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Abstract: Ulug-Sair Au-Bi-Te-Se mineralization is one prospect for native Au in the Western Tuva,
and its origin remains debated. Mineralization consists of gold–sulfide–quartz veins in the host
sedimentary rocks (conglomerates, siltstones, shales), quartz–tourmaline, and quartz–carbonate–
sericite–altered rocks. To determine its origin, we examined the mineralogical–geochemical features,
formation conditions, and fluid sources of the Ulug-Sair ore. A mineralogical–geochemical inves-
tigation outlines two substages with Au: an early gold–sulfide–quartz with pyrite, chalcopyrite,
galena, gold, and electrum; and a late gold–telluride–sulfide–quartz, characterized by the presence of
Bi-bearing minerals (AgBiTe, Bi2Te2Se, Cu3BiS3, Bi), tellurides (Au and Ag), Se-tellurides (Ag and
Bi), and selenides (Au, Ag, and Hg). The paragenesis of Au–Ag tellurides, and fluid inclusion study
data (microthermometry, Raman spectroscopy, LA-ICP-MS, and crush leach analysis (gas and ion
chromatography, ICP-MS) in quartz showed that quartz–tourmaline-altered rocks were formed by
an aqueous Mg–Na–K-chloride fluid with a salinity of 8–10 wt % NaCl eq. at 325–370 ◦C, whereas
the host quartz–carbonate–sericite-altered rocks were formed from CO2–H2O fluid containing CH4

and N2, with a salinity of 0.18–6.1 wt % NaCl eq. at 200–400 ◦C. Gold-bearing mineral assemblages
were formed at P ~ 0.75–1.0 kbar (~2.3–3 km) due to CO2–H2O chloride (Na–K ± Fe, Mg) fluid
with CH4, Na2SO4, and Na2B2O5, and salinities 1.7–12.5 wt % NaCl eq. at temperatures decreasing
from 360 up to 115 ◦C (gold–sulfide–quartz veins—360–130 ◦C, and gold–telluride–sulfide–quartz
veins—330–115 ◦C), and variable fO2, fS2, fSe2, and fTe2. Results of the investigation of the isotope
composition of S in pyrites indicates the magmatic origin of the fluid (δ18SH2S fluid from −0.4 to
+2.5‰). The stable O isotope data in quartz indicates that, at an early substage, the formation of ore
involved a fluid of magmatic and metamorphic origin (from +8.2 to +11.6‰), and, in the later sub-
stage, multiple sources of hydrothermal fluids (from +3.1 to +10.4‰), including magmatic-derived,
metamorphic-derived, and meteoric waters. These data, in conjunction with structurally controlled
mineralization, point towards similarities of the Ulug-Sair ore system with orogenic gold deposits.

Keywords: gold; fluid inclusions; quartz; stable isotopes; orogenic gold deposit; Western Tuva

1. Introduction

Gold–telluride and gold–bismuth (gold–bismuth–telluride) mineralization deposits
are often associated with magmatic bodies and are included in epithermal (volcanic),
porphyry, intrusion-related, or orogenic types of gold deposits [1–10], etc.

Gold–bismuth (gold–bismuth–telluride) type deposits [3,4], which are confined to
granitoid intrusions, belong to “granitoid related deposits” [7]. Deposits of this type in
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Alaska and the Yukon [11,12] are large, with reserves of 100 t and more. Gold–bismuth min-
eralization in Russia include the Pogranichnoye (Eastern Sayany), Ergelyakh, Kurumskoye,
Tuguchak, Basaguninskoye, Chuguluk, Nennely, and Galechnoye (northeastern Russia)
vein deposits, and Levodybinskoye and Teutedzhak (northeastern Russia) stockwork de-
posits confined to the apical near-contact zones of granitoid plutons or their marginal
near-contact fracture zones [3,4,10,13,14]. It should be noted that deposits of this type are
formed mainly from magmatic fluids with the involvement of metamorphic and meteoritic
sources [10,15–18]. They are formed over a wide range of temperatures (437–155 ◦C, mainly
at 400–250 ◦C) and pressures (1700–90 bar) due to aqueous fluids with Na and K chlorides
with wide salinity (46.0–1.1 wt %), at fO2–fS2 variations [10].

Gold–telluride deposits are commonly not distinguished as a separate deposit type,
but they are included in epithermal, porphyry, orogenic, or intrusion-related types of gold
deposits. Deposits of the gold–telluride mineral type are associated with volcano-plutonic
complexes of the calc-alkaline and alkaline series. Typical deposits include the following:
Cripple Creek and Golden Sunlight (USA), Golden Mile (Australia), Acupan (Philippines),
Yuryang (Korea), Emperor (Fiji), Porgera (Papua New Guinea), Kochbulak (Uzbekistan),
Svetlinskoe and Aginsky (Russia), etc. [7,8,19–28]. The gold–telluride ores were formed
by multiple sources of hydrothermal fluids (including magmatic-derived, mantle-derived,
metamorphic-derived, and meteoric waters) with variations of fO2, fS2, fSe2, fTe2, pressures
(0.05 to 5 kbar) and temperatures (50 to 420 ◦C). The temperature geochemical barrier
is one of the leading ore-forming factors associated with the mixing of magmatic fluids
with surface waters and fluid-rock interaction and other processes favorable for gold
deposition [8,20,22–28].

The Ulug-Sair gold mineralization located in the central part of Aldan-Maadyr ore
cluster (AMOC) was discovered in 1964 by Victor V. Zaykov during a geological survey at
the 1:50,000 map scale [29]. A specific feature of the Ulug-Sair occurrence is the presence
of Au–Bi–Te–Se mineral assemblages, namely, petzite, hessite, Se-volynskite, kawazulite,
wittichenite, native Bi, fischesserite, naumannite, and tiemannite. However, the topic in
question has not been sufficiently studied in terms of genesis, mineralogical and geochemi-
cal features, and conditions of ore formation.

The relevance of the research is defined by the need to determine the genesis and
formation conditions of gold deposits in the Tuva Republic in order to improve the efficiency
of geological prospecting, this increasing the gold mineral resource base of the region.

2. Geological Setting

During the geological survey and prospecting activities during the period 1952–1977
in Western Tuva, gold–quartz ore occurrences were discovered (Ulug-Sair, Aryskan, Khaak-
Sair, Dushkunnug, Ak-Dag, etc.). In addition, numerous gold mineralizations are associ-
ated with medium-temperature quartz–carbonate–sericite- and quartz–carbonate–fuchite-
altered rocks. The largest are Khaak-Sair, in quartz–carbonate–fuchsite rocks [30], and
Ulug-Sai, in conglomerates, siltstones, and quartz–carbonate–sericite rocks. They are lo-
cated in the AMOC, which is considered one of the most promising for native Au (Figure 1)
in the region.

The Aldan-Maadyr ore cluster is located on the left bank of the Khemchik River
and is related to the junction zone of: (a) Early Cambrian–Ordovician terrigenous com-
plexes of the Western Sayany; (b) Vendian–Early Cambrian oceanic complexes and Middle
Cambrian–Silurian molasses, which, respectively, formed the basement and sedimentary
cover of the Khemchik–Systygkhem pre-arc collision; and (c) Devonian magmatic and
sedimentary complexes of one of the “branches” of the Tuva riftogenic trough [31].

Gold mineralization is controlled by narrow, linear, near NS anticlines and horst
anticlines and the associated fractures of the Sayany-Tuva deep fault of the same orientation
cutting them. A similar orientation of the main discontinuous and folded structures led to
a linear distribution of igneous rocks and narrow linear quartz–sericite–fuchite–carbonate
alteration zones with gold–quartz veins.



Minerals 2022, 12, 712 3 of 24
Minerals 2022, 12, x FOR PEER REVIEW 3 of 24 
 

 

 
Figure 1. Geological scheme of the central part of Aldan-Maadyr ore cluster, simplified with per-
mission from [29]. 

The Aldan-Maadyr ore cluster is located on the left bank of the Khemchik River and 
is related to the junction zone of: (a) Early Cambrian–Ordovician terrigenous complexes 
of the Western Sayany; (b) Vendian–Early Cambrian oceanic complexes and Middle Cam-
brian–Silurian molasses, which, respectively, formed the basement and sedimentary cover 
of the Khemchik–Systygkhem pre-arc collision; and (c) Devonian magmatic and sedimen-
tary complexes of one of the “branches” of the Tuva riftogenic trough [31]. 

Gold mineralization is controlled by narrow, linear, near NS anticlines and horst an-
ticlines and the associated fractures of the Sayany-Tuva deep fault of the same orientation 
cutting them. A similar orientation of the main discontinuous and folded structures led to 
a linear distribution of igneous rocks and narrow linear quartz–sericite–fuchite–carbonate 
alteration zones with gold–quartz veins. 

Figure 1. Geological scheme of the central part of Aldan-Maadyr ore cluster, simplified with permis-
sion from [29].

Gold mineralization is related to the intrusions and dikes of the Late Devonian
Bayankol complex, comprising granodiorites and tonalite, rhyolite, and granodiorite por-
phyries [29,30]. The 40Ar/39Ar age of ore-bearing quartz–carbonate–fuchsite-altered rocks
(379.4 ± 4.4 Ma) of the Khaak-Sair occurrence is 376.5 ± 3.4 Ma for phase III gabbro dikes
of the Bayankol complex, thereby confirming the genetic relationship of mineralization
with the Late Devonian Bayankol intrusive complex [32].

Ore occurrences of AMOC are sulfide-poor (<3–5%) and contain Au–Bi–Te–Se mineral
assemblages [30,32].

The Ulug-Sair occurrence is confined to the axial part of the near EW striking horst-
anticline and complex faults: Arzhansky and “Rudny”, which are accompanied by nu-
merous fractures with angles of 75–90◦. The core of the horst anticline is composed of
Ordovician conglomerates, siltstones, sandstones, and Vendian–Lower Cambrian ophio-
lites (exposed west of the ore occurrence), the anticline limbs are composed of Ordovician
siltstones, Silurian schists, and siltstones (Figure 1).

The Ulug-Sair horst anticline is 6 km long and 2–3 km wide. Lilac-gray fine-pebble
foliated conglomerates of the Ordovician Lower Adyrtash sub-formation in the core of
the Ulug-Sair horst anticline are folded and host several gold–quartz veins. Pebbles in
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conglomerates have silty cement and semi-rounded or angular fragments of vein quartz
and quartzite from 1 to 5 cm in size. It makes up 50–60% of the rock bulk.

Conglomerates are associated with greenish-grey schistose sandstones of 10 to 25 m
thickness and gravels of 0.2–1.5 m thickness. The conglomerates have a gradual transition
to and are overlapped with lilac and grey-green siltstones of the Upper Adyrtash sub-
formation. Siltstones contain intercalations of greenish-grey, lilac-grey, and red-brown
sandstones of 0.01 to 5 m thickness, as well as slices with a thickness of several tens of
meters. The total thickness of the Upper Adyrtash formation is 600–700 m.

The rocks of the Silurian Nizhny Chergak formation are concordantly overlapped with
the rocks of the Upper Adyrtash formation and are grey and greenish-grey sericite shales
with grey-green siltstones and grey sandstones of 68–140 m and 1.5–20 m thick, respectively.

Igneous rocks are represented by dykes, granite-, granodiorite-porphyries (II phase),
diorites, and gabbro (III phase) of the Bayankol complex intruding into the Ordovician and
Silurian rocks. The strike of dykes is sub-latitudinal and consistent with the directions of the
faults. The shape of the dykes is plate-like, slightly curved, and sometimes vein-like; 1–3 m
thick and 0.3–0.5 km long, less commonly up to 1 km. Granite-, granodiorite-porphyries
have been subjected to propylitization and quartz–carbonate–sericite alteration.

Ulug-Sair comprises quartz–tourmaline and quartz–carbonate–sericite-altered rocks,
as well as quartz veins and vein zones with gold mineralization that postdate intrusive and
sedimentary rocks (Figure 2). Additional EW striking and steeply dipping 75 gold–quartz
veins and several vein zones were identified. The veins are from 15 cm to 2 m thick, and
20–100 m long (less often 200 m); vein zones are 3 to 40 m thick and 20 to 120 m long [29].
The average content of ore minerals in the veins and vein zones does not exceed 3 vol. %.
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The Au in quartz veins ranges from 0.2 to 286 g/t, and Ag ranges up to 300 g/t [28].
The Au resources, according to prospecting work, are 20 t with an average Au grade of
2 ppm [33]. The Cu sulphides in quartz veins are a proxy for gold. A positive correlation
between Au and Cu, B, Ag, Sb, As, Te, Bi, Mn, Ba, Sr, Pb, Mg, Mo, Cd, Zn, and W was
identified [34].

3. Methods

The samples from hydrothermally-altered rocks and ore veins were collected from
various mine workings at a range of depths from 0.6 m to 3 m. More than 100 samples
of ores and host rocks were taken, weighing from 500 g to 5 kg. Polished thin sections
were prepared in order to determine the paragenetic relationships of ore minerals and to
characterise the various stages of alteration. The optical studies were carried out using
Olympus BX41, POLAM P-213M, and P-212M microscopes (TuvIENR SB RAS, Kyzyl, Tuva
Republic, Russia). The chemical composition of minerals was determined using an MIRA
3 LMU SEM (Tescan Orsay Holding, Brno, Czech Republic) with INCA Energy 450 + XMax
80 and INCA Wave 500 microanalysis systems (Oxford Instruments Nanoanalysis Ltd.,
Abingdon, UK) (Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia). The
compositions of native gold and other minerals were examined at the accelerating voltage
of 20 kV, an electron beam current of 1.5 nA, and live acquisition time of spectra of 30 s.
The following X-rays were selected: K series for Fe, Cu, and Ni, and L series for Pd, Au, Ag,
As, Te, Se, Bi, Sb, and Hg. As the standards, we used FeS2 (on S), PbTe (on Te), PtAs2 (on
As), and the pure elements of Fe, Ni, Cu, Se, Ru, Rh, Pd, Ag, Sn, Sb, Pt, Au, and Bi. Phases
smaller than 5 µm were analyzed using a point probe, and larger phases were analysed in a
small raster mode with the size of the scanned area up to 100 µm2. The formulas of petzite
and fischesserite were calculated for 6 at., hessite and naumannite for 3 at., tiemannite for
2 at., Se-volynskite for 4 at., kawazulite for 5 at., and wittichenite for 7 at.

The fluid inclusions were examined in the laboratory of the South Urals State Uni-
versity (Miass) and the CCE “Multielement and Isotope Studies” SB RAS (Novosibirsk)
using the Linkam TMS-600 stage equipped with LinkSystem 32 DV-NC and optical Olym-
pus BX51 microscope. The eutectic temperatures of fluid inclusions were interpreted
using [35,36]. The salinity of inclusions was determined by the final melting tempera-
tures according to [37]. The homogenization temperatures are the first temperature of the
mineral formation [38].

Pressure–temperature conditions for mineral assemblages were also determined using
geothermometers, geofugometers, and mineral parageneses. The stability areas of the main
ore minerals in the fS2—fTe2, and fS2—fSe2 coordinates were taken from [39–42].

The gas composition of fluid inclusions was detected by Raman spectroscopy on a
Ramanor U-1000 spectrometer with a Horiba DU420E-OE-323 detector (Jobin Yvon) and a
Millennia Pro laser from Spectra-Physics (analyst A.A. Redina, Institute of Geology and
Mineralogy SB RAS, Novosibirsk). The fluid pressure was calculated using the FLINCOR
program using CO2 homogenization temperatures [43].

The bulk analysis of the element composition of fluid was carried out according
to [44,45]. The gases from inclusions (H2O, CO2, and CH4) were analyzed using an Agilent
6890 gas chromatograph. The content of anions was determined by ion chromatography
(Color-3000) and the cations and trace elements by the ICP-MS analysis (Elan-6100). The
NSO3 content was calculated on the balance sheet. To exclude the influence of the matrix, a
repeated (“single”) extraction was carried out, the analysis of which was subtracted from
the first one.

The oxygen isotopic composition was analyzed on an Isoprime mass spectrometer
using the internal AQS standard (Akita Quartz Standard) at the University of Akita, Japan
(analysts H. Kawaraya and O. Matsubaya). The powdered quartz samples (~20 mg) were
reacted in F2 gas, a technique described by [46], in a nickel tube at 500 ◦C for 12 h to produce
O2 gas. The gas was then converted to CO2 gas in a graphite furnace at 700 ◦C and collected
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by a Toeple pump and liquid nitrogen trap. The values of δ18O are in ppm (‰) relative to
the SMOW standard.

The sulfur isotopic composition in the sulfides was measured at the Multi-element and
Isotope Research Center SB RAS using a Finnigan MAT Delta mass spectrometer in dual-
inlet mode (analysts V.N. Reutsky and M.N. Kolbasova, Novosibirsk). The measurement
control was provided by the samples with standard isotopic composition in the range
δ34S from −15.1 to + 21.8‰, relative to troilite from Canyon Diablo (CDT), including
international ones: NBS-123 (δ34S = +17.44) and NBS-127 (δ34S = +21.8). The reproducibility
of the values of δ34S, including sample preparation, is not more than 0.1‰ (2σ). The values
of δ34S (‰) are given relative to the CDT standard.

4. Results
4.1. Mineralogy

We identified, based on previous works [29] and our data, that the earliest high-
temperature quartz–tourmaline stage includes two substages: tourmaline and tourmaline–
quartz. Gold–sulfide–quartz mineralization includes substages including: pre-ore-altered
rocks and pyrite–quartz; gold–sulfide–quartz (I), and gold–telluride–sulfide–quartz (II), as
well as post-ore chlorite–quartz, carbonate–quartz, and chlorite–hematite–quartz substages.
Limonite, malachite, azurite, goethite, scorodite, cuprite, cerussite, bismutite, iodargyrite,
and chlorargyrite are supergenes (Figure 3).

Quartz–tourmaline rocks (5–7 m thick, and up to 10 m long) and veins (up to 3 mm
thick) are widespread throughout the occurrence (Figure 4a,b). They are altered rocks
formed from Ordovician siltstones and conglomerates and are composed of light-green
needle-prismatic tourmaline. They are brecciated and related to tectonic zones in conglom-
erates. Quartz–tourmaline-altered rocks contain rutile (including W-containing), F-apatite,
scheelite, and pyrite. Veins contain quartz, tourmaline, and pyrite.

The chemical composition of tourmaline from quartz–tourmaline-altered rocks and
veins shows that they are related to the intermediate members of the dravite–magnesio-
foitite series [34].

Quartz–carbonate–sericite-altered intrusive (granite-, granodiorite-porphyries) and
sedimentary rocks (Figure 4c,d) consist of horsetail-shaped steep bodies concordant to
replaced rocks. These altered rocks contain quartz (30–50%), albite (40–60%), sericite (up to
5–10%), calcite, ankerite (up to 10–3%), and pyrite in the form of well-shaped cubic crystals
(1–15%) with an average size of 1–5 mm, reaching a maximum of 1–3 cm.

The altered rocks are from 0.5 to 2 m thick and from 100 to 150 m long. Quartz–
carbonate–sericite and tourmaline–quartz-altered rocks contain gold–sulfide–quartz and
gold–telluride–sulfide–quartz veins (Figure 5).

Gold–sulfide–quartz veins (I) are widespread and consist of vein zones composed
of quartz, chalcopyrite, pyrite, galena, gold, and Au–Ag alloy (electrum). The major ore
mineral—chalcopyrite—is disseminated and forms pockets in the quartz. Pyrite occurs
as cubic and pentagon-dodecahedral crystals. Tourmaline occurs as inclusions resem-
bling needles, which are arranged in a chaotic manner or are radially radiant aggregates
(Figure 5).

Gold in gold–sulfide–quartz veins (I) are lumpy, interstitial, elongated, crystallomor-
phic (octahedra, cuboctahedra, crystal intergrowths), and aggregates of poorly-formed
crystals and dendritic shapes disseminated in quartz and chalcopyrite, in intergrowth
with pyrite and tourmaline (Figure 6). Au–Ag alloy of lumpy-branched and interstitial is
detected and overgrows pyrite, tourmaline, and chalcopyrite.
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Figure 5. Ore textures of the Ulug-Sair ore: (a,b) vein-disseminated gold–sulfide–quartz ores with
chalcopyrite (Csp), pyrite (Py), and early brecciated tourmaline (Tur); (c,d) vein-disseminated gold–
telluride–sulfide–quartz mineralization with bornite (Bn) and chalcopyrite (Ccp).

The chemical composition of gold is (wt %) Au 72.12–96.44, Ag 3.36–27.69, Cu 0.00–
0.69, Te 0.00–0.04; Au–Ag alloy—Ag 29.80–38.45, Au 61.55–69.71, Cu 0.00–0.46. Gold and
electrum grains are weakly zoned with Ag by 3–7 wt %.

Gold–telluride–sulfide–quartz veins (II) with disseminated, nest-like and vein-dissemi-
nated mineralization are up to 2 m thick and up to 28 m long. Gold (up to 0.3 mm) of
interstitial, lumpy-branched shapes are associated with quartz, chalcocite, hessite, petzite,
malachite, and Fe hydroxides. Lumpy and lumpy-branched electrum is found in quartz
and Fe hydroxides. Gold and electrum are associated with chalcopyrite, bornite, galena
(Se up to 0.64 wt %), tennantite-(Fe), tennantite-(Zn), tennantite-(Cu), tetrahedrite-(Zn),
sphalerite, kawazulite, fischesserite, naumannite, tiemannite, Se-volynskite, wittichenite,
and native Bi.

The chemical composition of this gold is (wt %) Au 72.56–90.10, Ag 9.47–27.44, Cu
0.00–0.50, and Te 0.00–0.02; Au–Ag alloy—Au 60.37–69.45 and Ag 30.53–40.12. The Au
amount is decreased by 2–5 wt % with the increasing of Ag.

Small inclusions (1–50 µm) of hessite and petzite are detected in chalcocite (Figure 7).
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Hessite is intergrown with petzite, wittichenite, and Se-volynskite, locally up to 4 µm
thick in the rims kawazulite. Petzite in intergrowths with hessite often has round and oval
shapes. The compositions of Au and Ag tellurides are stoichiometric (Table 1).

We observed inclusions of fischesserite, naumannite, tiemannite, kawazulite, wit-
tichenite, and Se-volynskite up to 40 µm and their fine intergrowths in quartz, bornite, and
chalcocite (see Figure 7).

Fischesserite grains up to 20 µm occur in chalcocite. Fischesserite contains minor Pb
(up to 0.98 wt %) and Te (up to 0.62 wt %) (Table 1).

Naumannite and tiemannite up to 25 µm are found in bornite as fine intergrowths.
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Kawazulite and Se-volynskite (Se up to 10.45 wt %) form grains 10–40 µm long and
3–7 µm wide. Kawazulite is intergrown with hessite. Less commonly rimmed by Se-
wittichenite; wittichenite rim is up to 2 µm around kawazulite (Table 2).
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Figure 7. Minerals gold–telluride–sulfide–quartz veins: (a) inclusions of hessite (Hs), and petzite
(Pz) in chalcocite (Cct); (b) inclusions of hessite (Hs), petzite (Pz), and bornite (Bn) in quartz (Qz);
(c) inclusions of hessite (Hs), and chalcocite (Cct) in quartz (Qz); (d) intergrowth of Se-volynskite
(Vln) with hessite (Hs), in chalcocite (Cct); (f) intergrowth of Se-volynskite (Vln) with hessite (Hs),
in chalcocite (Cct); (e) intergrowth of wittichenite (Witt) with hessite (Hs) in bornite (Bn), chalcocite
(Cct), and quartz (Qz); (f) intergrowth of kawazulite (Kwz) with wittichenite (Witt), and hessite (Hs)
in chalcocite (Cct); (g) intergrowth of native bismuth (Bi), cuprite (Cpr), and native copper (Cu) in
malachite (Mlc); (h) inclusions of fischesserite (Fsch) in chalcocite (Cct); (I,j) inclusions of naumannite
(Naum), tiemannite (Tiem), and Se-galena (Se-gn) in bornite (Bn); (k) gold (Au), and and goethite
(Gth) in quartz (Qz); (l) inclusions of electrum (El) in quartz (Qz), and goethite (Gth). BSE images.
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Table 1. Chemical composition of petzite, hessite, fischesserite, naumannite, and tiemannite, wt %.

№ Au Ag Hg Pb Te Se S Total Crystallochemical Formula

Petzite

1 25.21 41.56 – – 32.69 – – 99.46 Ag3.00Au1.00Te2.00
2 25.10 41.55 – – 33.15 – – 99.80 Ag2.99Au0.99Te2.02

Hessite

3 – 63.12 – – 36.47 – – 99.59 Ag2.02Te0.98
4 – 62.22 – – 37.29 – – 99.51 Ag1.99Te1.01
5 – 62.29 – – 37.47 – – 99.76 Ag1.99Te1.01
6 – 62.08 – – 37.34 – – 99.42 Ag1.99Te1.01
7 – 62.38 – – 36.86 – – 99.24 Ag2.00Te1.00
8 – 62.25 – – 37.55 – – 99.80 Ag1.99Te1.01
9 – 61.85 – – 37.37 – – 99.22 Ag1.99Te1.01
10 – 62.64 – – 36.76 – – 99.40 Ag2.01Te0.99

Fischesserite

11 27.95 48.70 – – – 23.07 – 99.72 Au0.96Ag3.06Se1.98
12 27.39 48.86 – – – 23.27 – 99.52 Au0.94Ag3.06Se2.00
13 26.12 49.16 – 0.70 0.32 23.36 – 99.66 (Au0.89Pb0.03)0.91Ag3.07(Se1.99Te0.02)2.01
14 26.74 48.60 – 0.98 0.62 22.57 – 99.51 (Au0.92Pb0.03)0.95Ag3.07(Se1.95Te0.03)1.97

Naumannite

15 – 72.69 – – – 26.52 – 99.21 Ag2.00Se1.00
16 – 74.75 – – – 22.91 1.80 99.46 Ag2.00(Se0.84S0.16)1.00

Tiemannite

17 – – 72.58 – – 26.49 0.76 99.83 Hg1.00(Se0.93S0.07)1.00
18 – – 72.81 – – 25.60 1.08 99.49 Hg1.01(Se0.90S0.09)0.99
19 – – 73.65 – – 23.92 1.97 99.54 Hg1.00(Se0.83S0.17)1.00
20 – – 74.05 – – 26.98 2.65 99.76 Hg0.99(Se0.79S0.22)1.01
21 – – 74.76 – – 21.69 2.93 99.38 Hg1.01(Se0.74S0.25)0.99
22 – – 76.69 – – 17.81 4.84 99.34 Hg1.01(Se0.59S0.40)0.99

Note. Dash is below detection limits.
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Table 2. Chemical composition of Se-volynskite, kawazulite, and wittichenite, wt %.

№ Ag Bi Cu Te Se S Total Crystallochemical Formula

Se-volynskite

23 19.76 39.23 – 30.58 9.59 – 99.16 Ag1.00Bi1.03Te1.31Se0.66
24 20.37 39.17 – 29.48 10.45 – 99.47 Ag1.02Bi1.01Te1.25Se0.72

Kawazulite

25 – 54.22 – 36.01 8.98 – 99.21 Bi1.98Te2.15Se0.87
26 – 55.37 – 36.50 7.79 – 99.66 Bi2.04Te2.20Se0.76
27 – 55.17 – 35.56 8.74 – 99.51 Bi2.02Te2.13Se0.85
28 – 55.26 – 35.55 8.28 – 99.09 Bi2.04Te2.15Se0.81
29 – 55.48 – 35.61 8.78 – 99.87 Bi2.02Te2.13Se0.85

Wittichenite

30 – 39.93 40.09 – – 19.70 99.72 Cu3.07Bi0.93S3.00
31 – 40.89 39.27 – – 19.38 99.54 Cu3.05Bi0.97S2.98

Note. Dash is below detection limits.
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Gold with high and medium fineness prevails; Au–Ag is rare (Figure 8) at the Ulug-
Sair ore occurrence. The average gold fineness is 891‰, varied from 602 up to 967‰, and
the average Au fineness of gold–sulfide–quartz veins (I) is 885‰ (615–967‰), and gold–
telluride–sulfide–quartz veins (II) is 797‰ (601–904‰). Fineness ranges are significantly
overlapped.
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4.2. Fluid Inclusions

The fluid inclusions in quartz of mineral assemblages were analyzed to study the
formation conditions of gold–quartz veins from the Ulug-Sair ore occurrence (see Figure 2).
The fluid inclusion data are in Table 3 and Figure 9.
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In the earliest quartz–tourmaline veins, we analyzed primary and pseudosecondary 
biphase (vapor + liquid (VL)) fluid inclusions of 10–20 µm, with oval or isometric shapes 
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Figure 9. Homogenization temperatures vs. salinity plot of fluid inclusions in quartz: 1—quartz–
tourmaline metasomatites; 2, 3—quartz–carbonate–sericite-altered rocks (2—Ps, 3—P); 4, 5—gold–
sulfide–quartz veins (I) (4—P, 5—Ps); 6, 7—gold–telluride–sulfide–quartz veins (II) (6—P, 7—Ps).
P—primary, Ps—pseudosecondary fluid inclusions.
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Table 3. Fluid inclusion data of the Ulug-Sair ore occurrence.

Sample FlA Phases Thom, ◦C Thom CO2, ◦C Teut, ◦C Tice melt, ◦C C, wt %,
NaCl eq D, g/cm3 P bar Fluid Salt Composition

Quartz–tourmaline veins

US-202 P VL 343–365 – −33 to −33.9
−5.2 to −7.1 8.2–10.6

– – MgCl2–H2O + NaCl–KCl–H2O

US-203 PS VL 325–350 – −23 to −25 – – MgCl2–H2O + NaCl–KCl–H2O

Quartz–carbonate–sericite-altered rocks

USB-8
P VL 350–400 – −10 to −8 −0.4 to −0.1 0.18–0.71 – – chloride + CO2 (gas) + CH4 (gas) + N2 (gas)

Ps VL, VLS 200–240 – – −3.8 to −3 4.9–6.1 – – chloride

Gold–sulfide–quartz veins (I)

US-18 P, Ps VL 240–360 – −21.3 to −38.2 −6.3 to −3.7 6–9.6 – – MgCl2–H2O + NaCl–KCl–H2O

US-4
P VL 290–330 – –

−8.3 to −4.2–
6.74–12.51 – – chloride + CO2 (gas)

P VLC – 170–180 – 1.74–6.45 0.51–0.56 750–900

US-4AL-5 Ps VL 200–240 – −21.2 to −38.2 −4.4 to −2.7 4.5–6.8 – – NaCl–KCl–H2O + MgCl2–H2O + CO2 (gas)

Gold–telluride–sulfide–quartz veins (II)

US-30 P VL 270–330 – −20.9 to −32.1 −4.8 to −2.5 4.6–7.4 – – NaCl–KCl–H2O + MgCl2–H2O

ALR-Py Ps VL 130–250 – −21.3 to −24.9 −3.5 to −6.3 5.0–9.5 – – NaCl–Na2SO4–H2O,
NaCl–KCl–H2O and NaCl–Na2B2O5–H2O

US-40 P VLC 230–250 +4 to +16.8 – – – – – chloride

US-41 P, Ps VL 140–160 – – – – – – chloride + CO2 (gas)

US-33 P VL 115–170 – −22 to −38 −2.1 to −6.1 3.5–9.3 – – NaCl–KCl–H2O + MgCl2–H2O

Note. Numbers of samples are identical to No. veins. Fluid inclusion associations (FIA): P—primary, Ps—pseudosecondary. Phases: VLS—three-phase (vapour + liquid + solid);
VLC—three-phase (vapour + liquid + CO2); VL—biphase (vapour + liquid). Thom—homogenization temperatures, ThomCO2—CO2 homogenization temperatures, Teut—eutectic (first
melting) temperatures; Tice melt—final melting temperatures, d—CO2 density. A dash—not determined.
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In the earliest quartz–tourmaline veins, we analyzed primary and pseudosecondary
biphase (vapor + liquid (VL)) fluid inclusions of 10–20 µm, with oval or isometric shapes
with smooth boundaries. The eutectic temperatures of the fluid ranged from −33 to
−33.9 ◦C and −23 to −25 ◦C; therefore, the fluid is NaCl–MgCl2–KCl. Homogenization
temperatures (into a liquid phase) range from 325 to 367 ◦C. The fluid salinity is 8–10 wt %
NaCl eq.

Primary and pseudosecondary VL fluid inclusions are analyzed in quartz from quartz–
carbonate–sericite-altered rocks. Primary VL inclusions are negative crystal shapes and
8–12 µm. According to Raman spectroscopy, they consist of CO2, CH4, and N2. The fluid
contains Na chloride and K bicarbonate according to the eutectic temperatures between
−10 and −8 ◦C. The rare inclusions contain dark-colored mineral phases with elongated
shapes that are most likely trapped ore minerals. The salinity is 0.18–0.71 wt % NaCl eq.
(temperatures of the final melting are −0.4 to −0.1 ◦C. Homogenization temperatures (into
a liquid phase) vary from 350 to 400 ◦C. Pseudosecondary fluid inclusions are round shaped
and up to 8 µm. The vapor bubbles do not exceed 15 vol. %. Homogenization (into a liquid
phase) occurs at 200–240 ◦C (Table 3).

We analyzed primary and pseudosecondary biphase VL fluid inclusions in the quartz
of gold–sulfide–quartz vein No. 18 (I) (see Figure 2) with high-grade gold. They are
8–15 µm with crystallographic outlines and isometric shapes. The eutectic temperatures
range between −31.2 and −33.7 ◦C; therefore, the fluid contains NaCl–MgCl2–H2O. Ho-
mogenization temperatures (into a liquid phase) range from 240 to 360 ◦C. The salinity is
5.5–10 wt % NaCl eq.

Additionally, we analyzed fluid inclusions in quartz from gold–sulfide–quartz vein
No. 4 (I) (see Figure 2) with high-grade gold and electrum. Primary VL and VLC inclusions
are 12 µm and have elongated shapes. Pseudosecondary VL inclusions are 3–10 µm and
are characterized by an isometric shape (Figure 10).
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Figure 10. Fluid inclusions in quartz of the Ulug-Sair ore occurrence: (a) VLS primary (sample US-4);
(b) VL pseudosecondary (sample US-4); (c) VL secondary (sample US-4); (d) VLC primary (sample
US-40a); (e) VL primary (sample US-40a); (f) VL primary/pseudosecondary (sample US-40a). FIA
see in Table 2.

We detected CO2 in VL primary inclusions using Raman spectroscopy. The final
melting temperatures (−8.3 to −4.2 ◦C) indicate a salinity of 6.7–12.5 wt % NaCl eq. The
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homogenization temperatures (into a liquid phase) are 290–330 ◦C. The CO2 primary VLC
inclusions are homogenized (into a liquid) at 30.5–31 ◦C. We used this type of inclusions.
The total homogenization of these inclusions was at 170–180 ◦C. These values correspond
to CO2 densities ≈0.51–0.56 g/cm3 and a pressure of 750–900 bars. Pseudosecondary VL
inclusions also contain carbon dioxide. Their eutectic temperatures are −21.2 to −21.7
and −23 to −23.9, as shown by Na–K-chloride fluid. The final melting temperatures are
−4 to −1 ◦C, corresponding to the salinity of 1.7–6.8 wt % NaCl eq. The homogenization
temperatures are 200–240 ◦C.

Additionally, we examined the primary and pseudosecondary VL inclusions in quartz
from gold–telluride–sulfide–quartz vein No. 30 (II) (see Figure 2) with Au, petzite, hessite,
Se-volynskite, kawazulite, and wittichenite. They are 8–15 µm and isometric angular or
tabular shape with crystallographic outlines. The eutectic temperatures range between
−20.9 and −32.1 ◦C and determined Na, K, and Mg chlorides in the fluid. Homogenization
temperatures (into the liquid) are 270–330 ◦C. The salinity is 4.5–7.5 wt % NaCl eq.

The primary and pseudosecondary VL inclusions in quartz from Pyritovaya gold–
sulfide–quartz vein (II) (sample ALR-Py, see Table 2) (see Figure 2) are up to 15 µm, oval
and round shapes, with large vapor bubbles (up to 20–25 vol. %). The eutectic temperatures
range between −21.3 and −24.9 ◦C indicated the presence of Na and K chlorides in the
fluid. The salinity varies from 5.0 to 9.5 wt % NaCl eq. The homogenization temperatures
(into a liquid phase) are 130–250 ◦C.

We also analyzed VLC and VL primary and pseudosecondary 8–12 µm fluid inclusions
in quartz from gold–telluride–sulfide–quartz veins No. 40 and 41 (II) with Au, electrum,
acanthite, and hessite (see Figure 9). Gas CO2 bubbles appear only during the cooling. The
CO2 homogenization temperatures (into a liquid) were estimated upon further heating and
reached +4 to +16.8 ◦C. The temperatures of total homogenization have not been detected
because, at 230–250 ◦C, inclusions were decrypted. Primary VL inclusions are 4–10 µm
and rounded and elongated. The vapor bubbles of inclusions contain CO2 according to
Raman spectroscopy data. The homogenization of inclusions (into a liquid) occurred at
220–235 ◦C. At a temperature of about 240 ◦C, we observed the decrepitation of inclusions.
The pseudosecondary VL inclusions are 8–12 µm and in the form of negative crystals. The
gas phase contains CO2. The homogenization temperatures are 140–160 ◦C.

The primary VL inclusions in quartz from No. 33 veins (II) are up to 15 µm, acute-
angled with crystallographic outlines, with large (up to 20 vol. %) vapor bubbles. Their
eutectic temperatures ranged between −22.7 and −23.9 ◦C, corresponding to Na and K
chloride fluid. Large inclusions (more than 20 µm) have lower eutectic temperatures (−29.7
to −37.2 ◦C) corresponding to MgCl2–H2O ± FeCl2–H2O fluid. The salinity is 3.5–9.5 wt %
NaCl eq., and homogenization temperatures (into a liquid phase) are 115–170 ◦C.

The bulk analysis of water and gas extracts from fluid inclusions in quartz powder
provided the data regarding the composition of fluids of the Ulug-Sair mineralization. In
the fluid from inclusions in quartz of Au–sulfide–quartz veins (I) (Table 3), Na (5.73–6.48)
prevails among cations (g/kg H2O); but K (0.14–0.32), Ca (0.01–0.04), and Mg (0.101–0.005)
are subordinate. The significant amounts (g/kg H2O) are detected for CO2 (41.31–56.24),
HCO3

− (10.04–11.61), Cl− (2.65–4.31), and CH4 (0.027–0.048). The important trace elements
are (mg/kg of the fluid): B (74.40–295.5), Ba (53.31–57.85), Sr (17.19–27.67), As (45.42–66.74),
Cu (0.03–15.53), Sb (6.27–8.07), Mn (0.40–9.23), Ni (1.26–3.0), and Fe (1.62–2.03) (Table 4).

In extracts form fluid inclusions in Au–telluride–sulfide–quartz veins (II) (g/kg H2O)
Na (6.7–12.9) prevails, while K (0.16–1.32), Ca (0.00–1.96), and Mg (0.00–0.25) are sub-
ordinate. The amounts of volatiles are identified in (g/kg H2O): CO2 (69.77–85.58),
HCO3

− (13.13–35.74), Cl− (2.81–4.51), and CH4 (0.041–0.196). The significant trace el-
ements are (mg/kg of fluid): B (129.53–696.3), Ba (153–638), Cu (0.00–780), Sr (19.24–82.27),
As (101.4–208.8), Sb (7.37–27.87), Ni (0.47–20.38), and Fe (0.00–9.17), Zn (0.00–58.48), Pb
(0.00–1.18), W (0.00–9.07), and Mo (0.47–10.89).

The average chemical composition of the fluid is shown in Figure 11.
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Table 4. Element composition of fluid inclusions of the Ulug-Sair ore.

Elements
I II

Average
Samples

US-18 AM-13 ALR-Py AM-14-2

Macrocomponents, g/kg H2O

CO2 56.24 41.31 85.58 69.77 63.23

CH4 0.05 0.03 0.19 0.04 0.08

Cl− 2.65 4.31 4.51 2.81 3.57

HCO3
− 11.61 10.04 35.74 13.13 17.63

Na 5.73 6.48 12.91 6.70 7.96

K 0.32 0.14 1.32 0.16 0.49

Ca 0.01 0.04 1.96 0.00 0.50

Mg 0.1 0.005 0.26 0.00 0.09

Microcomponents, 10−3 g/kg H2O

B 295.55 74.40 696.31 129.53 298.95

Ba 57.85 53.31 153.19 637.97 225.58

Cu 15.53 0.03 780.13 0.00 198.92

As 45.42 66.74 208.87 101.43 105.62

Sr 27.67 17.19 82.27 19.24 36.59

Zn 0.00 0.00 58.48 0.00 14.62

Mn 9.23 0.40 42.68 0.02 13.08

Sb 6.27 8.07 27.87 7.37 12.40

Ni 3.00 1.26 20.38 0.47 6.28

Fe 1.62 2.03 9.17 0.00 3.20

Mo 0.73 0.07 10.89 0.47 3.04

W 0.00 0.00 9.07 0.00 2.27

Li 1.59 2.34 3.72 1.24 2.23

Rb 0.40 0.16 2.17 0.33 0.76

Pb 0.00 0.17 1.18 0.00 0.34

Cs 0.10 0.19 0.61 0.25 0.29

Cd 0.08 0.06 0.66 0.01 0.20

Hg 0.00 0.00 0.58 0.00 0.14

Ag 0.00 0.18 0.21 0.00 0.10

Co 0.04 0.00 0.35 0.00 0.10

Au 0.03 0.00 0.17 0.02 0.05

Ge 0.03 0.04 0.07 0.05 0.05

Sn 0.00 0.08 0,00 0.00 0.02

REE 0.07 0.08 0.08 0.38 0.15

Tl 0.01 0.01 0.00 0.00 0.005
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Table 4. Cont.

Elements
I II

Average
Samples

US-18 AM-13 ALR-Py AM-14-2

Bi 0.00 0.01 0.01 0.00 0.005

U 0.00 0.00 0.01 0.00 0.0025

Na/K 17.90 46.29 9.78 41.87 28.96

CO2/CH4 1171.67 1530 436.63 1701.7 1210

K/Rb 800 875 608 484 645
Note. Analyses were performed in the Central Research Institute of Geological Prospecting for Base and Precious
Metals (TsNIGRI) (analyst S.G. Kryazhev).
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4.3. Fluid Isotopic Composition of S and O

The isotopic composition of S in pyrite from the I ore substage is 3.5‰, and in substage
II is 1.6‰, and is characterized by stable near-zero values ranging between +1.6 and +3.5‰.

The δ34SH2S values of the fluid coexisting with sulfides, according to the fractionation
equation [47,48] of gold–sulfide–quartz veins (I) vary from +2.0 to +2.5‰ (T = 350–250 ◦C),
and in gold–telluride–sulfide–quartz veins (II) from −0.4 to +2.1‰ (T = 280–170 ◦C),
demonstrating the participation of magmatic (0 ± 5‰) or mantle (0 ± 3‰) sulfur [47–50].
We noted that, while calculating the sulfur isotopic composition of fluids, the estimation of
mineral formation values by an electrum-sphalerite geothermometer was 360–280 ◦C [51],
and the parameters of the formation of Ag3AuTe2–Ag2Te–Au parageneses [52] were
(280–170 ◦C).

The δ18O value of quartz from gold–sulfide–quartz veins (I) varies from +17.2 to
+17.5‰, and in gold–telluride–sulfide–quartz veins (II) from +17.3 to +18.5‰.

According to the fractionation equation [53,54], the δ18OH2O of gold–sulfide–quartz
veins (I) fluid varies from +8.5 to +11.6‰ (T = 350–260 ◦C), and in gold–telluride–sulfide–
quartz veins (II) from +3.1 to +10.4‰ (T = 280–170 ◦C).

The points of the oxygen isotopic composition of the fluid of the early mineral asso-
ciation (I) fall in the range of fluids’ magmatic and metamorphic origin. The latest min-
eral association (I) indicates a mixture of metamorphic or magmatic fluids with meteoric
water (Figure 12).
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Note that the values of δ34SH2S fluid from −0.7 to +2.5‰ suggest the magmatic source
of sulfur (0 ± 3‰).

5. Discussion

Gold–sulfide–quartz veins at the Ulug-Sair mineral system are confined to the host
sedimentary rocks (conglomerates, siltstones, shales), quartz–tourmaline, and quartz–
carbonate–sericite-altered rocks.

Early high-temperature quartz–tourmaline-altered rocks are widespread at Ulug-Sair.
For the nearby Khaak-Sair occurrence, they are confined to intrusions of tonalite–porphyry
of the Bayankol complex [29,30]. The widespread tourmaline mineralization suggests the
presence of a deep-seated granitoid intrusion. The presence of boron is indirectly indicated
by data on the salt composition of the fluid according to the thermometric results and
ICP-MS. We note that the scheelite–quartz–tourmaline veins and quartz–tourmaline-altered
rocks of the Berezovsky (Urals, Russia) intrusion-related gold deposit are confined to the
Shartash intrusion [55].

Native gold was formed during two substages of mineralization formation. The grains
of gold in both ore substages are similar in composition, but the II substage is characterized
by an exceptional mineral diversity and the presence of tellurides (petzite Ag3AuTe2,
Ag2Te), selenides (fischesserite Ag3AuSe2, naumannite Ag2Se, and tiemannite HgSe), and
diverse Bi-minerals (kawazulite Bi2Te2Se, Se-volynskite AgBiTe2, native Bi, and wittichenite
Cu3BiS3. In terms of mineralogical and geochemical features, the Ulug-Sair ore is close to
gold–telluride and gold–bismuth (gold–bismuth–telluride) mineralization-type deposits.

Raman spectroscopy and fluid inclusions data demonstrated that quartz–tourmaline
and quartz–carbonate–sericite-altered rocks, and Au-bearing veins of the Ulug-Sair ore
occurrence were formed by carbon dioxide–water–chloride (Na + K ± Mg) fluid. The fluid
oxidation ratio (CO2/CO2 + CH4 + N) during mineral formation is stable, ranging between
1.04 and 1.12. The presence of selenides and Se-bearing minerals indicates the oxidized
environment of mineral formation and the participation of acidic fluids [56].

Fluid inclusions data indicated that the quartz–carbonate–sericite-altered rocks were
formed due to methane–carbon dioxide–water-chloride low–medium-salt fluid with a con-
centration of 0.18–6.1 wt % NaCl eq. at temperatures of at least 200–400 ◦C, corresponding
to the temperatures of the formation of mesothermal gold deposits, including the large
deposits of the Urals associated with quartz–carbonate–sericite-altered rocks [55–57].

Fluid salinity in the early gold–sulfide–quartz veins range from 12.5 to 1.7 wt %
NaCl eq at temperatures of 200–360 ◦C. These data are consistent with previous studies
of fluid inclusions in the quartz of such veins [58], showing that they were deposited at
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temperatures of 250–370 ◦C from fluid with salinities of 4–10 wt % NaC1 eq. and pressures
of 0.9–1 kbar. The pressure during the formation of early gold–sulfide–quartz veins was
0.75–1.0 kbar (~2.3–3 km) according to our results on three-phase inclusions.

Mineral paragenesis of gold–sulfide–quartz veins show that ore formation occurred
with high fugacity (f) sulfide sulfur lg f(S2) = 10–14.3–10–8.6 (T = 250 ◦C) [39,40].

The latest gold–telluride–sulfide–quartz veins (II) were formed by a fluid with a
salinity of 9.5–3.5 wt % NaCl eq., with wide variations of temperatures—110–330 ◦C.

We note that the parameters of the formation of Ag3AuTe2–Ag2Te–Au parageneses
range between 170 and 280 ◦C, at f(Te2) = 10−18–10−10 [52]. The paragenesis of tellurides,
sulfides, and selenides in gold–telluride–sulfide–quartz veins was produced at fTe2 from
10−21 to 10−9, fS2—10−25–10−9, fSe2—10−21–10−12 at 200 ◦C [39–42].

ICP-MS data show that hydrocarbonate with a concentration significantly higher
than chlorine prevailed among the anions in the fluid. The fluid within the cations is
most enriched in Na with impurities of Ca, K, and Mg, and it can be attributed to the
hydrocarbonate–chloride–sodium type, which does not contradict the fluid inclusion data.
The elevated amounts of Ca and Mg (Mn) and the bicarbonate ion are shown in the
formation of carbonates in the host quartz–carbonate–sericite-altered rocks. The fluid
composition with ore elements (B, As, Sb, Cu, Fe Ag, Ba) reflects the components of the
gold-bearing mineral assemblages.

The isotopic composition of δ34Sfluid (from −0.7 to +2.5‰) indicates the juvenile or
magmatic origin of ore elements [47,48,50].

The isotopic composition of δ34Ofluid implies that, during the early substages, the
formation of ore involved a fluid of metamorphic origin (from +8.2 to +11.6‰). During the
latest substages, multiple sources of the hydrothermal fluids (from +3.1 to +10.4‰), includ-
ing magmatic-derived, metamorphic-derived, and meteoric waters, with predominance
the metamorphic-derived fluid typical for orogenic gold deposits [59] are shown.

The fluid salinity up to 12.51 wt % NaCl eq. and a complex composition with Na, K,
and Mg chlorides, Na hydrocarbons, and borates indicate the involvement of fluid of mag-
matic origin. The elevated amounts of boron in fluid and the presence of “magmaphile” ele-
ments (W, Sb, Mo, Sb) also confirm involvement of the magmatic genesis of the fluid [60,61].

The salinity reduction during the mineral formation from 12.5 to 1.74 wt % NaCl eq.
may be caused by a dilution of igneous fluid with increased salinity and heated meteoric
waters [62]. Note that the Se-containing minerals in ores indicate a high oxidation rate of
the ore environment that could be caused by mixing ore-bearing fluid with meteoric waters.

The involvement of magmatic, metamorphic, or meteoric fluids in ore development is
typical for several gold deposits in Russia (Beresovskoye, Kochkar) with a dominant role of
magmatic fluid [56].

The determined conditions of ore genesis allow us to classify the Ulug-Sair gold min-
eral system as a mesozonal to epizonal orogenic gold. It should be noted that orogenic gold
deposits are subdivided into hypozonal, mesozonal, and epizonal subtypes, distinguished
by their differences in depth of formation [63]. Moreover, they may differ in sources of
ore-forming fluids and metals [59,64]. The origin of orogenic deposits is most commonly
explained by the metamorphism or slab devolatilization model [65–67]. Nevertheless, some
orogenic gold deposits may have been generated from magmatic fluids [64,68,69].

6. Conclusions

The results herein presented support the hypothesis that mineralization is associated
with tectonic-magmatic activity in which sub-latitudinal tectonic disruption becomes a
favorable environment for the circulation of hydrothermal fluids. This resulted in the for-
mation of linear zones with gold–quartz veins in quartz–tourmaline and quartz–carbonate–
sericite-altered rocks, conglomerates, and siltstones. The present study proves a multiple
source for the ore-forming fluids in the Ulug-Sair hydrothermal system. It is assumed that
the magmatic fluids were generated by dykes and small granitoid intrusions of the Late
Devonian Bayankol complex, which are assumed to be deep-seated. The Ulug-Sair ore can
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be referred to as an orogenic gold deposit on the basis of geological, mineralogical, and
fluid inclusion, and on isotopic data.
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