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Abstract: The backfilling mining method can effectively solve the environmental and safety problems
caused by mining. It is the key technology to realize green mining. Scientific development has
accelerated the pace of research on the rational utilization of mine solid waste and improved the
research level of backfilling technology. The development history of the backfilling mining method
is introduced in the present paper, and it is determined that roof-contacting backfilling is the key
technology of mine-solid-waste backfilling mining. This paper introduces three calculation methods
of similar roof-contacted backfilling rates. In this paper, the relationship between the characteristics
of backfilling slurry made from solid waste from mines and the roof-contacted backfilling rate is
systematically analyzed, such as the flow law in stope (gravity gradient), bleeding shrinkage, and
natural sedimentation of backfilling slurry. It is pointed out that the characteristics of the stope,
such as washing-pipe water, water for the leading way, filling pipeline, and shape of the backfilling
stope, are closely related to the roof-contacted backfilling rate. The influential relationship between
objective factors, such as human factors, limited auxiliary leveling measures, and backfilling “one-
time operation” in the backfilling process, and high-efficiency top filling are considered, and a
schematic diagram of the influencing top-filling rate and structure is drawn. At the same time, this
paper summarizes the improvement measures of roof connection from three aspects. These include
the use of expansive non-shrinkable materials, forced roof-contacted technology, and strengthening
management level. It is pointed out that the roof-contacted filling technology is still facing severe
challenges, and the research on the backfilling connection technology needs to be strengthened.

Keywords: solid-waste filling; roof-contacted rate; influencing factors of roof connection; regulation
and improvement of roof-connection measures

1. Introduction

Mineral resources are the precious materials given to mankind by nature and the
basis for the survival and development of human society. They are closely and positively
proportional to the enhancement of national economic strength, civilization and progress,
social stability, and the improvement of national living standards [1–3]. Whether from the
Stone Age or the Information Age, a kind of mineral raw material with good performance
and strong functionality is produced in each historical development stage. Therefore,
without the development and utilization of mineral resources, human society will not be
able to progress [4–7]. However, the safety and environmental problems accompanying the
mining process restrict the sustainable development of mineral resources [8–10].

China’s economic take-off is inseparable from the great help of mining. Due to the
combination of extensive type and excess capacity production, the area of land destroyed by
mining in China has reached 2 million hm3. The amount of tailings formed by mining and
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beneficiation has reached 14.6 billion tons, occupying a land area of 8700 km2, equivalent to
the area of four Shenzhen cities [11]. About 5–7 billion tons of tailings are generated globally
every year [12–14]. The generation of such a large quantity of mill tailings adversely affects
the environment, including the air, water, and soil [15–18], as shown in Figure 1. At the
same time, in the process of underground mining, a large number of mined-out areas are
created, which not only threatens the safety of underground operations, but also includes
the hidden danger of inducing mine earthquakes and surface collapse [19–21]. To solve a
series of problems caused by mining, such as surface stacking, solid waste stacking, and
goaf treatment, it is necessary to break through the bottleneck constraints of resources
and the environment, adhere to energy conservation and emission reduction, and develop
a mining circular economy [22,23]. With the idea of “one filling to treat three wastes,
one waste to treat two hazards”, the filling technology creatively uses mine solid waste
efficiently, eliminates the tailings pond, and governs the goaf, forming a mining method
with a high recovery rate and low dilution rate [24–26]. It is an important technical means
to move towards the win–win situation of building “environmentally friendly” and “safe
and efficient” mines [18,27–30]. Nowadays, there are many studies on the strength of
backfilling massif, but there are relatively few studies on how to improve the roof-contacted
backfilling rate to address the overall performance of the backfilling massif, which is an
urgent problem that needs to be solved.
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tury. At first, it aimed at the simple treatment of mine solid waste, such as waste rock. 
Nowadays, backfilling mining has gradually developed into a comprehensive technology 
to improve the environment, control the ground pressure, and reduce the poor-loss index 
to form a complete mining process [31,32]. According to different backfilling materials, 
backfilling mining has experienced dry backfilling, hydraulic sand backfilling, and ce-
mented backfilling [33–38]. From dry backfilling to cemented backfilling, backfilling tech-
nology has developed rapidly and gradually developed to include paste filling, as shown 
in Figure 2. 

Due to the different mining methods, in some upward-filling mining methods, the 
roof-contacted backfilling rate is not strictly required, such as the upward-approach filling 
mining method. However, in the continuous mining and continuous backfilling method 
and open stoping following the backfilling mining method, the roof-contacted backfilling 
rate is of great concern, which is directly related to the ability of the upper surrounding 
rock to be a form of support, and thus ensure the safety of the stope [39–41]. Over the 
years, the relevant experts believe that, for the conventional high-concentration cemented 
filling, the influences of roof-contacting backfilling are mainly gravity gradient, bleeding 
shrinkage, and natural sedimentation of backfilling slurry. [42–44]. In order to achieve an 
efficient one-time roof connection, a series of processes, such as setting multiple 
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2. Development of Backfilling Technology and Roof-Contacting
Backfilling Technology

The backfilling mining method has a development history of more than half a century.
At first, it aimed at the simple treatment of mine solid waste, such as waste rock. Nowadays,
backfilling mining has gradually developed into a comprehensive technology to improve
the environment, control the ground pressure, and reduce the poor-loss index to form a
complete mining process [31,32]. According to different backfilling materials, backfilling
mining has experienced dry backfilling, hydraulic sand backfilling, and cemented back-
filling [33–38]. From dry backfilling to cemented backfilling, backfilling technology has
developed rapidly and gradually developed to include paste filling, as shown in Figure 2.

Due to the different mining methods, in some upward-filling mining methods, the
roof-contacted backfilling rate is not strictly required, such as the upward-approach filling
mining method. However, in the continuous mining and continuous backfilling method
and open stoping following the backfilling mining method, the roof-contacted backfilling
rate is of great concern, which is directly related to the ability of the upper surrounding
rock to be a form of support, and thus ensure the safety of the stope [39–41]. Over the
years, the relevant experts believe that, for the conventional high-concentration cemented
filling, the influences of roof-contacting backfilling are mainly gravity gradient, bleeding
shrinkage, and natural sedimentation of backfilling slurry. [42–44]. In order to achieve an
efficient one-time roof connection, a series of processes, such as setting multiple backfilling
discharge openings and the shape of stope backfilling adjustment, are proposed, but the
practical application effect is poor.
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Therefore, in order to improve the roof-contacted backfilling rate, the safety of the
mining operation, and reduce the environmental burden, this paper analyzes the factors
affecting the roof-contacted backfilling rate under the conventional high-concentration
cemented filling, and summarizes the corresponding improvement measures.

3. Factors Affecting Roof-Contacted Backfilling Rate and Improvement Measures
3.1. Similar Roof-Contacted Rate

The roof contact of the backfilling massif is an important part of backfilling work. The
effect of the roof connection of the backfilling massif can be expressed by the backfilling
roof-contacted ratio. This definition can be intuitively understood as the ratio of the area
of the filling body contacting the roof to the area of the whole roof. However, in practical
applications, this method is difficult. In order to simplify the calculation, three kinds of
similar methods are proposed in the literature to calculate the roof-contacted backfilling
rate, as shown in Table 1 [45].

Table 1. Similar roof-contacted rate.

Method Calculation Formula Explanation

Similar volume ratio ε = v
V × 100%

ε—Similar backfilling roof-contacted rate
v—Volume of filling body
V—Volume of mined ore

Average height ratio ε = h
H × 100%

H—Average height of measured area before filling
h—Average height of filling body in the measured area

Cross-sectional area ratio ε = s
S × 100% s—The area of the top of the filling body connected to the top

S—Area of goaf roof

3.2. The Influencing Factors of Roof-Contacted Backfilling Rate
3.2.1. Slurry Characteristics

(1) Gravity gradient

In the past, filling and mining experts have performed a large number of similar
simulations and field industrial tests for the roof connection of the backfilling massif,
conducted a lot of research on backfilling slurry accumulation contour and slope angle,
and summarized and proposed a significant amount of application experience [46–48].
If self-flowing transportation is adopted, the backfilling slurry shrinkage can be divided
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into two processes, namely, the unrestricted sediment diffusion process and the restricted
upward-stacking process.

The unrestricted sediment diffusion process refers to the filling slurry that does not
make contact with the boundary of the short side of the corresponding route after the
filling slurry is filled into the goaf, and it can be regarded as the free flow of slurry on an
infinite plane. It can be observed from Figure 3 that the curve law of free flow on the infinite
plane has the characteristics of normal distribution. The sediment diffusion movement of
aggregates with different particle sizes in the filling slurry can be regarded as sedimentation
diffusion events, and the successive sedimentation along the goaf presents probabilities.
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The individual aggregate molecules of the backfilling slurry are not enough to affect
the whole backfilling massif. k (k = 1, 2, . . . , n) is used to represent the aggregate with
different sizes constituting the filling slurry. According to the Lyapunov central limit
theorem, sedimentary events within ∆xi are always independent of each other. No matter

what distribution the random variable k has, when n in
n
∑

k=1
xk approaches infinity, it

approximately conforms to the normal distribution N(0,1). From this, it is calculated that
the slope curve equation of slurry infinite diffusion sediment is

y = he−
x2

2σ2 (1)

where h is the maximum height of unrestricted diffusion sediment. σ2 represents the mean
squared deviation.

The mean squared deviation reflects the steepness and slowness of the slurry sed-
imentation slope, which is jointly determined by the slurry concentration, particle-size
distribution, and the content of cementitious materials. The specific value of each mine
should be estimated by the histogram of the density function through experiments. The fill-
ing slurry diffuses from the initial falling point to the surroundings to form a sedimentary
body with an approximate radius of L. The slope of the sedimentary body is approximately
normally distributed. There is a certain functional relationship between the unrestricted
diffusion radius L of the backfilling slurry in the stope and the sedimentary height h; that
is, h = (L).

The restricted upward-stacking process is a process in which the filling slurry enters
the goaf, diffuses to the relatively short-side boundary, and accumulates upward until it
is relatively close to the roof of the backfilling stope. After the backfilling is completed,
by observing the final shape of the backfilling massif, it can be found that the effect of
the backfilling slurry roof-connection in an area centered on the filling pipe’s orifice is
remarkable, while a certain sedimentary slope is formed at the edge of the area far from
the pipe orifice, which is related to the backfilling slurry concentration, and mobility and
operation times.

On the basis of the three-dimensional scanning of the basic-settlement-layer contour,
Wang Xinmin et al. [47] used the model to estimate the roof-contacted area and roof-
contacted backfilling rate, which provided a basis for the next safety production of the
mine. Lu Hongjian et al. [49] studied the flow-trajectory model of backfilling parts in the
filling stope of Shirengou Iron Mine, detected the surface contour of the backfilling massif
by using three-dimensional laser scanning technology, and analyzed the characteristics
of the backfilling-slurry-flow sediment slope curve, as shown in Figure 4. Tang Li et al.
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studied [50] the problem of filling and roof connection in the Jinchuan No. 2 mining area.
By taking the rod ground sand-based cemented filling slurry as an example, using the
theoretical model, parameters, such as the optimal size of the stope, the optimal position
of the filling pipeline, and the optimal number of pipeline movements, were studied to
ensure the roof-connection effect of the filling body.
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“The infinite sedimentary diffusion body model” assumes that the backfilling massif
is the mean slurry without segregation, so it has good applicability when the stope size is
small. However, in relatively large stopes, coarse aggregate of backfilling slurry sedimentate
faster than fine aggregate, as shown in Figure 5 [51], so there are more coarse aggregates
at the filling pipeline, and fine particles move and sedimentate to the far end with the
movement of the slurry. The newly injected slurry flows and sedimentates along the slope
of the deposited slurry. During the backfilling process, the gravity water accumulates at
the far end of the underground stope and is discharged.
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Hua-fu Qiu [52] modified the original model to some extent, and considered that
the backfilling slurry expanded to both sides after entering the underground stope, and
the mass fraction gradually decreased. The backfilling slurry still conforms to the normal
distribution in the processes of flow and sedimentation. The modified slope curve model
relationship is as follows:

y = a + he
(x+b)2

2δ2 (2)

where y—slope height; h—sedimentation height of filling slurry; δ2—mean square devia-
tion; and a, b—undetermined constant.

The undetermined constants a and b are related to the location of the backfilling area.
When the backfilling slurry flows and sedimentates on the wireless plane, both a and b
are 0. At this time, the slope curve model degenerates into the original infinite plane
accumulation model.

(2) Dewatering and sedimentation

Goaf filling and dewatering are an essential part of backfilling work transported by
pipeline hydraulic gravity. A filling body is a kind of loose body, so its water content is
complex, which can be divided into adsorbed water, capillary water, and gravity water [53].
Gravity water is the main object of dewatering in the backfilling process. This part of
water exists in the large pores in the solid aggregate of backfilling. It has the general
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characteristics of water and can flow freely between the backfilling aggregate and flow
downward under the action of gravity [54].

Dewatering technology can be divided into two categories: external action and non-
external action. The external effects mainly include the electro-osmosis method, negative
pressure method, and pressure ventilation. The non-external effects mainly include the
chain dewatering method, setting the dewatering closed wall and dewatering well, in-
creasing the installation spacing and pipe diameter of a dewatering pipe, increasing the
backfilling water overflow pipeline, and improving aggregate gradation [55].

Zhang Aiqing et al. [55] improved the common dewatering pipe without consider-
ing the external effect, increasing the number of dewatering pipes, and shortening the
spacing of dewatering pipes, designed a new root-like dewatering pipe based on bionics,
and conducted dewatering tests of the new root-like dewatering pipe and the common
dewatering pipe, respectively. It was concluded that the new root-like dewatering pipe can
significantly improve the dewatering rate compared tot the common dewatering pipe, as
shown in Figure 6. Wang Bingwen et al. [56] explored the relevant laws of electro-osmotic
dehydration and consolidation of filling slurry, and conducted the test with a self-made
electro-osmotic dehydration test and natural dehydration test device, as shown in Figure 7.
The results show that the electroosmosis method can not only accelerate the drainage speed,
but also improve the strength of the test block for the full tailings non-cemented filling
slurry without cementitious material.
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(3) Slurry shrinkage

The shrinkage of backfilling slurry is an inevitable phenomenon in the backfilling
process, which is mainly in the form of pipeline hydraulic gravity and heterogeneous flow
transportation. In order to ensure hydraulic gravity transportation, the water content of
the slurry is much greater than that required by the hydration process of the cementitious
material, and a large quantity of water needs to be removed in the filling process [57–59].
The shrinkage of backfilling slurry is mainly composed of bleeding shrinkage and seep-
age shrinkage.

Bleeding shrinkage is due to the fact that the backfilling slurry is in the state of su-
persaturated water. When the cemented filling slurry enters the goaf, the coarse and
fine aggregates of the backfilling slurry sink one after another, forcing the rich water to
separate on the surface of the backfilling massif. When the water is removed, a space is
formed between the backfilling massif surface and the roof of the goaf, thus affecting the
roof-contacted effect in filling process. Seepage shrinkage refers to the transition from a
supersaturated state to a saturated or wet state after the water in the backfilling slurry
is discharged by runoff. Following this, the gravity water in the gap between the solid
aggregates is discharged by seepage, the aggregates are rearranged, the porosity between
the solid aggregates is reduced, and the backfilling massif is subject to secondary sedimen-
tation. In order to solve the bleeding problem of low-concentration self-flowing tailings
filling slurry, Liu Juanhong et al. [60] conducted experiments with solid concentrations of
57%, 60%, 63%, and 66%, respectively. The results are shown in Figure 8., which verify that
the bleeding and shrinkage of filling slurry causes the filling body to be unable to connect
and compact.
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3.2.2. Stope Characteristics

(1) Washing-pipe water and water for the leading way

In the hydraulic filling mode of gravity transportation, in order to prevent the residue
of filling slurry left in the pipeline from sticking and ensure the smooth outflow of slurry,
5~10 min of water for the leading way and washing-pipe water are discharged before and
after each filling. A large quantity of water cannot rapidly dewater from the stope in the
stope. After the goaf is filled and dehydrated, a space is formed, which is difficult to ensure
the roof connection of the backfilling massif.

(2) Backfilling pipe

During the backfilling process of the goaf, the backfilling pipeline must be hung in the
safety zone of the highest point of the goaf. Due to the limitation of stope conditions, it is
difficult for the backfilling pipeline to be hung in the highest position. At this time, relevant
measures, such as cutting, need to be taken to ensure that the backfilling pipe is safely set
at the highest point of the stope. During the design, the position of the filling hole must
be designed according to the mobility of the backfilling slurry. Certain measures, such as
multiple backfilling, zone filling, reasonable setting of exhaust pipe and mobile backfilling
pipe can be adopted to ensure the dense connection of the top. A mobile backfilling pipe is
used in the Sanshandao gold mine to ensure that the filling massif is roof-contacted and
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dense. Chen Qiusong et al. [61] used paste slurry as the research object, based on the actual
stope size, and applied the similarity theory to design the simulated stope size, as shown in
Figure 9. Based on the test results, they proposed reasonable suggestions for the position of
the discharge port during staged backfilling to improve the backfilling roof-contacted effect.

Minerals 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

(1) Washing-pipe water and water for the leading way 
In the hydraulic filling mode of gravity transportation, in order to prevent the residue 

of filling slurry left in the pipeline from sticking and ensure the smooth outflow of slurry, 
5~10 min of water for the leading way and washing-pipe water are discharged before and 
after each filling. A large quantity of water cannot rapidly dewater from the stope in the 
stope. After the goaf is filled and dehydrated, a space is formed, which is difficult to en-
sure the roof connection of the backfilling massif. 
(2) Backfilling pipe 

During the backfilling process of the goaf, the backfilling pipeline must be hung in 
the safety zone of the highest point of the goaf. Due to the limitation of stope conditions, 
it is difficult for the backfilling pipeline to be hung in the highest position. At this time, 
relevant measures, such as cutting, need to be taken to ensure that the backfilling pipe is 
safely set at the highest point of the stope. During the design, the position of the filling 
hole must be designed according to the mobility of the backfilling slurry. Certain 
measures, such as multiple backfilling, zone filling, reasonable setting of exhaust pipe and 
mobile backfilling pipe can be adopted to ensure the dense connection of the top. A mobile 
backfilling pipe is used in the Sanshandao gold mine to ensure that the filling massif is 
roof-contacted and dense. Chen Qiusong et al. [61] used paste slurry as the research object, 
based on the actual stope size, and applied the similarity theory to design the simulated 
stope size, as shown in Figure 9. Based on the test results, they proposed reasonable sug-
gestions for the position of the discharge port during staged backfilling to improve the 
backfilling roof-contacted effect. 

 
Figure 9. Simulated stope backfilling massif. 

(3) Shape of filling field 
There are often no strict requirements for the geometry of the roof of the goaf in the 

design. Due to blasting and other reasons, local over-and under-excavations exist, result-
ing in the irregular shape of the roof. In addition, the filling method is inappropriate, 
forming a relatively natural slope angle at the blanking point, and after the blanking open-
ing is blocked at the top of the filling body, some goafs cannot achieve the predetermined 
goal. 

To date, for high-grade ore mining, stope structure tends to be narrow and long in 
order to improve mining recovery. Narrow long stope refers to the stope with the ratio of 
stope length to stope width (ratio of length to width) greater than 5~10 by the layered 
filling method or subsequent filling method. The southeast orebody (760ML-3MU-3 #) in 
the Chambishi Copper Mine, Zambia, China is segmented and subsequently filled with a 
length of 123 m, a width of 9 m, a height of 7–9 m, and a aspect ratio of about 14 [62]. It is 
a great challenge for filling slurry to roof connection once and effectively in such a long 
mining field with a large aspect ratio. 

3.2.3. Objective Factors 
(1) Human factors 

In traditional engineering design and construction, they are often conducted through 
experience. Due to different engineering conditions, there will be a lot of blind perfor-
mances in the construction process, resulting in simple filling facilities and unreasonable 

Figure 9. Simulated stope backfilling massif.

(3) Shape of filling field

There are often no strict requirements for the geometry of the roof of the goaf in the
design. Due to blasting and other reasons, local over-and under-excavations exist, resulting
in the irregular shape of the roof. In addition, the filling method is inappropriate, forming
a relatively natural slope angle at the blanking point, and after the blanking opening is
blocked at the top of the filling body, some goafs cannot achieve the predetermined goal.

To date, for high-grade ore mining, stope structure tends to be narrow and long in
order to improve mining recovery. Narrow long stope refers to the stope with the ratio
of stope length to stope width (ratio of length to width) greater than 5~10 by the layered
filling method or subsequent filling method. The southeast orebody (760ML-3MU-3 #) in
the Chambishi Copper Mine, Zambia, China is segmented and subsequently filled with a
length of 123 m, a width of 9 m, a height of 7–9 m, and a aspect ratio of about 14 [62]. It is
a great challenge for filling slurry to roof connection once and effectively in such a long
mining field with a large aspect ratio.

3.2.3. Objective Factors

(1) Human factors

In traditional engineering design and construction, they are often conducted through
experience. Due to different engineering conditions, there will be a lot of blind performances
in the construction process, resulting in simple filling facilities and unreasonable hanging
of backfilling pipelines, resulting in a poor backfilling effect and multiple backfilling
operations, making it difficult to ensure the stability of the backfilling massif, prolonging
the production cycle and increasing the backfilling cost. In addition, the experience level
of operators, the understanding of operation time, and the adaptability to backfilling
technology also affect the roof-contacted backfilling rate.

(2) Limited auxiliary leveling measures

The backfilling process of goaf is similar to the common concrete-pouring operation,
which also requires the pouring slurry to fill the predetermined space. However, in the pro-
cess of backfilling, the underground stope is closed and the auxiliary leveling measures are
limited. Under the existing technical conditions, the roof connection backfilling technology
is similar to being performed in a “black box”, which has a certain impact on the effect of
the roof-contacted backfilling. It is difficult to perform manual auxiliary leveling, such as
concrete pouring, and it can only rely on self-leveling. The operators cannot perceive the
actual situation of the backfilling slurry, so they can only wait until the solidifying reaches
the specified age, check the stope shape, adjust the position of the filling pipeline, and
perform subsequent filling operations [63,64].

(3) “One-time” operation

The filling facilities are arranged in advance, and the backfilling pipeline is hung
at the designated position of the roof of the underground stope according to the design
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requirements. After constructing the backfilling retaining wall, the operators exit the area
to be filled and conduct the backfilling operation. Therefore, once the relevant backfilling
equipment is determined, it cannot be moved and regulated at will during the backfilling
operation. Therefore, the backfilling operation is called a “one-time” operation, and the
layout parameters of backfilling equipment directly affect the roof-contacted effect of the
filling body.

In order to improve the roof-contacted backfilling rate, this section sorts out and
analyzes the influencing factors of the characteristics of filling slurry, stope characteristics,
and related objective conditions. The structural diagram of the influencing factors of the
roof-contacted backfilling rate is shown in Figure 10.
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3.3. Improvement Measures
3.3.1. Expansion and Non-Shrinkage Material

Compared with the traditional passive roof connection, the backfilling technology of
expansion and non-shrinkage material is an effective method. When the backfilling slurry
enters the goaf, the volume of the backfilling massif expands in a short time by using its
expansion performance, so as to achieve the effect of backfilling massif roof connection.
Expansion filling materials can be divided into two types according to different expansion
sources. One is the gas-phase expansion caused by an external expansion agent (foaming
agent) in a physical way and the generation of bubbles in the slurry through a chemical
reaction; the other is solid expansion. Chemical foaming refers to the chemical reaction
between a foaming agent and corresponding substances in the backfilling slurry material
to release gas. With the condensation of the backfilling slurry material, the gas forms
bubbles in the backfilling slurry material, which promotes the expansion of the backfilling
slurry volume

(1) Expansive filling material

Inspired by expansive concrete, filling workers at home and abroad introduced the
expansion technology of cement-based materials into mine backfilling [65–67]. While
selecting appropriate filling materials and the ratio, they modified the filling slurry to
cause it to have a certain expansion performance [68,69]. It is a rational idea to adopt the
expansion and non-shrinkage material filling technology in the backfilling process. Lan
Wentao et al. [70] used HPG (hemihydrate phosphogypsum) as the main raw material,
and used its gelling activity to prepare a new type of multiphase, condensable, water-
swelling material. The material is mainly composed of four materials: HPG (hemihydrate
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phosphogypsum), SAP (amorphous coagulant), GPA (gas phase introduction agent), and
HA (hydrophobic agent). The formed filling body is solid, liquid, and gas. The outstanding
three-phase features are solidification under the condition of a non-solid volume ratio of
87.6%; high early strength; and, with a certain expansion performance, it can realize the
“active roof connection” of the backfilling massif.

Bentonite is mainly composed of montmorillonite clay minerals and belongs to a
natural pozzolanic material. It can be divided into three types: nano bentonite, calcium
bentonite, and organic bentonite [71]. Among them, sodium bentonite has the characteris-
tics of high dispersion, high water absorption, and multiple large expansions (20~30 times).
Using this characteristic, adding it to the backfilling material can expand the backfilling
massif. In 1995, Professor Siriwardane et al. [72]. discussed the problem of adding fly ash
filling material into bentonite to avoid overburden, collapse, and land subsidence. Through
indoor experiments, numerical simulation, and large-scale field practice, the results show
that, after adding bentonite, the fly ash filling material has good adhesion and rheological
properties, so that the slurry can be filled into the goaf smoothly, and the backfilling slurry
has certain expansion properties. Satter Barat et al. [73] mixed bentonite with tailings to
study its strength performance. The test proved that bentonite could be used as backfilling
material. Bentonite not only has a good expansion performance, but also has significant
adsorption on heavy metal ions, which has great environmental benefits.

(2) Foaming expansion filling material

Based on the research results in the field of foamed mortar, it has been introduced into
the filling field and achieved a good backfilling and roof-connection effect [74,75]. After
the foaming agent is mixed with other filling materials, the filling slurry produces a strong
alkali-solution environment, and the foaming agent produces tiny bubbles in the strong
alkali environment, as shown in Figure 11. According to the way that filling materials
produce bubbles, they can be divided into chemical foaming and physical foaming. Physical
foaming is made by mechanical agitation or foaming agent, which has a certain tension
of foam, and then the foam is blown into the slurry. With the condensation of the slurry,
an expansion material with uniform porosity is formed. Chemical foaming refers to the
chemical reaction between the foaming agent and the corresponding substances in the
filling slurry material to release gas. With the condensation of the slurry material, the
gas solidifies in the slurry material to form bubbles, which expand the volume of the
backfilling slurry.
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Taking hemihydrate phosphogypsum as a raw material, Rong K et al. [76] studied
the performance-change law of hemihydrate phosphogypsum expansive material under
the combined action of multiple factors, and conducted random tests. The results show
that increasing the parameters of gas-phase air entraining agent can increase the expansion
rate of backfilling slurry, which is more conducive to the roof-contacted backfilling massif,
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but reduces the strength and durability of the filling body. Adnan Colak et al. [77] used
sodium lauryl sulfate and nonylphenol ethoxylated foaming agent to produce bubbles in
gypsum. In order to promote foam and bubble formation, retarder citric acid and tackifier
carboxymethyl cellulose were used. The results show that foams or bubbles are only
intermediate products of expansive mortar materials, and the ultimate goal is that the
volume of mortar after filling will result in volume expansion due to the bubbles formed
inside the mortar. When a variety of expansion agents, such as foaming agents, are added to
fill the filling slurry, the phenomenon of first shrinkage and then expansion can be achieved
in the process of solidification and condensation. Compared with the final volume without
an expansion agent, the filling slurry expands, as shown in Figure 12.
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In mine backfilling, due to the addition of expansive agent, the internal structure
of the backfilling massif is relatively weak, and the increase in volume is due to the
decrease in volume density, namely, the increase in porosity. In the backfilling massif
expansion technology, the expansion of the backfilling massif is often accompanied by the
deterioration of the strength of the backfilling body, and the high-dose expansive agent
causes fatal damage to the stability of the backfilling massif. In the stope with a large aspect
ratio, the slurry flow forms a certain sedimentary slope, and the later expansion leads to
partial roof connection. Therefore, only relying on expansive filling cannot completely deal
with the problem of filling body roofing.

3.3.2. Forced Roof-Contacted Measures

When the above methods are not enough to achieve the predetermined backfilling
target, it is a favorable way to apply the improvement measures in Table 2, but each of these
improvement measures is restricted by goaf condition and can only solve specific situations.

3.3.3. Strengthen-Management Level

Due to the limitation of goaf conditions, the uneven concave or convex shape of the
stope roof (local over-excavation and under-excavation), the inconsistent filling sequence,
the mixing of pipe washing water, and the randomness of manual operations affect the
roof-contacted rate of the filling body. The ratio of filling slurry can be optimized and
its roof connection performance can be increased by optimizing the filling and discharge
process, means of standardization of operation parameters, and other processes. Pay
more attention to filling quality management and hire professionals engaged in filling
management. After finding the problems, take the initiative to perform some rectification
and disposal measures. Moreover, achieve on-site supervision and tracking, and perform
reasonable disposal and accurate analysis, and the evaluation of on-site problems, as shown
in Table 3.
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Table 2. Partial improvement measures.

Forced Roof-Contacted Measures Characteristic

Manual
roof connection High labor intensity, low work efficiency, and poor working conditions.

Mechanical
roof connection

It is used in metal mines, such as the segmented filling method and route filling method. It
is mainly used in the field of cemented slurry of high-concentration coarse aggregate and
non-cemented filling of waste rock.

Forced-caving
roof connection It is a common method for slightly and gently inclined ore bodies.

Natural-caving
roof connection

The physical requirements for the high performance of ore and rock are guaranteed by a
high management level.
Applied to its own low-strength characteristics and ore bodies with joint fissure distribution.

Slurry-pressure
roof connection

It is mainly used for the up- and down-filling mining methods.
It is divided into residual pressure roof-connection of the filling system and pressure pump
injection roof-connection.

Slurry self-flowing
roof connection

Use the slurry to level under its own gravity or use the height difference to extrude the
slurry to connect the roof.

Table 3. Ways to improve management.

Operating Time Measures

Before backfilling operation
Creating good conditions for stope-filling top pick.
Select the appropriate slurry concentration and packing materials.
The use of intumescent material additives.

During backfilling operation
Eliminating the influence of water.
Noting the empty top pressure.
Reducing worker error and strictly quality-controlling projects.

After backfilling operation
Leakage of slurry is prohibited.
Prevent the influence of water on slurry.
Improving roof monitoring.

In order to improve the backfilling roof-contacted rate, this section summarizes the
improvement measures in three aspects: using expansive materials, forced roof-connection
technology, and strengthening management. The structure chart of influencing factors of
roof-connection improvement measures is shown in Figure 13.
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4. Conclusions

(1) Backfilling technology is an important technical method for creating a win–win situa-
tion of “environmentally friendly” and “safe and efficient” mines. Roof-contacting
backfilling is the key factor of the backfill mining method, which is directly related to
the support capacity of upper surrounding rock and guarantees the safety of stope.
With the increase in mining depth and the deterioration of mining conditions, more
attention must be paid to the roof-contacted backfilling rate in the future.

(2) The roof connection of the backfilling massif is an important part of backfilling
work. In this paper, the method of calculating similar roof-contacted backfilling
rates was introduced. For conventional high-concentration cementitious backfilling,
the main influencing factors, improvement measures, and auxiliary measures of the
roof-contacted backfilling rate were summarized in detail.

(3) It is still a challenge for the backfilling massif to connect to the roof efficiently in a
mining field with a large aspect ratio. During the flow process of filling slurry in
the underground stope, the yield surface position dynamically changes, and there
is no directly test method to detect the yield surface position. In future research, in
the process of backfilling slurry flow in underground stopes, relevant research on
the position of the slurry yield surface should be strengthened to make up for the
deficiency of theoretical models in parameter corrections.

(4) The roof connection of the backfilling massif is a systematic project. In the design
of the roof-connection scheme, stope design, mining process requirements, slurry
performance, and roof auxiliary technology should be compared and selected.
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