zone at 2104 m level in the west slope of
the open pit were selected (Figure 5e), and the red and bleached sandstone at the same
sedimentary layer (Figure 6a) was then prepared for petrography, TIMA and µ-XRF studies.
Eight powder samples were also obtained from the WG-18 sample using the micro-drilling
technology for whole-rock geochemistry analysis and mass balance calculation (Figure 6a).
In addition, five calcite samples were collected from calcite cements in bleached sandstone
for C-O isotope analysis.
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Figure 6. Photographs and photomicrographs of red and bleached sandstone at the same sedimentary
layer from the fifth member of the Lower Cretaceous Kezilesu Group in the Uragen Zn–Pb deposit.
(a) Photograph of WG-18 sample with the micro-drilling holes showing locations of whole-rock
geochemical analysis. (b) Photograph of WG-18 thin section. (c) Panorama of WG-18 thin section under
cross-polarized light. (d,e) Fluorescence of the interface between red and bleached sandstone under UV
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light. (f,g) Dissolution of IOH and hematite pigment in the bleached sandstone and occurrence of
fine-grained hematite in red sandstone under plane-polarized light. (h) Hydrocarbon-bearing fluid
inclusions in detrital quartz grains of bleached sandstone showing fluorescence under UV light.
Mineral abbreviations: Cc, calcite; Bi, biotite; Chl, chlorite; IOH, ferric iron oxide and hydroxide;
Hem, hematite.

3.1. Micro-Area X-ray Fluorescence Surface Scan Analysis (µ-XRF)

The micro-area X-ray fluorescence surface scan analyses were performed by an M4 Plus
Micro Area X-ray Fluorescence Analyzer at Guangzhou Tuoyan Analytical Technology Co.,
Ltd., Guangzhou, China, following previously established procedures [33]. The instrument
is equipped with a 20 µm diameter polycapillary X-ray lens and two X-Flash silicon drift
detectors. The scanning was carried out at a 50 kV voltage and a current of 300 µA, a
step of 20 µm, and an acquisition time of 5 ms for a single pixel in 2 mbar air atmosphere.
The M4 tornado software was used to process the original data, analyze the spectral peak
information, and derive the element surface distribution map. Semiquantitative data for
sixteen elements were evaluated, which included the major elements of Si, Ca, K, Al, Fe,
Na, Ti, Mg, S, and Mn, and the minor and trace elements of Zn, Sr, Pb, Zr, Rb, and As.

3.2. Tescan Integrated Mineral Analyzer (TIMA)

Compositional maps were obtained on carbon-coated thin sections using a TESCAN-
integrated mineral analyzer under liberation analysis mode at Nanjing Hongchuang Ge-
ological Exploration Technology Service Co., Ltd., Nanjing, China, following previously
established procedures [34]. The TIMA comprises a Mira-3 scanning electron microscope
with four energy dispersive X-ray spectroscopy (EDS, EDAX Element 30). The instrument
was operated at an acceleration voltage of 25 kV and a probe current of 9 nA with a working
distance of 9 mm. Back-scattered electron (BSE) and energy dispersive X-ray spectroscopy
(EDS) data were collected on a regular grid with 6 µm point spacing. Individual particles
and boundaries between different phases were determined based on the BSE image. Min-
eral identification and mapping are based on the matching between mineral definition files
and EDS data. The volume proportion of all phases was automatically calculated.

3.3. Whole-Rock Geochemistry Analysis

Eight powder samples for the whole-rock major and trace elements analyses were
obtained from the same sedimentary layer (Figure 6a) and were then crushed and ground
to 200 mesh in an agate mill. Whole-rock major and trace elements were performed at
Nanjing Hongchuang Geological Exploration Technology Service Co., Ltd. Major element
concentrations were determined by a Rigaku-3080 X-ray fluorescence (XRF) employing a
Rh-anode X-ray tube with a voltage of 40 kV and a current of 70 mA after samples were
fused in a high-frequency melting furnace. The analytical precision (relative standard
deviation) and accuracy (relative error) are both better than 2% for the major element
concentrations determined during this study. Trace element compositions were determined
by an Agilent 7700e inductively coupled plasma-mass spectrometer (ICP-MS), according
to the National Standard of China (GB/T14506.30-2010). The analytical accuracy is better
than 5% for most elements.

3.4. Mass Balance Calculation

The isocon method proposed by Grant (1986) was used to estimate which elements
were lost and which were gained during the bleaching process [35]. The equations that are
used to describe the relationship of the concentrations of major and trace elements between
red and bleached sandstones are as follows:

Mk
B = Mk

R + ∆Mk
R-B (1)

Ck
B × MB/MR = Mk

B/MR = Mk
R/MR + ∆Mk

R-B/MR = Ck
R + ∆Ck

R-B (2)
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where Ck
R and Ck

B represent the concentration of element k before and after bleaching,
respectively, and MR and MB represent the total mass of the rocks before and after bleaching,
respectively. ∆Mk

R-B and ∆Ck
R-B represent the mass and concentration changes of element

k during the bleaching process. Equation (2) can be further rewritten as:

Ck
B = MR/MB × (Ck

R + ∆Ck
R-B) (3)

If the element i is immobile during the bleaching process, the ∆Ci
R-B value is zero.

Equation (3) can be simplified as:

Ci
B = (MR/MB) × Ci

R (4)

Equation (4) can be expressed as a line through the original point with the slope of
MR/MB in the CR-CB diagram, and this line is called the isocon.

If the element m is mobile during the bleaching process, the ∆Cm
R-B value is not zero.

Equation (3) can be expressed as:

Cm
B = MR/MB × (1 + ∆Cm

R-B/Cm
R) × Cm

R (5)

Equation (5) can be also expressed as a line through the original point with the slope of
MR/MB × (1 + ∆Cm

R-B/Cm
R) in the CR-CB diagram. If the slope is larger than the isocon,

∆Cm
R-B and ∆Mm

R-B are both larger than zero.
According to this principle, the measured concentration of any component for major

and trace elements is a plot on the CR-CB diagram to obtain a series of points. If the point
is below the isocon, the element is lost. Conversely, if the point is above the isocon, the
element is gained. The degree of element gain and loss can also be judged based on the
deviation of the points from the isocon. In addition, the concentration of any component
can be scaled at the same time, according to the requirement details, which does not affect
the mass balance analysis results.

3.5. C-O Isotope Analysis

The calcite samples were picked and crushed to 200 mesh-sized powder in prepara-
tion. The samples were then digested with 100% phosphoric acid (H3PO4) and a MAT–
251EM mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), at the State
Key Laboratory of Geological Processes and Mineral Resource, China University of Geo-
sciences, Beijing, China. The CO2 gas produced by the reaction of phosphoric acid with
the sample at 25 ◦C was analyzed to yield the C and O isotopic compositions of cal-
cite. Isotopic compositions are reported relative to Pee Dee Belemnite (PDB) for δ13C,
and the oxygen isotopic compositions were converted to δ18OSMOW and expressed as
δ18OSMOW = 1.03086 × δ18OPDB + 30.86 [36]. The analytical precisions were better than
0.1‰ for carbon isotopes and 0.2‰ for oxygen isotopes.

4. Results
4.1. Petrol–Mineral Composition

Detailed petrographic observations (Figure 6) and TIMA mapping results (Figures 7
and 8) indicate that some distinct differences in mineral compositions occurred in the
red, bleached and slightly mineralized sandstone at the same sedimentary layer. By
comparison, the ferric iron oxide and hydroxide (IOH), such as hematite pigments, was
detected in the red sandstones and bleached front zones (Figures 6f–g, 7a and 8), while the
sulfides including pyrite, galena and minor sphalerite occurred only in the bleached and
slightly mineralized sandstones (Figures 7d,h and 8). The contents of biotite and calcite
decreased from red to bleached sandstone zones (Figures 7b,c and 8), whereas the contents
of kaolinite, muscovite and ankerite gradually increased from proximal to distal bleaching
zones (Figures 7e,g and 8). However, the fine-grained barite grains were only distributed
in the bleached zones (Figures 7f and 8) and were locally replaced by fine-grained pyrite
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(Figure 7f1). In addition, the detrital grains and calcite cements in the bleached and slightly
mineralized zones show bright yellowish green fluorescence, but only some detrital grains
and cements in the red sandstone close to the bleached front zone exhibit yellowish green
fluorescence (Figure 6d,e), indicating the close spatial relationship between the bleaching
and hydrocarbon accumulations and some oil–gas infilling these residual red sandstones.
Some hydrocarbon-bearing fluid inclusions have also been detected in detrital quartz
grains of bleached sandstone by fluorescence (Figure 6e), which provides direct evidence
of hydrocarbon migration within the sandstone interval.

4.2. Elemental Distribution

Elemental mapping using µ-XRF on red and bleached sandstones at the same sedimen-
tary layer suggests that most elements have obvious zoning, indicating the mobilities of
ore metals (Figure 9). Fe, Ca, Mg and K contents gradually decrease from red to bleached,
to mineralized sandstone zones (Figure 9a,b,f–h), possibly resulting from the dissolution of
hematite, biotite, calcite and K-feldspar. The contents of Zn and Mn were also relatively
low in the bleached front zones compared to the red sandstone (Figure 9c,e), suggesting
the migration of Zn–Mn during the bleaching process. However, the contents of Pb were
enriched in the mineralized and bleached distal zones (Figure 9d) due to the presence of
galena, and the contents of S were relatively high in the bleached zone compared to the
slightly mineralized zone (Figure 9i), which is related to the accumulation of fine-grained
pyrite, galena and barite. In addition, Zr is homogeneously distributed in red, bleached and
mineralized sandstone zones (Figure 9j), indicating that Zr is stable during the bleaching
and mineralization process.
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Figure 7. The mineral identification and mapping of red and bleached sandstone at the same
sedimentary layer from the fifth member of the Lower Cretaceous Kezilesu Group used by TIMA.
The distributions of hematite (a), biotite (b), calcite (c), pyrite (d), kaolinite (e), barite (f), ankerite (g)
and whole phases (h) are shown in the red, bleached, and mineralized zones. Barite locally replaced
by pyrite in the bleached front zone was shown in (f1), and fine-grained pyrite locally replaced by
coarse-grained galena in the leached, slightly mineralized zone was shown in (d1).
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Figure 9. Thin section (a) and corresponding µ-XRF element mapping for Fe (b), Mn (c), Pb (d), Zn (e),
Ca (f), Mg (g), K (h), S (i) and Zr (j) of red and bleached sandstone at the same sedimentary layer
from the fifth member of the Lower Cretaceous Kezilesu Group, illustrating sample scale chemical
characterization.
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4.3. Whole-Rock Major and Trace Elements

The major and trace element contents of the red and bleached sandstone samples
at the same sedimentary layer are listed in Table 1. These samples all show high LOI
contents (10.98–15.10% for red sandstones and 8.20–11.05% for bleached, slightly mineral-
ized sandstones), and relatively low SO3 contents (0.016–0.120% for red sandstones and
0.391–0.437% for bleached, slightly mineralized sandstones). The good linear correlation
between LOI and CaO indicates that calcite accounts for the high LOI contents. Meanwhile,
these samples also show linear correlations between Zr and Ti, Th, Hf, Nb, and Yb, suggest-
ing that the bleaching processes had no significant effects on high field-strength elements.
We therefore can use Zr as a reference for mobilities of other major and trace elements, as it
has been widely used in similar studies regarding bleaching [34,37]. In this paper, using
average whole-rock major and trace elemental concentrations of red and bleached, slightly
mineralized sandstone at the same sedimentary layer (Table 1), an isocon diagram was
constructed to evaluate element gains and losses during the bleaching process (Figure 10).
The gained elements mainly include SO3, MnO, Pb, and Mo, while the lost elements mainly
contain FeOT, CaO, Zn, V, and Sb (Figure 10).
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Table 1. Major and trace element contents of red and bleached sandstone at the same sedimentary
layer in the Uragen Zn–Pb deposit.

Sample Types Red Sandstone Bleached Sandstone (Slightly Mineralized)

Sample No. WG18-3 WG18-4 WG18-5 WG18-6 Average WG18-1 WG18-2 WG18-7 WG18-8 Average

SiO2 % 62.71 58.65 55.33 57.65 58.59 68.32 64.82 63.21 68.91 66.32
Al2O3 % 6.64 6.35 5.81 5.88 6.17 7.06 6.65 6.34 6.99 6.76
FeOT % 2.05 1.65 1.35 1.91 1.74 0.76 0.74 0.76 0.73 0.74
MgO % 0.52 0.50 0.46 0.48 0.49 0.57 0.45 0.44 0.51 0.49
CaO % 12.21 15.65 17.77 16.23 15.46 9.22 11.79 13.01 9.54 10.89

Na2O % 0.91 0.99 0.93 0.89 0.93 1.06 0.87 0.81 0.97 0.93
K2O % 2.85 2.46 2.26 2.45 2.51 3.37 3.26 3.18 3.49 3.32
TiO2 % 0.351 0.308 0.243 0.247 0.287 0.305 0.209 0.267 0.294 0.269
P2O5 % 0.068 0.059 0.052 0.054 0.058 0.063 0.058 0.059 0.061 0.060
MnO % 0.047 0.057 0.058 0.054 0.054 0.081 0.049 0.076 0.080 0.072
LOI % 10.98 13.62 15.10 14.02 13.43 8.20 10.39 11.05 8.33 9.49

SUM % 99.34 100.28 99.36 99.87 99.71 99.00 99.28 99.20 99.91 99.35
SO3 % 0.120 0.023 0.016 0.020 0.045 0.431 0.428 0.437 0.391 0.422
FeO % 0.41 0.41 0.27 0.34 0.36 0.36 0.63 0.56 0.29 0.46

Fe2O3 % 1.59 1.19 1.05 1.53 1.34 0.36 0.04 0.14 0.40 0.23
Li ppm 19.4 19.4 17.1 17.1 18.2 21.6 18.0 13.7 14.0 16.8
Be ppm 1.54 1.29 1.17 1.34 1.33 1.28 1.45 0.95 1.12 1.20
Sc ppm 5.8 5.6 4.8 4.9 5.3 4.7 6.3 5.3 3.9 5.1
V ppm 43 32 23 38 34 23 19 20 19 20
Cr ppm 54 26 25 22 32 23 21 16 15 19
Co ppm 6.1 5.4 5.7 5.3 5.6 3.9 4.6 5.3 4.0 4.5
Ni ppm 14.6 12.8 12.2 14.6 13.6 10.9 12.9 11.1 8.5 10.8
Cu ppm 24.1 8.9 5.3 8.3 11.6 23.2 13.7 4.9 5.6 11.8
Zn ppm 288 206 164 182 210 212 144 132 130 154
Ga ppm 7.23 6.44 5.78 6.19 6.41 7.32 6.79 6.40 6.35 6.71
Rb ppm 63.6 57.2 50.6 53.1 56.1 65.1 67.8 61.5 58.8 63.3
Sr ppm 75.9 86.3 81.7 73.3 79.3 80.4 82.9 82.8 80.6 81.7
Y ppm 14.0 12.2 10.9 11.8 12.2 13.9 32.9 14.1 12.4 18.3
Zr ppm 199 146 73 103 130 129 134 105 150 130
Nb ppm 4.8 4.1 3.7 3.6 4.1 4.4 4.0 4.1 4.0 4.1
Cs ppm 4.73 3.81 3.26 3.86 3.91 4.42 4.07 4.07 3.68 4.06
Ba ppm 540 432 395 426 448 483 474 475 470 476
La ppm 16.7 15.3 13.8 14.2 15.0 16.2 15.1 14.4 13.1 14.7
Ce ppm 27.8 20.3 18.5 21.5 22.0 29.4 24.7 25.8 24.6 26.1
Pr ppm 3.77 2.99 2.85 3.09 3.18 3.52 3.40 3.28 3.08 3.32
Nd ppm 14.4 12.1 11.0 12.1 12.4 14.0 12.7 12.7 11.6 12.7
Sm ppm 2.72 2.15 2.13 2.14 2.28 2.88 3.10 2.62 2.47 2.77
Eu ppm 0.66 0.49 0.51 0.53 0.55 0.66 0.73 0.60 0.54 0.63
Gd ppm 2.71 2.30 2.01 2.16 2.29 2.81 4.23 2.65 2.33 3.01
Tb ppm 0.40 0.32 0.28 0.33 0.33 0.39 0.76 0.40 0.35 0.48
Dy ppm 2.38 1.97 1.79 1.97 2.02 2.34 4.99 2.26 1.92 2.88
Ho ppm 0.49 0.41 0.36 0.38 0.41 0.47 1.09 0.49 0.43 0.62
Er ppm 1.43 1.24 1.02 1.14 1.21 1.45 3.18 1.37 1.34 1.83
Tm ppm 0.19 0.18 0.14 0.16 0.17 0.20 0.44 0.20 0.20 0.26
Yb ppm 1.38 1.18 1.11 1.14 1.20 1.35 3.06 1.37 1.24 1.76
Lu ppm 0.21 0.18 0.17 0.17 0.18 0.21 0.39 0.19 0.19 0.25
Hf ppm 5.1 3.6 2.0 2.7 3.3 3.5 3.2 2.7 3.9 3.3
Ta ppm 0.37 0.33 0.40 0.27 0.34 0.32 0.29 0.33 0.29 0.31
Pb ppm 362.5 121.9 57.6 49.2 147.8 2868.0 456.0 877.2 2158.0 1589.8
Th ppm 6.82 3.75 3.09 3.44 4.28 4.58 3.65 3.82 4.28 4.08
U ppm 0.96 0.75 0.68 0.65 0.76 0.81 0.63 0.62 0.69 0.69
As ppm 37.4 6.3 4.0 6.4 13.5 22.3 9.4 11.3 12.0 13.8
Ge ppm 0.84 0.70 0.73 0.70 0.74 0.94 0.97 0.67 0.69 0.82
Mo ppm 3.51 1.95 1.60 1.88 2.23 2.52 16.97 1.25 1.36 5.52
Cd ppm 0.62 0.19 0.12 0.10 0.26 0.61 0.13 0.07 0.13 0.23
In ppm 0.024 0.015 0.008 0.009 0.014 0.012 0.006 0.010 0.004 0.008
Sn ppm 1.6 1.4 1.2 1.0 1.3 1.5 1.4 1.2 1.2 1.3
Sb ppm 8.66 2.18 0.96 1.19 3.25 3.42 0.52 0.58 0.76 1.32
W ppm 2.1 1.9 0.8 1.0 1.5 1.5 0.8 0.8 1.0 1.0
Tl ppm 0.67 0.42 0.36 0.37 0.46 0.70 0.64 0.65 0.65 0.66
Bi ppm 0.69 0.27 0.19 0.09 0.31 0.56 0.11 0.09 0.12 0.22
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4.4. C-O Isotopic Compositions

The carbon and oxygen isotopic compositions of calcite samples from the bleached,
grey sandstones are listed in Table 2. The δ13CV–PDB and δ18OV–SMOW values ranged from
−5.36‰ to −5.94‰ and from +20.94‰ to +27.91‰, respectively. These results are similar
to those of the six calcite samples (except one sample possibly affected by diagenetic calcite)
from the bleached sandstones with δ13CV–PDB and δ18OV–SMOW values ranging from −5.1‰
to −7.7‰ and from +20.9‰ to +31.9‰, respectively, reported by Zhu et al. (2010) [24]. In
the δ18OSMOW-δ13CPDB diagram (Figure 11), these samples lie close to the evolution line of
decarboxylation of organic matter, indicating the addition of hydrocarbon-bearing fluids.

Table 2. C-O isotopic compositions of calcite in the bleached pebbly sandstone of the fifth member of
the Lower Cretaceous Kezilesu Group in the Uragen deposit.

Sample No. Location Lithology Mineral δ13Cv-PDB/‰ δ18Ov-SMOW/‰

CHO-1
Fifth member of the Lower

Cretaceous Kezilesu Group in
the south ore zone

Bleached pebbly
sandstone

Calcite −5.50 22.16
CHO-2 Calcite −5.36 20.94
CHO-3 Calcite −5.75 27.91
CHO-4 Calcite −5.63 23.62
CHO-5 Calcite −5.94 22.60

5. Discussion
5.1. Origin of the Bleaching

Bleaching of the Lower Cretaceous continental red beds in the Uragen Zn–Pb deposit
is generally attributed to natural oil–gas seepage based on the occurrence of organic matter
in the bleached sandstones [12,13,17,22,23]. However, this interpretation lacks direct geo-
logical and geochemical evidence. In this study, a field investigation has revealed that the
bleached sandstone zones are widely distributed in the uppermost parts of the fifth member
of the Lower Cretaceous Kezilesu Group (Figure 5a), probably resulting from the buoyant,
updip-migrating hydrocarbon-bearing fluids, ruling out the possibilities of CO2-charged
dense brine [38,39]. This hypothesis was also verified by the yellowish green fluorescence
in the red sandstones close to the bleaching front zones and bleached sandstones and
hydrocarbon-bearing fluid inclusions in the detrital quartz grains of the bleached sandstone
showing fluorescence (Figure 6). Moreover, the calcite cements in the bleached sand-
stones show relatively lower δ13CPDB values than those of the bleached Entrada sandstones
related to CO2-charged brine [38], and these samples fall close to the evolution line of
decarboxylation of organic matter in the δ18OSMOW-δ13CPDB diagram, similar to those from
hydrocarbon-related bleaching (Figure 11), such as the Yanan sandstone in Ordos basin,
NW China [40–42], the Jingxing sandstone in Lanping-Simao basin, SW China [43–45], and
the Wingate and Navajo sandstones in Paradox basin, USA [6,46,47]. These all indicate a
genetic relationship between the bleaching and hydrocarbon accumulations.
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and other red beds worldwide, including the Entrada sandstone in Green river, USA [38], the Wingate
and Navajo sandstones in Paradox basin, USA [6,46,47], the Yanan sandstone in northern Ordos
basin, China [40–42], the Jingxing sandstone in Lanping–Simao basin, China [43–45], and the Kezilesu
sandstone in Ulugqat basin, China ([24] and this study).

Petrographic observations have revealed that hematite pigments have close spatial
relationship with the bleaching, and the content changes and distributions of plagioclase,
biotite, calcite, muscovite, kaolinite and ankerite indicate that the caused fluids resulting in
the bleaching are slightly acidic (Figures 6 and 7). The bleaching therefore resulted from the
reductive dissolution of hematite pigments during the oil–gas infilling stage, because the
Fe3+ ions are relatively stable, and they can only migrate on a large scale under the strong
acidic environment (pH < 4) [9,46], which cannot be successful to achieve in a natural
sandstone reservoir with low compositional maturity. However, the reductive dissolution
mechanism of hematite pigments remains uncertain, as hydrocarbon, organic acid and
hydrogen sulfide (H2S) are all possible reducing agents [6,7,9,48]. Previous kinetics studies
of hematite dissolution have revealed that the reaction rate of hydrogen sulfide (H2S) as a
reducing agent is significantly faster than that of CH4 under the same conditions [49,50],
and if the reducing fluids contain abundant hydrogen sulfide (H2S), the hematite will be
in situ reduced to form pyrite without a large amount of Fe migration [50]. In the Uragen
deposit, the coexistence of pyrite, barite and hematite (Figures 6 and 7), high S contents
(Figure 9i) and barite locally replaced by pyrite (Figure 6f1) in the bleached front zone
indicate that hydrogen sulfide (H2S) may play an important role in the bleaching, which
was probably formed by in situ sulfate reduction of soluble sulfate in pore water and sulfate
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cements. This is consistent with the low S contents in the residual red sandstone patches
of the bleached zones (Figure 9i), probably because the pore water with sulfate cannot
penetrate them easily due to well-developed diagenetic calcite cement, although some
parts in the residual red sandstones possibly show some oil–gas infilling signs, e.g., the
fluorescent detrital quartz grains and calcite cements.

5.2. Implications for Zn–Pb Mineralization

Although some geochronological studies have been conducted to date the mineraliza-
tion of the Uragen Zn–Pb deposit [32] and regional oil–gas infillings [51–53], the temporal
relationship between the bleaching and mineralization remains uncertain, largely because
the accurate ages of sandstone-hosted Zn–Pb mineralization and oil–gas infilling are notori-
ously difficult to date [54,55]. The bleaching was regarded as pre-mineralization alteration
in this study, as the Zn–Pb mineralization was strictly confined to the bleached zone, and
some parts of the bleached zones were not mineralized [24,56]. Detailed petrographic ob-
servations have also revealed that the mineralized zone was superimposed on the bleached
zone, because the bleached zone is characterized by fine-grained sulfides such as pyrite
(Figures 7 and 8) and high S content (Figure 9) while the mineralized zone is represented
by coarse-grained galena and fine-grained pyrite (Figures 7 and 8), locally replaced by
galena (Figure 7d1). Considering that the bleaching of red beds has been widely used as
a prospective indicator for sandstone-hosted Zn–Pb deposits in the South Tianshan, NW
China [2,12,13,21], other important ore-controlling factors, except for pre-mineralization
bleaching, have to be therefore considered during mineral exploration.

Previous studies have revealed that the Lower Cretaceous Kezilesu Group is proba-
bly the fertile source beds of the ore metals based on systemic Pb isotopes [13,19,20] and
substantial amounts of leachable Fe-Zn–Pb may have been extracted during the bleaching
process [13]. In this study, large amounts of Fe and minor Zn were also extracted from red
beds with little or no sulfates, indicated by the low Fe–Mn–Zn contents in the bleached front
zone using µ-XRF elemental mapping (Figure 9) and mass balance calculations for major
and trace elements of red sandstone and bleached sandstone (slightly Pb mineralized) at the
same sedimentary layer (Figure 10). Moreover, hydrocarbon has been considered to play a
more active role in the leaching of ore metals from source beds and forming the ore-forming
fluid, as ore metals (such as Zn, U, V, Pb, and other elements) can be enriched to high con-
centrations (some even reaching industrial grades) in liquid hydrocarbon [57–59]. Similarly,
reduced sulfur (H2S) was considered as triggering for the precipitation of metallic sulfides
for hydrocarbon-bearing fluids [58,59]. That is, if the red beds bore little or no sulfates,
substantial amounts of Fe–Zn could have been extracted. However, if the red beds bore
abundant sulfates, the leachable ore metals (especially iron) would have been precipitated
from the hydrocarbon-bearing fluids. Consequently, pre-mineralization bleaching of red
beds may produce large amounts of iron sulfides and reduced sulfur in local sandstone
reservoirs with many sulfate cements and/or sulfate-rich pore water, providing an ideal
chemical trap for later sandstone-hosted Zn–Pb mineralization. Therefore, the bleached
zones with high ∑S contents are the favorable prospective targets of the Uragen-style
sandstone-hosted Zn–Pb deposits.

6. Conclusions

(1) The bleaching of red beds is related to regional oil–gas infilling, and the dissolution of
hematite pigment may result from the interaction with H2S formed by in situ sulfate
reduction in the Uragen Zn–Pb deposit.

(2) Large amounts of Fe and minor Zn were extracted from red beds with little or no
sulfates, and the red beds with considerable sulfate may be a sink for leached ore
metals during the bleaching process.

(3) The bleaching is pre-mineralization alteration, and the former accumulation of iron
sulfides and reduced sulfur during the bleaching process may provide chemical traps
for later sandstone-hosted Zn–Pb mineralization.
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(4) The bleached zones with high ∑S contents are the favorable prospective targets of the
Uragen-style sandstone-hosted Zn–Pb deposits.
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