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Abstract: The objective of this work is to innovatively apply the boundary element method (BEM) as
a general modeling strategy to deal with complicated reservoir modeling problems, especially those
related to reservoir heterogeneity and fracture systems, which are common challenges encountered
in the practice of reservoir engineering. The transient flow behaviors of reservoirs containing multi-
scale heterogeneities enclosed by arbitrarily shaped boundaries are modeled by applying BEM. We
demonstrate that a BEM-based simulation strategy is capable of modeling complex heterogeneous
reservoirs with robust solutions. The technology is beneficial in making the best use of geological
modeling information. The governing differential operator of fluid flow within any locally homoge-
neous domain is solved along its boundary. The discretization of a reservoir system is only made
on the corresponding boundaries, which is advantageous in closely conforming to the reservoir’s
geological description and in facilitating the numerical simulation and computational efforts because
no gridding within the flow domain is needed. Theoretical solutions, in terms of pressure and flow
rate responses, are validated and exemplified for various reservoir–well systems, including naturally
fractured reservoirs with either non-crossing fractures or crossing fractures; fully compartmentalized
reservoirs; and multi-stage, fractured, horizontal wells with locally stimulated reservoir volumes
(SRVs) around each stage of the fracture, etc. A challenging case study for a complicated fracture
network system is examined. This work demonstrates the significance of adapting the BEM strategy
for reservoir simulation due to its flexibility in modeling reservoir heterogeneity, analytical solution
accuracy, and high computing efficiency, in reducing the technical gap between reservoir engineering
practice and simulation capacity.

Keywords: semi-analytical modeling; boundary element method; heterogeneous reservoir; natural
fracture network; isolated fractures; stimulated reservoir volume; geological feature-based reservoir
simulation

1. Introduction

Analytical solutions describing heat conduction in homogeneous reservoirs using the
source/sink function method (SSFM) proposed by Carslaw and Jaeger [1] have become
the foundation of modeling pressure and production-transient behaviors. Gringarten
and Ramey initially provided instantaneous source functions corresponding to various
boundary conditions to predict transient pressure responses of fluid flow within reservoir
domains [2]. Pioneering researchers have extended these analytical solutions to complicated
well configurations, including fractured and horizontal wells by Gringarten et al. [3], Ozkan
and Raghavan [4,5], and to complex reservoirs, such as composite reservoirs by Ramey [6]
and Kuchuk and Habashy [7], complex well–reservoir systems by Basquet et al. [8] and
by Medeiros et al. [9] in modeling transient pressure or rate problems in reservoir engi-
neering. Zhao and Thompson developed semi-analytical solutions using SSFM to model
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pressure responses and flow characteristics in reservoirs with complex geometries, such
as T-shaped, splay, and linear composite reservoirs [10,11]. Although advancement has
been achieved by applying SSFM, one of the drawbacks of these studies was that the
adjacent reservoir compartments had to be orthogonally defined to take the advantage of
the analytical solutions. Zhao and Thompson extended the application of SSFM to complex
reservoirs and developed a model to address reservoirs consisting of multiple channels
that are hydraulically connected to each other at special angles of 30◦, 45◦, 60◦, and 90◦ to
generate analytical solutions [12]. Zhao and Thompson developed an innovative strategy
to analytically model the transient pressure response of heterogeneous reservoirs, with
added consideration for linear composite, channelized reservoir sections [13]. Zhao has also
successfully extended the application of SSFM to heterogeneous reservoir systems, where
reservoir heterogeneity generally encountered in field practice can be modeled effectively in
two- and three-dimensional domains with analytical accuracy using a semi-analytical strat-
egy [14]. This represents a significant and innovative technical advancement in transient
heterogeneous reservoir modeling technology. The previously cited works by Zhao and
Thompson account for boundary conditions by applying image method, which is generally
a very computationally intensive task, especially to obtain results in a later time period.
Zhao’s modeling methodology is powerful for a reservoir area with a densely sampled
dataset, such as those in areas where seismic survey information is readily available for
delineating the heterogeneity of the reservoir. However, it may require an ample amount
of computing storage capacity for a large reservoir model. To overcome such limitations
and in developing solutions that can be applied to the semi-analytical modeling of complex
heterogeneous reservoirs, the boundary element method (BEM) is applied innovatively to
solve the modeling challenges of heterogeneous reservoirs due to its well-known feature of
handling computation along irregular reservoir boundaries, as illustrated by Kikani and
Horne [15], Xiao et al. [16], and Wu et al. [17].

BEM was initially developed in the 1970s and has been successfully applied in solving
various engineering and physical problems in many areas, such as heat transfer, porous
media flow, and fluid mechanics. Lennon et al. [18] and Lafe et al. [19] applied BEM to solve
transient three-dimensional groundwater flow problems in porous media with complex
boundary conditions. BEM has also been successfully applied in addressing transient
heat conduction problems in composite bodies with independent sub-regions consisting of
different temperature-dependent levels of heat conductivity by Azevedo and Wrobel [20]
and by Bialecki and Kuhn [21]. BEM, coupled with the free-space Green’s function as a
global weighting function, referred to as fundamental core solution, in an integral-equation
format along the boundary was used in a reservoir engineering application as developed
by Kikani and Horne [15]. The method was used to solve pressure-transient behavior in
arbitrarily bounded homogeneous reservoirs. Following the accomplishment of addressing
an arbitrarily bounded homogeneous reservoir, the BEM technology was extended by
Kikani and Horne to solve a flow problem of a composite reservoir with multiple locally
homogeneous regions [22]. The transient production dynamics of an underwater gas
reservoir have also been modeled and examined using BEM by Layne et al. [23]. It was
based on the development of a two-region composite model where a gas reservoir and
aquifer were respectively treated as sub-homogeneous porous media and were coupled at
their contact boundary through flux and pressure continuity. Similar to Kikani and Horne’s
BEM integral equations [15], the free-space Green’s function, as a global weighting function,
was used in boundary integral equations for both gas reservoir and aquifer applications.
Pecher and Stanislav applied BEM to calculate the pressure behavior of a vertical fractured
well with uniform flux in a linear composite reservoir with contact interfaces between two
adjacent compartments [24]. Xiao and Zhao extend BEM technology in the development of
a cold heavy-oil production with sand (CHOPS) transient flow model to account for various
boundary conditions and wormhole morphologies [25]. In addition, Xiao et al. made a
breakthrough by using BEM to solve a transient flow problem to address heterogeneous
reservoirs with a partition method to divide a locally homogeneous region into a number
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of subsystems and form a fully compartmentalized, two-dimensional reservoir model with
irregular geometry sub-systems [16]. Wu et al. recently developed a green-element-method-
based discretized fracture model to enhance the computing efficiency of BEM, where the
fluid flow inside the fracture was calculated using the finite difference method [26].

In this study, a simulation strategy using BEM focuses on the physics of fluid flow in
reservoirs with complexity in relation to either reservoir–well system properties or irregular
boundary shapes, including natural fracture networks. Sub-dividing a regional domain
into smaller subsystems is not required because the solution within each region can be
formulated using the BEM strategy in a semi-analytical manner [27]. The multiple, compli-
cated theoretical scenarios studied empirically showcase the significance of the research
conducted because those scenarios are commonly encountered in field practice, and more
importantly, their traditional numerical simulation solutions, using finite difference and/or
finite element methods, for example, are difficult to be computed accurately and efficiently
due to gridding-associated numerical challenges. The natural fracture network modeling
shown in the “Field Case Study: section is exemplificatory, with its solution being nearly
impossible to be generated accurately using traditional numerical simulation methods. The
BEM strategy demonstrated in this work aims towards reducing the technical gap between
reservoir engineering practice and simulation capacity.

2. Methodology
2.1. Complex Heterogeneous Reservoir Definition

A heterogeneous reservoir model consisting of eight regions representing variations
of potential heterogeneities is illustrated in Figure 1. The reservoir model provides the
basis of demonstrating the practical technical strategy and advantage of applying BEM in
addressing a complex reservoir model. The complex model can be viewed as a real-world
representation of an actual subterranean reservoir with its different reservoir flow properties
for each region, which can be generally built using different information sources, such
as seismic survey information and geological modeling, at the early reservoir assessment
phase. For the exemplified complex reservoir model shown in Figure 1, some of the detailed
reservoir descriptions and characterizations regarding the subsystems are summarized here:
Γj, where j ∈ [1,7], represents the closed contour of a boundary enclosing the j-th region,
and Γj,i represents the boundary/interface between the i-th region and the j-th region, i.e.,
Γj,I ⊆ Γi or Γj. The reservoir’s outer boundary, Γouter, (Γ2,outer is part of Γouter as the interface
between Γ2 and Γouter) can be prescribed to the Dirichlet condition, Neumann condition,
and mixed boundary condition to represent the real-world reservoir boundary situation.
To demonstrate the proposed modeling strategy and methodology, it was assumed that
the outer boundary was considered as a no-flow boundary condition in order to reach a
specific heterogeneous reservoir model to be solved.
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2.2. Mathematical Descriptions

The modeling of transient responses for this complex reservoir system can be achieved
by decoupling and coupling the unsteady fluid flow problem for each subsystem. To
achieve this, the following modeling assumptions were made:

1. Slightly compressible, single-phase fluid flow in each region was assumed.
2. Rock and fluid properties in each region were considered uniform and static.
3. Along the boundaries to be specified in the modeling process, the interfaces among

all subsystems were treated as fully penetrated communicating planes with a uniform
thickness of formation.

4. Any two regions with interfaces that are in hydraulic contact with no flow resistance
and the interfaces/boundaries between the two regions were static.

5. Initial reservoir pressure was assumed uniform across the entire heterogeneous reservoir.

With the assumptions made above, the flow equation in a locally homogeneous region
can be mathematically described as:

k j

µj

(
∂2 pj

∂x2 +
∂2 pj

∂y2

)
= φjctj

∂pj

∂t
+

Nwj

∑
k=1

qj,kδ
(

x− x′j,k
)

δ
(

y− y′j,k
)
{j|1 ≤ j ≤ 8, j ∈ I}, (1)

where µj, kj, and ctj are the reservoir and fluid properties in the j-th region. δ denotes the
Dirac delta function, (x

′
j,k,y

′
j,k) is the location of the k-th source/sink of the total number of

Nwj in the j-th region, and qj,k is the corresponding source/sink flow rate.

2.3. Pressure in Region 1 to 7

The pressure solution corresponding to Equation (1) for a simplified, connected do-
main is an integral equation given by Kikani and Horne [15] and Layne et al. [23]. With
the dimensionless terms defined in Appendix A, the integral equation for any of the seven
inner regions can be expressed as

θj

2π
pDj(xD, yD, tD) =

∫ tD

0
dτ


∫

Γj

Mj

Mre f

Csre f

Csj
(Gj

∂pDj

∂n
− pDj

∂Gj

∂n
)dΓ +

Nwj

∑
k=1

qDj,kGj

, (2)

with
θj = 2π i f (x, y) ∈ Ωj
θj = θj i f (x, y) ∈ Γj

{j|1 ≤ j ≤ 7, j ∈ I}, (3)

where θj is the internal angle between two boundary elements in Region j. In Equation (2),
G is the two-dimensional, free-space Green’s function and is used as a global weighting
function in the integral equation given by Equation (4). Figure 2 illustrates the paths of

the integral schemes for the 7 regions. It is very important to note that the
∂pj
∂n or ∂Gi

∂n is
considered to be “positive” when it is pointing to the outward normal direction and is
considered to be “negative” when it is pointing to the inward normal direction. n is the
outward-pointing normal on a boundary element, and U(t− τ) is the unit step function.

Gj(xD, yD, x′D, y′D, tD, τD)

= 1

4π
CRj

CRre f
(t−τ)D

U(t− τ)D exp

− (x−x′)2
D+(y−y′)2

D

4
CRj

CRre f
(t−τ)D

.
(4)

2.4. Pressure in Region 8

The pressure solution for the outer region (Region 8) is much more complex than the
inner regions. Region 8 is a multiple, connected domain with complex internal interfaces
and an outer boundary. Equation (2) can only be directly applied to the pressure solution
within a simply connected domain with interface circling the flow domain. Appendix B
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presents the physical and mathematical derivation of the pressure solution for Region 8,
given as:

θ8

2π
pD8(xD, yD, tD) =

∫ tD

0


M8

Mre f

Csre f

Cs8


∫

Γouter−Γ2,outer
G8

∂pD8
∂n − pD8

∂G8
∂n dΓ

−
∫

Γ2−Γ2,outer
G8

∂pD2
∂n − pD2

∂G8
∂n dΓ

−
∫

ΓNRSP
G8

∂pDi
∂n − pDi

∂G8
∂n dΓ

−
∫

Γ1
G8

∂pD1
∂n − pD1

∂G8
∂n dΓ

+
Nw8

∑
k=1

qD8,kG8


. (5)
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2.5. Boundary Discretization

Equations (2) and (5) require the integration of the pressure and pressure gradient,
which are unknown continuous functions of position and time. To achieve numerical
solution for Equations (2) and (5) for each domain, we discretized a boundary into a number
of segments, referred to as “boundary elements”, by assigning nodes on the boundary. Each
boundary element is formed with linear interpolations between two adjacent nodes. The
pressure and the pressure gradient on each boundary element were assumed to be uniform.
A boundary element with this type of discretization is generally referred as a “constant
element”. The constant element is advantageous in that the integrals of the Green’s function
along the boundary can be obtained analytically, resulting in improvements in calculation
efficiency and accuracy. Additionally, singularity at sharp corners of adjacent elements
is naturally avoided [16]. Appendix C provides the detailed derivation of the pressure
expression of each region in discrete form.

2.6. Laplace Transformation

The convolution theorem is the fundamental principle for the modeling of a com-
plicated flow process. The Laplace transform of the convolution theorem is the product
of two Laplace transformed functions that are expressed originally in real time for our
problem under study. The application of the convolution theorem in the Laplace domain
offers great advantages in modeling. The Laplace transformation with respect to time is
taken for Equations (A25) and (A26), denoted as “L[ ]”. Applying the convolution theo-
rem, the working equation of the pressure solution in discrete form for Regions 1 to 7 by
Equation (A25) in the Laplace domain becomes:
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θk
j

2π
L
[
pDj(xD, yD, tD)

]
=

Mj

Mre f

Csre f

Csj


Nj

∑
k=1

L

[
∂pk

Dj

∂ζk
j

]
L
[
Θ̂k

j

]
−

Nj

∑
k=1

L
[

pk
Dj

]
L
[
Θ̃k

j

]+

Nwj

∑
k=1

l
[
qDj,k

]
L
[
Gj
]
, (6)

and the working equation of the pressure solution in discrete form for Region 8 by
Equation (A26) in Laplace domain becomes:

θk
8

2π L[pD8(xD, yD, tD)] =
M8

Mre f

Csre f
Cs8

{
Ne
∑

k=1
L
[

∂pk
D8

∂ζk
8

]
L
[
Θ̂k

8

]
−

Ne
∑

k=1
L
[

pk
D8

]
L
[
Θ̃k

8

]}
− M8

Mre f

Csre f
Cs8

{
N2,8

∑
k=1

L
[

∂pk
D2

∂ζ2,k
2

]
L
[
Θ̂k

8

]
−

N2,8

∑
k=1

L
[

pk
D2

]
L
[
Θ̃k

8

]}

− M8
Mre f

Csre f
Cs8

{
NNRSP

∑
k=1

L
[

∂pk
Di

∂ζk
i

]
L
[
Θ̂k

8

]
−

NNRSP
∑

k=1
L
[

pk
Di

]
L
[
Θ̃k

8

]}

− M8
Mre f

Csre f
Cs8

{
N1
∑

k=1
L
[

∂pk
D1

∂ζk
1

]
L
[
Θ̂k

8

]
−

N1
∑

k=1
L
[

pk
D1

]
L
[
Θ̃k

8

]}
+

Nw8
∑

k=1
L[qD8,k]L[G8],

(7)

The complex analytical Laplace transformations of Θ̂ and Θ̃ in Equations (6) and (7)
are not readily available. Onur and Reynolds provided an innovative numerical Laplace
transform method [28]. An accurate and fast numerical Laplace transform scheme devised
by Zhao and Thompson is applied in this study [11]. The devised scheme plays a key role
in this study in modeling unsteady-state flow in a complex heterogeneous reservoir system.

2.7. Linear Matrix Equations in Laplace Domain

For each of the 7 inner regions (j ∈ [1, 7]), the number of Nj linear equations can be
obtained in the Laplace domain by evaluating the pressure based on Equation (6), at the mid-
point of every boundary element on the respective boundaries Γj. For Region 8, Ne number
of linear equations can be obtained by evaluating the pressure based on Equation (7), at the
midpoint of each boundary element along the reservoir outer boundary of (Γouter − Γ2,outer),
resulting in a set of (Ne + ∑7

j=1 Nj) linear equations.
In addition, the eight locally homogeneous regions interact with each other along their

hydraulic contact interfaces by fluid transfer. Each region is coupled with its neighboring
regions along the interface(s) based on the pressure equilibrium and rate continuity. Com-
bined with the prescribed outer boundary condition, i.e., the no-flow boundary assumed in
the beginning of this work, another set of

(
Ne + ∑ Nj

)
linear equations is established. In to-

tal, 2
(

Ne + ∑ Nj
)

linear equations are obtained for exactly the same number of unknowns,
that is,

(
Ne + ∑ Nj

)
pressure unknowns plus

(
Ne + ∑ Nj

)
pressure gradient unknowns of

all the boundary elements.
By solving the set of linear equations, the pressure and pressure gradient of each

boundary element can be obtained in the Laplace domain and substituted into Equation (6)
or Equation (7), such that the pressure at the desired location within the reservoir can
be obtained. The pressure, pressure gradient, and rate solutions in the Laplace domain
can subsequently be inverted to the real-time domain using the Stehfest inversion algo-
rithm [29].

3. Model Validity and Results
3.1. Scenario 1: Fully Compartmentalized Reservoir

The pressure and rate behaviors of the well to be presented in the following theoretical
cases are under either constant rate or constant bottom-hole flowing pressure (BHFP)
conditions, accordingly. Figure 3a assumes a roughly configured reservoir model with
a box-shaped, no-flow outer boundary. The reservoir consists of 25 irregularly shaped
compartments/regions, and each compartment is numbered accordingly. The reservoir is
produced by a vertical well located in Region 13, represented by a source point.
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Figure 3. Schematic reservoir with (a) an irregular-gridding system and (b) a rectangular gridding
system, XeD = 50 and YeD = 50.

3.1.1. Scenario 1—1: Standard Reservoir with Discussion on Gridding

One of the greatest advantages of BEM is that the method is capable of handling
fluid flow in bounded reservoirs with irregular boundaries in a comparatively easy and
convenient manner as presented and discussed in this paper. This means that the definition
of geometric regions is mainly based on the geological feature of reservoir rocks. Thus, this
BEM scheme offers a mesh-free computing process because only segmental discretization
along boundaries is required. Furthermore, one’s attention should be drawn to the fact that
neither BEM nor SSFM strategies need gridding within each homogeneous region because
the reservoir system has been separated and integrated with an analytical strategy to
maintain hydraulic communication among different regions of the reservoir system, thus to
establish solution with near analytical accuracy, regardless of boundary shapes. The regions
enclosed by the grid-like lines and curves in Figure 3a,b are for geological description
purposes only, i.e., the reservoir properties for each region can be input accordingly based
on an actual geological reservoir model to match. Because of the gridding effect on solutions
for finite difference and finite element simulation, there exist well-known challenges that
cause numerical inaccuracy in solution; thus, it is necessary to examine how the boundary
discretization schemes affect the solution accuracy for BEM and SSFM strategies under
homogenous and heterogeneous reservoir conditions.

To understand the boundary discretization effect in a homogeneous reservoir case,
a reservoir system is regionalized into 25 irregular regions and 25 regular, rectangular
regions, as illustrated in Figure 3a,b, respectively, with each region defined as homogeneous
in mobility and storativity. BEM can then be applied to generate the solutions. For a
homogeneous reservoir in a single, rectangular-shaped reservoir, the pressure solution can
also be described with the well-known standard solution given by Gringarten et al. [2]
and Carslaw and Jaeger [1], as described in Equations (8) and (9) for efficient early and
late time-computing, respectively. In theory, the solutions generated by the BEM strategy
and the standardized solutions generated by traditional strategies, such as the imagine
method, must overlap each other with nearly unnoticeable differences. The results shown
in Figure 4 confirm this expectation. This result provides supporting evidence that the
boundary discretization scheme in BEM does not affect the accuracy of the pressure and
the pressure derivative solutions.
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Figure 4. Standard solutions to reservoir schematics in Figure 3a,b under homogeneous reservoir
condition, XeD = 50 and YeD = 50.

3.1.2. Scenarios 1—2: Linear Composite Reservoir

To validate the accuracy of the solutions for a heterogeneous reservoir generated by
the BEM proposed, we confirmed our results against the solutions using SSFM provided
by Zhao and Thompson [10], using the same regionalized scheme as shown in Figure 3a.
To model a linear composite reservoir with the heterogeneous reservoir schematic shown
in Figure 3a, the 1st to the 15th compartments are set to have uniform mobility; however,
the 16th to the 25th regions contain a different value for each heterogeneous reservoir case
computed. The heterogeneous reservoir consists of two composite parts, as illustrated in
Figure 5. The cases with different mobility ratios from Area 2 to Area 1 are computed, and
the solutions from the 2 methods have very good agreement.

Once it is confirmed that the BEM strategy proposed offers similar results to those
from SSFM, our technical confidence is enhanced, and the technical horizon of the BEM
strategy expands significantly. One may realize that the scenario shown here only verifies
the accuracy of the BEM strategy for heterogeneous reservoir simulation; its full application
capacity can be revealed through its application for a full field-scale heterogeneous reservoir
as proper heterogeneity can be mapped into each irregular region accordingly if there is a
need.

Generally speaking, BEM preserves the analytical nature of the solution as it retains the
free-space Green’s function that governs the differential flow equation as a global weighting
function. BEM also largely eliminates problems normally encountered in simulations, such
as numerical dispersion, grid shape, and grid orientation.
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3.2. Reservoir with Multi-Scale Heterogeneities

The purpose of Scenario 2 is to investigate the three types of reservoirs with different
geological features: a naturally fractured reservoir with 2 different fracture distributions
and a fluvial reservoir with meandering sandbars deposited within the fluvial channels. By
using BEM to treat natural fractures as the heterogeneity of the geological media consisting
of unique geometries and flow characteristics, such as the length, aperture, and height;
the permeability; and the storativity. The natural fractures are thereby modeled in a more
realistic and more physically driven manner. The tedious and complex gridding cells
needed around natural fractures in other simulation methods become unnecessary, thus
the BEM modeling strategy is more correctly constructed in physics, much more reliable,
and easier to implement [30,31]; this is especially true for a single-phase process. For
multiphase flow, we admit that it is still challenging, and further effort is demanded. The
three scenarios considered are: a well produces between two parallel, natural fractures; a
well produces near two intercepting, natural fractures; and multiple wells produce in a
heterogeneous reservoir with multiple sandbars within a meandering, fluvial channel.
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3.2.1. Scenario 2—1: A Reservoir with Two Isolated, Parallel, Natural Fractures

Scenario 2—1 studies the well response influenced by two parallelly embedded, iso-
lated, natural fractures that are located within a reservoir with a no-flow outer boundary, as
shown in Figure 6. The shape of the outer boundary is purposely defined with an irregular
geometry to demonstrate the technical capacity of the BEM strategy. The natural fractures,
with a range of parameter variations, are intended to be examined. The pressure- and
rate-transient behaviors of the well are examined under various levels of fracture con-
ductivity that is reflected by the permeability ratios of fracture permeability-to-formation
matrix permeability. Note that the two isolated fractures are assumed to have the same
flow properties, and the well is at the mid-point between these two fractures in order to
simplify this ideal case.

Figures 7 and 8 show the pressure and the rate behaviors, respectively, when the well
is producing between two parallel, sealing faults, which are described by setting natural
fracture permeability extremely low as k f rac/kmatrix = 0.0001, with WD = 50, HD = 50,
w f D = 0.01, and XvD = 5. Pressure and pressure derivative solutions generated by the
use of the commercial numerical modeling software Saphir are also shown in Figure 7.
The results generated by BEM and the Saphir software show good agreement. Further
examination indicates that BEM offers more accurate outcomes. The geological channel-
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flow feature has been clearly exhibited on the pressure derivative with 1/2 slope when
2L f D
HD

> 0.2. However, the declining 1/2 slope trend is not so obviously shown in the rate

decline-curve, even when
2L f D
HD

> 0.6 is reached, as illustrated in Figure 8. A comparison
between the pressure derivative curves with the rate-decline curves suggests that the
rate-decline curve is not as sensitive to the geological features of the reservoir. Generally
speaking, when pressure-transient hits fault tips, pressure derivative starts to go downward
as fluid beyond the fault tips flows into the channel before the outer no-flow boundary
is felt.
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Figure 8. Rate behaviors of a well producing between two sealing faults for different 2L f D
HD

, with
k f rac/kmatrix = 1.0× 10−4, WD = 50, HD = 50, w f D = 0.01, and XvD = 5.

In addition, the effect of the permeability of natural fractures is also examined in this
scenario. The results, in terms of transient pressure and rate, presented in Figures 9 and 10,
have a fixed fracture width of WfD = 0.01 and fracture lengths of 2LfD = 10, XvD = 2,
WD = 50, and HD = 50. As illustrated in these two figures, the natural fractures clearly affect
pressure- and rate-transient response when the fracture is 10,000 times more permeable
than the formation rock. The impact of the natural fracture on well behavior is even more
pronounced when the fracture is 10,000 times less permeable than the formation, acting as
non-conductive faults.
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Figure 9. Pressure and its derivative behaviors of the well with respect to different permeability
ratios of natural fracture to formation, WD = 50, HD = 50, w f D = 0.01, 2L f D = 10, and XvD = 2.

In order to determine the source of the results shown in Figure 9, the flux profiles for
the left-hand-side (LHS) and the right-hand-side (RHS) faces of the fracture are shown
in Figure 11. Note that the flux profiles are for only one fracture. The flux profiles at
tD = 1, 10 and 100 for highly conductive fractures with k f rac/kmatrix = 10, 000 are pre-
sented in Figure 12. It is observable that, for the LHS face of the fracture, its outer portions
have negative flux values, which means that this conductive fracture is passing fluid quickly
toward the well and also extracting fluid around the LHS face’s outer portions into itself.
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The extracted fluid flows along the fracture, as indicated by the red-colored arrows in
Figure 11a, into the middle portion of the fracture where it is eventually produced out
of the LHS face of the fracture, indicated by the positive flux values. On the other hand,
the flux on the RHS of the fracture is always flowing into the fracture, as indicated by its
positive flux values. When the fracture is much less conductive, fractures only pass as
much fluid they can receive directly from the RHS to the LHS, as illustrated in Figure 13.
The observations made above using BEM are consistent with the observations of Zhao
made by implementing SSFM [32]. Therefore, the outcome from this independent BEM
simulation is correct. This enhances our technical confidence in developing a BEM-based
simulation package.
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3.2.2. Scenario 2—2: A Reservoir with Two Isolated, Crossing, Natural Fractures

The effect of two isolated crossing natural fractures on well behaviors is investigated
in this scenario, assuming fluid properties remain unchanged. Figure 14 presents the
schematic of the naturally fractured reservoir. Two isolated, crossing fractures intercepting
each other at various angles, forming a parallelogram of the conjunction area. The reservoir
is modeled by describing the fracture network consisting of the five regions, represented
by different colors. The purpose of using colored regions is to clearly demonstrate the
individual sections of this fracture network. The flow properties of these regions can be
assigned with different values if needed.
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The effect of the different angle between these two sealing faults with k f rac/kmatrix = 0.0001
is examined at 90

◦
, 75

◦
, 60

◦
, and 45

◦
, with LD/2L f D = 3/4, and dD = 1. Figure 15a shows

that, at the time roughly after tD > 10, a wider, included angle causes slightly greater
pressure drop, which responds to the fact that a wider angle results in a larger extent to
allow the sealing faults to impede fluid flow towards the wellbore, and the fluid has to
bypass the sealing faults. It is noticeable that, when fractures are orthogonal at 90

◦
angle,

the pressure derivative increases and stays at dpD/lntD = 2. This is due to the well-known
derivative doubling phenomena caused by a sealing fault’s influence, which occurs for a
specific period of time before it drops as a result of the fluid beyond the faults starting to
flow towards the wellbore.
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Figure 15. Pressure and its derivative behaviors of a well for different fracture crossing angles
under (a) k f rac/kmatrix = 1.0× 10−4 and (b) k f rac/kmatrix = 1.0× 104, with WD = 50, HD = 50,
LD = 15, 2L f D = 20, dD = 1, and w f D = 0.1.

If the fracture geometry setting remains the same and only the fractures become very
conducive with a permeability ratio of k f rac/kmatrix = 1.0× 104, it is observable that, at
dimensionless time after tD > 1.2, a wider included angle causes a slightly smaller pressure
drop with a decreased derivative value (Figure 15b). This is due to the fact that the fracture
setting with a wider angle covers a larger extent to promote fluid flow towards the wellbore.
The detailed derivative characteristics identified in this scenario show how a large-scale
geological feature can be quantitatively determined.

3.2.3. Scenario 2—3: Reservoir with Sandbars in Fluvial Channeling

The fluvial reservoir scenario models the transient behaviors of multiple wells com-
pleted in geologically complex environments. A schematic of a geologically complex
reservoir is illustrated in Figure 16, with K1 representing the permeability inside the sand
bar while K2 representing the permeability of the fluvial channel. The layout of the reservoir
is represented as a fluvial channel with an elliptical outer boundary under braided fluvial
sedimentation consisting of seven irregularly shaped sandbars. Note that all of the sand-
bars were assumed to have the same storativity and mobility. In a fluvial channel system,
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sandbars are usually the “sweet spots” and are the target locations to complete wells due to
the highly transmissive sediments. The application of seismology in delineating sandbars
in deep reservoirs has many limitations due to the lack of high-resolution information to
determine the spatial extent and distribution of the sediments. However, interpretation
of the pressure data from such a reservoir can provide an estimate of the relative spatial
relationships between the well and the fluvial system.
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Figure 16. Schematic of four wells producing in a fluvial reservoir environment with meandering
sandbars under different permeability values, K1 inside sand bar and K2 within fluvial channel.

The pressure derivatives of the 4 vertical wells, where Well 1 is placed in a sandbar
and the other 3 wells are located in the fluvial channel (Wells 2 and 3 are located spatially
closer to a sandbar as compared to Well 4) are shown in Figure 17. In this scenario, the
permeability ratio of the sandbars to the fluvial channel is set at 50. Pressure derivative
profiles of Wells 1, 2, and 3 clearly reflect the effect of reservoir heterogeneities. The pressure
derivative of Well 1 increases quickly early when its pressure transient hits the sandbar’s
boundary. Subsequently, the characteristic of the channel flow with a half slope is evolved
due to the contrast in permeability between the sandbar and the outside fluvial channel
environment. The transition is due to the change of permeability from the sandbar and
the fluvial channel sediments, where the fluid that in the less-permeable fluvial channel
has difficulty flowing into Well 1 and the production is mainly provided by fluid in the
sandbar; this is especially true early in the flow period. Wells 2 and 3 are affected by the
surrounding sandbars with a decline in their pressure derivatives, while Well 4 is only
slightly affected due to the distant sandbars near it.

Although the simple reservoir settings of the 3 scenarios in this example are insufficient
to comprehensively examine the effect caused by all types of natural fracture networks or
fluvial systems, the main purpose of the examples is to showcase the technical capacity
of modeling natural fracture networks or fluvial systems and the high level of solution
accuracy using the proposed BEM modeling strategy. Because tight oil/gas reservoirs
have been increasingly playing an important role in oil/gas production, with multi-stage
fractures being implemented on horizontal wells, there is a need to understand and analyze
complex fracture networks as formed by connections of hydraulic fractures and natural
fractures. The proposed BEM modeling technology provides a powerful tool to simulate
complex, natural networks. It can address multiple complex fracture networks. The only
limitation of the method is that it is subject to the available computing resources.
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3.3. Scenario 3: Enhanced-Fracture-Region (ERF) Model

Stalgorova and Mattar proposed a physical model to address multi-stage hydraulically
fractured horizontal wells (MHFHW) [33]. This model provides an excellent attempt to
capture the effect of an “enhanced” permeability region in the vicinity of each main fracture
by assigning a local, stimulated reservoir volume (SRV) with a higher permeability than
the formation matrix’s permeability. The local SRV can be considered as inclusive of
fracture branching/complex networks or densely distributed natural fractures. However,
a comprehensive set of solutions for this model has not been fully established. In reality,
a region of “reduced” permeability may also be generated in the vicinity of fracture,
due to the fracturing fluid induced formation damage and the effective hydrocarbon
permeability reduction caused by the multiphase flow environment under the condition of
high fracturing fluid saturation. For the possible phenomena within this scenario, the effects
of local SRV permeability versus matrix permeability need to be comprehensively studied.

The schematic of the physical model with local SRVs in this scenario is shown in
Figure 18. The six-stage transverse fractures are evenly spaced along the horizontal wellbore.
It is assumed that each stage has only one main fracture, and fractures can be easily placed
unevenly along the wellbore when necessary. With the flexibility of the BEM strategy, it is
of great technical benefit to compute and analyze pressure or rate behaviors when a local
SRV around a fracture has various levels of permeability or various sizes.

3.3.1. Effect of Local SRV Region Permeability

Pressure- and rate-transient behaviors of MHFHW are shown in Figures 19 and 20,
respectively. In Figure 19, early formation linear flow with 1/2 slope is exhibited for
different permeability ratios of k1/k2. However, when the k1/k2 ratio is larger than 1,
indicating an SRV region with enhanced permeability and after the pressure response hits
the SRV boundary, the diffusive flowing process causes the flow regime to change from
linear flow to elliptic flow, and then with an extended time period, to approach pseudo-
radial flow. On the other hand, when the k1/k2 ratio is less than 1, indicating an SRV region
with poor permeability caused potentially by drilling mud or fracturing fluid damage, the
diffusive flowing process intends to keep evolving in a linear flow regime for a relatively
long time. It then gradually shifts to a bilinear flow regime with a tendency to approach a
trend with 1

4 slope. Subsequently, it eventually transitions to an elliptical and pseudo-radial
flow regime. Physically, the earlier linear flow regime can evolve continuously because the
outer reservoir region can feed the flux-need of the early linear regime relatively easily. This
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explains why the linear flow regime is not evolving into an elliptical flow regime quickly
and immediately. However, it does exhibit the elliptical flow regime over time.
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permeability ratio k1/k2, with 2L f D/YeD = 0.1, wsrvD/d f sD = 0.5, XeD = 200, and YeD = 100.

Comparatively, for a MHFHW to exist in a homogeneous reservoir, an increase of
stage number will eventually reduce the available reservoir volume around each fracture.
This is equivalent to causing a flow situation under a pseudo-steady state flow around
each fracture at a relatively early time. The entire system subsequently evolves into a
global, pseudo-radial flow regime as indicated in the work of Chen and Raghavan [34]
and Zhao [35]. The slope of the pressure derivative curve in this kind of case is much
steeper and only slightly less than 1. Identifying these diagnostic features of pressure
derivative curves prevents reservoir engineers from mistakenly interpreting testing data,
thus enhancing our technical confidence. This also helps solve the intriguing question as to
why there is a duration where the derivative has a slope near 1, as originally proposed by
Chen and Raghavan [34].
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Figure 20. Rate behaviors of a fractured, horizontal well under a different permeability ratio k1/k2,
with 2L f D/YeD = 0.1, wsrvD/d f sD = 0.5, XeD = 200, and YeD = 100.

3.3.2. Effect of Local SRV Size

In this scenario, we examine how the width of a local SRV region can affect well
behavior when the permeability of the region is enhanced. If the enhanced region accounts
for natural fractures around the hydraulic facture, the wider the region, the more natural
fractures are indicated to be distributed between hydraulic fractures.

Neither pressure nor rate shows much of a difference among the three curves in
Figures 21 and 22. When local SRV regions between hydraulic fractures are connected as
WsrvD/d f sD = 1, the difference in time profile lies mainly between tD = 0.1 to 5, during
which the production rate is roughly as much as 2 times the rate when WsrvD/d f sD = 0.5.
For the case WsrvD/d f sD = 1, the EFR model becomes a two-region composite reservoir,
as local SRV regions between hydraulic fractures are connected. Zhao proposed an SRV
model for a fractured, horizontal well to capture the relation between SRV and the original
formation. The case of WsrvD/d f sD = 1 in this example represents a similar reservoir model
schematic to the model of Zhao [35].
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and space between fractures as k1/k2 = 20, 2L f D/YeD = 0.1, XeD = 200, and YeD = 100.
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Figure 22. Rate response of fractured, horizontal well under a different ratio of local SRV width and
space between fractures as k1/k2 = 20, 2L f D/YeD = 0.1, XeD = 200, and YeD = 100.

Spatial pressure profiles within the reservoir for such a complex reservoir–well system
at a different time tD = 10, 100 and 1000 are mapped out and illustrated in Figure 23 with
LsrvD/d f sD = 0.5. The high level of accuracy of the solutions is clearly demonstrated in
these profiles.
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Figure 23. Pressure profiles within the entire reservoir at (a) tD = 10 (b) tD = 100 (c) tD = 1000 with
wsrvD/d f sD = 0.5, 2L f D/YeD = 0.2 and k1/k2 = 20, XeD = 200, and YeD = 100.

Theoretical results of various reservoir–well systems from the three examples suggest
that the BEM modeling strategy can deal with complex reservoir with multi-scale hetero-
geneities in an efficient and convenient manner, and the solutions generated possess near
analytical accuracy.
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4. Field Case Study

This case addresses a complex fracture network using the proposed BEM strategy
based on the well-known fracture network interpretation of the microseismic image
recorded during hydraulic fracturing by Fisher et al. [36] for the Barnett shale reservoir rep-
resented in Figure 24a. The microseismic image is interpreted into a communicated fracture
network in the BEM model with the intent of simplifying the problem while capturing the
essential features of the fracture network (Figure 24b). The BEM model consists of 3 parallel
primary fractures and 11 parallel secondary fractures. Each secondary fracture intersects all
3 primary fractures with an angle of 105◦, with the crossing joint section assigned with the
properties of either the primary fracture or the secondary fracture. Each primary fracture
spans 1700 feet, with 300 feet of spacing between the adjacent primary fractures. The
secondary fracture extends 650 feet, with 165 feet spacing. Both the primary fracture and
the secondary fracture were assumed to have a fracture width of 0.1 feet. The reservoir is
infinite-acting in the model, without the effect of an outer boundary, and the test well is
placed in the central portion of the middle primary fracture. Although further detailed
modeling with a more complicated fracture network can be performed systematically, it
was deemed to be unnecessary at this stage due to the lack of detailed supporting field
geology, reservoir, and testing information.
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Figure 24. (a) Complex-fracture network interpretation for Barnett shale microseismic image recorded
during fracturing (Fisher et al. [36], permission of SPE); (b) a simplified fracture network in the BEM
model (after Fisher et al. 2002).

The complexity of this field case and the information provided in the work of Fisher et al.
have encouraged general investigation under the given fracture network [36]. The solutions
are presented in dimensionless terms, such that the other reservoir properties are not
included here. The focus is on the mobility contrasts of the primary and secondary fractures
with respect to the reservoir, i.e., the ratios among Mm, Mp, and Ms. We are particularly
interested in the effect of the mobility of the fracture crossing section on well performance.
Under this context, 6 cases are planned, with details shown in Table 1. The mobility ratio
comparison of Mp:Ms:Mm plus the mobility information for the fracture crossing section
for the cases based on the simplified fracture network model after Fisher et al. are listed.
The computational results using the BEM model constructed are shown in Figure 25 for
the dimensionless pressure and Figure 26 for the derivatives of the dimensionless pressure
under unit rate conditions. Figure 27 illustrates the dimensionless rate-decline curve under
unit pressure-drop conditions.
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Table 1. The fracture mobility parameters for the cases based on the simplified fracture network
model after Fisher et al. [36].

Mobility Ratio Comparison of
Mp:Ms:Mm

Mobility of
Fracture Crossing Section

Case 1 1000:100:1 1000
Case 2 100:10:1 100
Case 3 1000:100:1 100
Case 4 100:10:1 10
Case 5 1:1:1 homogeneous
Case 6 homogeneous reservoir homogeneous
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Figure 25. PD for the six cases based on the simplified fracture network model.

The first case has the mobility ratio of the primary fracture and the secondary fracture
to the original reservoir matrix as 1000 and 100, respectively. The second case has the
mobility ratio of the primary fracture and the secondary fracture to the original reservoir
matrix as 100 and 10, respectively. The third case sets all fractures and the original reservoir
matrix as having the same mobility in simulating a homogeneous reservoir production.

Note that Cases 5 and 6 are essentially the same. Figures 25 and 26 show that the
results of these 2 cases exactly overlap each other, which is the standard solution of an
infinite acting vertical well in a homogeneous reservoir mathematically described by
PD = − 1

2 Ei
(
− rD

4tD

)
. This, to a great degree, validates the solution accuracy of the BEM

model constructed in this work.
For Case 1, when the mobility of the fracture network is large, with the fracture

crossing section having primary fracture mobility (Mp), bi-linear flow with a pressure
derivative showing 1/4 slope is clearly seen in the very beginning, followed by linear
flow with a pressure derivative showing 1/2 slope. Following the linear flow, the pressure
derivative slope becomes slightly greater than 1/2, accounting for the influence of effective
SRV surrounding the fracture network area. Finally, the pressure derivative approaches
0.5 as normal. For Case 2, when the mobility of the fracture network is not so dramatic
with the fracture crossing section having Mp, the pressure derivative behavior becomes
more complicated than expected and requires further investigation in a future research
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effort. As the fracture crossing section with Ms applies, shown as the dashed curves in
Figures 25 and 26, it clearly exhibits that the complexity of the well response increased. In
general, because Ms < Mp, the flow process becomes more challenging for Cases 4 and 5,
resulting in less productive qD(tD) curves, as shown in Figure 27. This can be applied in
Barnett shale field production data analysis as a preliminary study before incorporating
shale gas desorption process in analysis. These outcomes confirm our speculation at the
time of designing the cases to be studied that the properties of the fracture crossing section
do play an important role as far as accurately evaluating the fracture network contribution
to fluid flow is concerned.
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General speaking, the large difference among those derivative curves offers a great
opportunity to characterize the fracture network and identify the conductive nature of both
the primary and secondary fractures. The results provide valuable information that needs
to be studied further. Due to the limitation of field information provided in the work of
Fisher et al. [36], exemplifying a general solution coverage in Figures 25–27 can be regarded
as satisfactory.

5. Conclusions

Based on the study, the following conclusions can be drawn:
A general computing framework has been developed using the BEM strategy to

address the need for describing the complicated geological features of actual heterogeneous
reservoirs. This strategy solves the transient behaviors of a complex heterogeneous reservoir
with two unique features; one is that the regionalization of each irregular simulation domain
is based on the need for describing the geologically heterogeneous feature of local regions
of interest, and the other is that the BEM method can handle the complicated boundary
shapes and is able to generate solutions with near analytical accuracy.

By applying BEM, boundary discretization and approximation are only made on
the boundary enclosing the specific flow domain with uniform fluid/rock properties.
No further gridding or sub-partition inside the domain is necessary to further improve
solution accuracy. Problems of grid orientation, grid size, and other numerical challenges
encountered in other simulation methods are largely eliminated. In addition, numerical
solutions are pursued in the Laplace domain by taking numerical Laplace transforms, and
thereby, the simulation scheme is freed from time step restriction. This strategy helps reduce
computational costs and models the physics of fluid flow in heterogeneous reservoirs more
efficiently and reliably.

An important observation from the simplified fracture network modeling after a
well-known field case study confirmed that, not only the exemplified complicated fracture
network can be accurately modeled semi-analytically, but also the properties of the fracture
crossing section do play an important role as far as the fracture network contribution to fluid
flow is to be evaluated more reliably with confidence. The exemplification of the empirical,
complicated fracture network modeling indicates a significant technical advancement.

This BEM-based technology has great capability and is advantageous in modeling
complex geological features of heterogeneous reservoirs, such as naturally fractured reser-
voirs, fluvial reservoirs with wandering sandbars and channels, fully compartmentalized
reservoirs, isolated fracture networks, and reservoirs produced by multi-stage fractured
horizontal wells with near-fracture heterogeneities, etc. The simulation technology in
this technical domain can be significantly expanded, based on the new realization and
understanding achieved from this work. Currently, only single-phase flow is studied in this
work. Future study will focus on multiphase flow and phase-behavior integration under
complicated scenarios using BEM strategy.

Aiming at reducing the technical gap between reservoir engineering practice and
simulation capacity, the work conducted in this research demonstrates the significance
of adapting the BEM strategy in next-generation reservoir simulation practice due to
its flexibility in handling reservoir heterogeneity, analytical solution accuracy, and high
computing efficiency.

What has been achieved in this work can be categorized as: 1. Providing a general
theoretical framework in detail, with proven solutions for real field cases and potential
scenarios, to handle the complexity in reservoir–well system modeling; 2. Showcasing the
accurate and reliable modeling of reservoir heterogeneity and complex natural fracture
network systems semi-analytically; and 3. Demonstrating and pointing out the future of
next-generation reservoir simulation by adapting BEM strategy, mainly due to its identified
flexibility, powerfulness, and accuracy in complicated reservoir heterogeneity simulation.
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Nomenclature

ct =total compressibility of reservoir, 1/Pa
Cs =storativity, 1/Pa
CR =diffusivity, m2/s
G =free-space Green’s function
h =reservoir vertical thickness, m
k =permeability, m2

L =length, m
L f =fracture half-length, m
M =mobility, m2/Pa·s
n =the outward-pointing normal on a boundary element
N =discretized number of boundary element for a flow domain

Ne
=discretized number of boundary element for a reservoir outer boundary
directly surrounding the outer region

Nw =number of sources/sinks in a flow domain
p =pressure, Pa
∆p = p− pi, Pa
q =rate of source/sink, m3/s
qw =producing rate of well, m3/s
s =Laplace variable
t =time, s
x =horizontal coordinate, m
x′ =x coordinate of the source/sink point, m
y =horizontal coordinate, m
y′ =y coordinate of the source/sink point, m
ξ =local coordinate for boundary element, m
ζ =local coordinate for boundary element, m
η =reservoir diffusivity, m2/s
µ =fluid viscosity, Pa·s
τ =time variable, s
φ =porosity of the reservoir, fraction
δ =the Dirac delta function

θ
=included angle between two boundary elements, or the term defined in
Equation (3)

Θ̂ =the function term defined in Equation (A23)
Θ̃ =the function term defined in Equation (A24)
Ω =locally homogeneous domain
Γ =enclosed boundary for domain Ω
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Γouter =reservoir outer boundary
k =the k-th boundary element
Subscripts
e =boundary related term
i =initial
j =the j-th flow domain
k =the k-th boundary element
m =reservoir matrix
p =primary fractures
ref =reference system
s =secondary fractures
D =dimensionless term
SRV =stimulated reservoir volume

Appendix A. Dimensionless Terms Defined

Dimensionless pressure and dimensionless time are defined in terms of reference rock
and fluid properties:

pD =
2πkre f h
(qµ)re f

∆p, (A1)

tD =
kre f t

(φµct)re f l2 , (A2)

where the reference properties of rock/fluid are based on the referenced reservoir system,
and the characteristic length, l, can be randomly defined.

Dimensionless rate of source/sink is defined under a constant reference rate, qre f

qD =
q

qre f
. (A3)

Dimensionless x- and y-coordinates are defined as:

xD =
x
l

, (A4)

yD =
y
l

. (A5)

Dimensionless mobility ratio of each region is based on the reference mobility:

Mj

Mre f
=

(
k
µ

)
j(

k
µ

)
re f

, j ∈ [1, 8]. (A6)

Dimensionless storativity of each region is also based on the reference storativity:

Csj

Csre f
=

(φct)j

(φct)re f
, j ∈ [1, 8]. (A7)

Dimensionless diffusivity ratio is:

CRj

CRre f
=

(
M
Cs

)
j(

M
Cs

)
re f

, j ∈ [1, 8]. (A8)
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Dimensionless well-rate under constant bottom flowing pressure is defined as:

qwD =
qwµre f

2πkre f h∆pw f
. (A9)

Appendix B. Pressure Solution Derivation of the Outer Region

It is schematically shown in Figure A1 that Region 8 is a multiply connected domain
with complex internal interfaces and with an outer no-flow boundary that directly sur-
rounds this region. From the perspective of Region 8, the other 7 regions behave as if they
were “holes” physically extracted out of the original reservoir with their untamed pressures
and pressure gradients existing along the boundaries exerted with this region.
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The following step is to fictitiously divide Region 8 into several simple domains by
introducing necessary auxiliary curves. It is shown in Figure A2 that, by introducing
auxiliary lines AB and CD, as well as MN and PQ, with a negligible spanning distance
as ε→ 0 , Region 8 becomes a simply connected domain with an interface/boundary
expressed as Γ8, which is:

Γ8 = ΓAB + (Γouter − Γ2,outer) + (Γ2 − Γ2,outer) + ΓMN + ΓNRSP + ΓPQ + ΓCD + Γ1. (A10)

With the boundary given by Equation (A10), pressure within this region, similar to
Equation (2), now can be written as:

θ8

2π
pD8(xD, yD, tD) =

∫ tD

0


∫

ΓAB
ϑ8dΓ +

∫
Γouter−Γ2,outer

ϑ8dΓ +
∫

Γ2−Γ2,outer
ϑ2dΓ +

∫
ΓMN

ϑ8dΓ

+
∫

ΓNRSP
ϑidΓ +

∫
ΓPQ

ϑ8dΓ +
∫

ΓCD
ϑ8dΓ +

∫
Γ1

ϑ1dΓ +
Nw8
∑

k=1
qD8,kG8

 dτ, (A11)

where θ8 has the same definition as:

θ8 = 2π i f (x, y) ∈ Ω8
θ8 = θ8 i f (x, y) ∈ Γ8

, (A12)

and

ϑj =
M8

Mre f

Csre f

Cs8

(
G8

∂pDj

∂n
− pDj

∂G8

∂n

)
j ∈ [1, 8], (A13)
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and i ⊆ {3, 5, 6, 7}, one may referring to Figure 1 for the details of the regions defined.
The subscript “i” in Equation (A11) represents the regions that connect to Region 8 with the
interface that is a portion of the cross-like ΓNRSP.
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The pressure expression in Equation (A11) can be further simplified because of the
fact that the sum of the four-line integrals—integration along line AB, CD, MN, and
PQ—practically equals zero. For Region 8, the outward-pointing normals on lines AB
and CD, and on MN and PQ, are opposite of each other. Since the distance ε between the
lines is assumed to be negligible, the fluid leaving AB (CD) is entering CD (AB), so that the
rate (pressure gradient) must be the same, which makes∫

AB
ϑ8dΓ = −

∫
CD

ϑ8dΓ, (A14)

∫
MN

ϑ8dΓ = −
∫

PQ
ϑ8dΓ. (A15)

Assuming that the pressure gradient, from the perspective of each of the seven regions,
on the interfaces connected to Region 8 hydraulically, is pointing consistently to the outward
normal direction, the ∂p

∂n or ∂G
∂n on the same boundary interface is then pointing to the inward

normal direction, from the perspective of Region 8. A “negative” sign, therefore, should be
added to curve integrals integrated along (Γ2 − Γ2,outer), Γ1, and ΓNRSP for Equation (A11).
Now, pressure solution within Region 8 becomes

θ8

2π
pD8(xD, yD, tD) =

∫ tD

0


∫

Γouter−Γ2,outer
ϑ8dΓ−

∫
Γ2−Γ2,outer

ϑ2dΓ−
∫

ΓNRSP
ϑidΓ

−
∫

Γ1
ϑ1dΓ +

Nw8
∑

k=1
qD8,kG8

dτ. (A16)

Appendix C. Pressure Solution in Discrete Form

As shown in Figure A3, Γj (j ∈ [1, 7]) is respectively discretized into Nj boundary
elements, and (Γouter − Γ2,outer) is discretized into Ne boundary elements. Applying the
discretization to Equations (2) and (5), the pressure solution within each region can be
expressed in its discrete form consisting of the integrals of all the boundary elements
discretized along its corresponding boundary.
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with 

𝜃𝑗
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Pressure in Region 1 to 7 in Discrete Form

The contour integral of Equation (2) is now written in discrete form, which gives

θk
j

2π
pDj(xD, yD, tD) =

∫ tD

0

 Mj

Mre f

Csre f

Csj

 Nj

∑
k=1

∂pk
Dj

∂n

∫
Γk

j

GjdΓ−
Nj

∑
k=1

pk
Dj

∫
Γk

j

∂Gj

∂n
dΓ

+

Nwj

∑
k=1

qDj,kGj

dτ, (A17)

with
θk

j = 2π i f (x, y) ∈ Ωj

θk
j = π i f (x, y) ∈ Γj

j ∈ [1, 7]; k ∈
[
1, Nj

]
. (A18)

In Equation (A17), the superscript “k” for pressure stands for the k-th boundary ele-
ment of Γj. As spatial pressure and pressure gradient along each element are approximated
as being constant, we have them on the k-th boundary element of Γj as

pDj(xD, yD, tD) ≈ pk
Dj(tD), f or (xD, yD) ∈ Γk

j , (A19)

∂pDj

∂n
(xD, yD, tD) ≈

∂pk
Dj

∂n
(tD), f or (xD, yD) ∈ Γk

j . (A20)

The evaluation of line integrals, which are free-space Green’s functions and their
derivatives integrated along each boundary element, is tedious and inconvenient as the
integration path spans two dimensions and the slope of each element is different. To avoid
this difficulty and also help attain consistent and high computing accuracy, a general,
local coordinate system is defined, based on the element on which the spatial integration
is performed.

Figure A4 illustrates the global Cartesian coordinate system, xOy, and the local Carte-
sian coordinate system for the k-th element of Γj, ξk

j Ok
j ζk

j . The locations of the starting node

and ending node of the k-th element are marked as (xk
nod,j, yk

nod,j) and (xk+1
nod,j, yk+1

nod,j) in the

global coordinate system. The local coordinate has the element to lie on its ξk
j -axis, has the

included angle ∂k
j between x-axis and ξk

j -axis, and has its origin Ok
j in the global coordinate



Minerals 2022, 12, 663 29 of 31

system at (g, h). From the perspective of this local coordinate system, any point with x-
and y-coordinates in the global coordinate system now has ξk

j - and ζk
j -coordinates as

ξk
j = (x− g) cos ∂k

j + (y− h) sin ∂k
j , (A21)

ζk
j = (y− h) cos ∂k

j − (x− g) sin ∂k
j , (A22)

with the defined local coordinate system and Equation (A21) and Equation (A22), the line
integrals in Equation (A17) now can be evaluated analytically, which is

Θ̂k
j (xD, yD, x′D, y′D, tD, τD) =

∫
Γk

j
GjdΓ=

∫
Γk

j

1

4π
CRj

CRre f
(t−τ)D

exp

− (x−x′)2
D+(y−y′)2

D

4
CRj

CRre f
(t−τ)D

dΓ

=
∫ ξk+1

nod,j

ξk
nod,j

1

4π
CRj

CRre f
(t−τ)D

exp

− (ξk
j−ξ ′

)2

D
+
(

ζk
j−0

)2

D

4
CRj

CRre f
(t−τ)D

dξ ′

= 1

4
√

CRj
CRre f

π(t−τ)D

·


erf

 (
ξk+1

nod,j−ξk
j

)
D

2
√

CRj
CRre f

(t−τ)D


−erf

 (
ξk

nod,j−ξk
j

)
D

2
√

CRj
CRre f

(t−τ)D




· exp

 (
ζk

j

)2

D

4
CRj

CRre f
(t−τ)D


(A23)
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Θ̃k
j (xD, yD, x′D, y′D, tD, τD) =

∫
Γk

j

∂Gj
∂n dΓ

= −
ζk

j

2
CRj

CRre f
(t−τ)D

1

4
√

CRj
CRre f

π(t−τ)D


erf

 (
ξk+1

nod,j−ξk
j

)
D

2
√

CRj
CRre f

(t−τ)D


−erf

 (
ξk

nod,j−ξk
j

)
D

2
√

CRj
CRre f

(t−τ)D




erf

 (
ξk

nod,j−ξk
j

)
D

2
√

CRj
CRre f

(t−τ)D

.
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with the analytical evaluation of line integrals; the pressure solution within Region j
( j ∈ [1,7]) can be expressed as:
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θk
j

2π
pDj(xD, yD, tD) =

∫ tD

0

 Mj

Mre f

Csre f

Csj

 Nj

∑
k=1

∂pk
Dj

∂ζk
j

Θ̂k
j −

Nj

∑
k=1

pk
DjΘ̃

k
j

+

Nwj

∑
k=1

qDj,kGj

dτ, (A25)

Pressure in Region 8 in Discrete Form

Using similar procedures as those we have taken for the pressure in the first seven
regions, the pressure solution within Region 8 by Equation (5) can also be expressed in
discrete form, which yields:

θk
8

2π pD8(xD, yD, tD) =

M8
Mre f

Csre f
Cs8



∫ tD
0
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∑
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8
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∑
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D8Θ̃k
8

]
dτ

−
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0
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D2
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2
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∑
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pk
D2Θ̃k

8

]
dτ

−
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0

[
NNRSP

∑
k=1

∂pk
Di

∂ζk
i

Θ̂k
8 −

NNRSP
∑

k=1
pk

DiΘ̃
k
8

]
dτ

−
∫ tD

0

[
N1
∑

k=1

∂pk
D1

∂ζk
1

Θ̂k
8 −

N1
∑

k=1
pk

D1Θ̃k
8

]
dτ


+
∫ tD

0

Nw8
∑

k=1
qD8,kG8 dτ

(A26)

where,
θk

8 = 2π i f (x, y) ∈ Ω8
θk

8 = π i f (x, y) ∈ Γ8
k ∈ [1, Ne + N2,8 + NNRSP + N1]. (A27)

On the right hand side of Equation (A26), the first term accounts for line integrals
along (Γouter − Γ2,outer), the second along (Γ2 − Γ2,outer), the third along the boundary
of the cross-like ΓNRSP, and the fourth along Γ1. The total number of boundary el-
ements for (Γ2 − Γ2,outer) is denoted by N2,8, and for ΓNRSP is denoted by NNRSP as
NNRSP = N3 + N5 + N6 + N7 − N4.
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