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Abstract: We describe occurrences of platinum-group minerals (PGM) and an uncommon mineral
enriched in Cl, and provide a brief review of Cl-bearing minerals associated with basic–ultrabasic
complexes. An unusual phosphohedyphane-like phase (~30 µm), close to CaPb4(PO4)3Cl, occurs
in one of the PGM-bearing veins of massive sulfides in the Monchepluton layered complex, Kola
Peninsula, Russia. These veins consist of varying amounts of pyrrhotite, pentlandite, chalcopyrite,
pyrite and accessory grains of galena; they are fairly abundant in the heavy-mineral concentrate, as
are small (<0.1 mm) grains of PGM: michenerite, sperrylite, Bi-enriched members of the merenskyite–
moncheite series and kotulskite, also rich in Bi. The PGE mineralization is attributed to a low-
temperature deposition at the hydrothermal stage. The pyromorphite–phosphohedyphane solid
solution likely formed as a secondary phase under conditions of a progressive build-up of oxygen
fugacity via oxidation reactions of a precursor grain of galena and involving Ca, as an incompatible
component of the sulfides, in a medium of residual fluid enriched in Cl.

Keywords: pyromorphite–phosphohedyphane solid solution; chlorine; Cl-rich compounds; platinum-
group minerals; massive sulfide veins; basic–ultrabasic complexes; layered intrusions; Fennoscandian
Shield; Kola Peninsula; Russia

1. Introduction

A detailed investigation of ore veins sampled at the site of long-abandoned mine adits
in the Monchepluton layered basic–ultrabasic complex has led to the discovery of a member
of the pyromorphite–phosphohedyphane solid solution among the ore constituents. As
a chlorine-bearing member of the apatite supergroup, its presence in a vein of pyrrhotite,
pentlandite, chalcopyrite, pyrite, galena and platinum-group minerals (PGM) raises ques-
tions about the role of Cl and other volatiles in mineralized ultrabasic suites. Our aims
are to describe the occurrence, documented for the first time in a vein of massive Cu–Ni
sulfides bearing platinum-group elements (PGE) at Mount Nittis, in the Monchepluton
layered mafic–ultramafic complex of Paleoproterozoic (~2.5 Ga) age [1,2]. We explore what
is known about the pyromorphite–phosphohedyphane solid-solution series and document
the associated PGM. We believe that this phase is significant not only as a new representa-
tive of Cl-bearing minerals associated with ore zones, but also as a monitor of a progressive
build-up in levels of oxygen fugacity (f O2) during ore formation.

Geological Background

The Monchepluton layered complex belongs to an extensive group of Paleoproterozoic
layered intrusions in the Fennoscandian Shield, e.g., [2]. It is located at the boundary
of the Imandra–Varzuga zone of the Polmak–Pasvik–Pechenga–Imandra–Varzuga rift of
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Paleoproterozoic age with the Archean Kola–Norwegian terrane of the Kola Province
(Figure 1).
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which hosts the Sopcheozyorskoe chromite deposit [8], may correspond to the location of 
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Figure 1. Location of the Monchepluton layered complex shown in the context of tectonic settings in
the northeastern part of the Fennoscandian Shield (after [3] and references therein).

The Monchepluton complex consists of sequences of dunite–harzburgite–orthopyroxen
ite–gabbronorite [4–7]. Seven divisions are recognized: the Dunite block, mounts Nittis,
Kumuzhya, and Travyanaya along a northeasterly trend, and mounts Sopcha, Nyud, and
Poaz on an easterly trend (Figure 2). The Dunite block, which hosts the Sopcheozyorskoe
chromite deposit [8], may correspond to the location of the magma-feeder channel [5]. This
block represents a podiform or core-like zone of olivine and olivine–chromite cumulates
formed close to the nexus of the boomerang-shaped structure [5].
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three samples (10–15 kg each) of Ni–Cu–PGE ores collected at old mine adits (67°55′18.4″ 
N 32°46′46.6″ E; 67°55′25.1″ N 32°46′27.3″ E; 67°55′31.7″ N 32°46′44.9″ E) known histori-
cally and built during the years 1933–1936 (Figure 2). The fragments of ore are dense, 
massive, and coated by an oxidized rind (Figure 3a,b). They consist of pyrrhotite, pent-
landite, chalcopyrite and less-abundant pyrite, in varying proportions. The 
heavy-mineral concentrates studied consist of ~10 to 100 micrometer-sized fractions of 
galena, grains of platinum-group minerals (PGM), followed by minor amounts of barite, 

Figure 2. Schematic geological map of the Monchepluton complex ([4], with findings of V.V. Knauf
and N.S. Guseva), showing the sampling location in the present investigation.

2. Materials and Methods

Our materials consist of ore samples and heavy-mineral concentrates obtained from
three samples (10–15 kg each) of Ni–Cu–PGE ores collected at old mine adits (67◦55′18.4′′ N
32◦46′46.6′′ E; 67◦55′25.1′′ N 32◦46′27.3′′ E; 67◦55′31.7′′ N 32◦46′44.9′′ E) known historically
and built during the years 1933–1936 (Figure 2). The fragments of ore are dense, massive,
and coated by an oxidized rind (Figure 3a,b). They consist of pyrrhotite, pentlandite, chal-
copyrite and less-abundant pyrite, in varying proportions. The heavy-mineral concentrates
studied consist of ~10 to 100 micrometer-sized fractions of galena, grains of platinum-group
minerals (PGM), followed by minor amounts of barite, and remnant grains of base-metal
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sulfides, mostly pentlandite. By interpolation, the density of our member of the apatite
supergroup is approximately 6.5 g/cm3.
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Figure 3. Photographs of fragments of base-metal ores sampled from sulfide veins of the Moncheplu-
ton complex. The samples MNP—3 and 4 are shown in (a,b), respectively.

The phosphohedyphane-type phase occurs in a single subhedral grain that is small
(~30 µm) and cracked due to its brittleness (Figure 4a). It was found in one of the veins
sampled (Figure 2). Bismuthotelluride species of Pd and Pt and sperrylite, present in the
concentrates, are consistent with the findings of a previous study [9].

We employed scanning-electron microscopy (SEM) and energy-dispersive analysis
(EDS) conducted at an accelerating voltage of 20 kV and a beam current of 1.6 nA, with a
beam size of ~1 µm, using a MIRA 3 LMU (Tescan Orsay Holding, Brno, Czech Republic)
SEM with an attached INCA Energy 450 XMax 80 (Oxford Instruments Nanoanalysis,
Wycombe, UK) microanalysis EDS system at the Institute of Geology and Mineralogy
(the Analytical Center for Multi-Elemental and Isotope Studies), Siberian Branch, Russian
Academy of Sciences, Novosibirsk, Russia. The standards used were FeS2 (S), PtAs2 (As),
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PbTe (Pb and Te), wollastonite (Ca), synthetic GaP (P), NaCl (Cl) and pure metals (Fe, Co,
Ni, Cu, Rh, Pd, Pt and Bi). For the analytical signal of S, Fe, Ni, Cu, Ca, P and Cl, the
K family of peaks was used, and for the other elements, the L family. The use of the L
family for Pt and Bi avoids the mutual overlaps of their M peaks. Minimum detection-
limits (3σ criterion) of the elements (wt.%) were found to be 0.1–0.2 for S, Fe, Co, Ni, Cu,
Ca and Cl; 0.2–0.4 for As, Pd and Te; and 0.4–0.7 for Pt and Bi. The analytical error for
the main components did not exceed 1–2 relative % and satisfied the requirements for a
quantitative analysis.
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Figure 4. SEM images showing selected grains of phosphohedyphane-like phase labeled Phs (a),
sperrylite, Spy (b,d), and michenerite, Mch (c,d), which are present in heavy-mineral concentrates
from sulfide veins of the Monchepluton complex.

3. Results
The Pyromorphite–Phosphohedyphane Solid Solution

Phosphohedyphane, ideally Ca2Pb3(PO4)3Cl, a member of the apatite supergroup [10],
was discovered in the Capitana mine, Atacama Province, Chile, where it is commonly en-
countered in zones of oxidized Pb-bearing ores [11]. Phosphohedyphane and pyromorphite,
ideally Pb5(PO4)3Cl, seem to form a complete solid solution, as demonstrated by a compi-
lation of literature data [11,12]. Values of the ratio 5 × Ca/(Ca + Pb) range from 0 to 2 over
that interval, and our specimen has a value of 0.78. Values between 2 and 5, i.e., intermedi-
ate compositions between phosphohedyphane and chlorapatite, Ca5(PO4)3Cl, are not found
in nature [11]. Although we do not have supporting structural data, we can assume that
our phase, (Pb4.13Ca0.76)Σ4.90(PO4)3Cl0.95 (Table 1), (Pb1.13Ca0.76)Σ1.89Pb3(PO4)3Cl0.95 or, in
general terms, (Pb,Ca)2Pb3(PO4)3Cl, is a member of the phosphohedyphane–pyromorphite
series, in which Pb2+ enters the Ca site in accordance with the formula (Ca,Pb)2Pb3(PO4)3Cl.
It displays a characteristic EDS spectrum (Figure 5). A complete solid-solution series
probably exists between phosphohedyphane and hedyphane, Pb3Ca2(AsO4)3Cl. Phospho-
hedyphane is the phosphate analog of hedyphane, i.e., the long-established arsenate [13],
and the Cl analog of fluorphosphohedyphane [11]. In an arsenic-bearing system, interme-
diate members are complex solid solutions involving components of phosphohedyphane,
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hedyphane and mimetite, Pb5(AsO4)3Cl [14–16]. Members of such a series are developed,
for example, in the oxidized zone at the Preguiça mine, Portugal [17]. As in that case, the
phase found at Monchepluton is a secondary mineral formed by oxidation of primary
Pb-rich precursors.

Table 1. Composition of the phosphohedyphane-type phase from the Monchepluton layered complex,
Kola Peninsula.

Wt.% apfu

CaO 3.54 Ca 0.76
PbO 76.74 Pb 4.13
P2O5 15.67 Σ 4.90

Cl 2.81
O≡Cl 0.64 P 2.65
Total 98.12 Cl 0.95

Note: Results of quantitative SEM/EDS analysis are expressed in weight %. Values of atoms per formula unit
(apfu) are based on a value of 12 oxygen atoms per formula unit.
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Monchepluton complex.

The Platinum-Group Minerals

We have identified five species of PGM in the samples investigated (Table 2). Sperrylite
(ideally PtAs2), both S-bearing (up to 0.63 wt.% S) and essentially devoid of S, is relatively
common, as well as michenerite (PdBiTe). Members of the moncheite Pt(Te,Bi)2–merenskyite
Pd(Te,Bi)2 series are subordinate, and kotulskite Pd(Te,Bi) is rare in our samples.

A relative enrichment in Bi is noteworthy; it is observed in compositions of all species
of the Pd–Pt bismuthotellurides (Table 2; Figures 6 and 7). Note that Te occupies almost
entirely the Te site, and makes up a substantial portion (up to ~20%) of the Bi site (Figure 6).
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Table 2. Compositions of platinum-group minerals in sulfide veins of the Monchepluton layered
complex.

Pt Pd Te Bi As S Total Pt Pd Pt + Pd Te Bi Te + Bi As S

Wt.% apfu

1 Spy 56.38 bdl bdl bdl 44.22 bdl 100.6 0.99 – 0.99 – – – 2.01 0.00
2 55.45 bdl bdl bdl 43.77 bdl 99.22 0.98 – 0.98 – – – 2.02 0.00
3 56.45 bdl bdl bdl 44.29 bdl 100.74 0.99 – 0.99 – – – 2.01 0.00
4 54.93 bdl bdl bdl 43.65 0.53 99.11 0.96 – 0.96 – – – 1.98 0.06
5 55.18 bdl bdl bdl 42.97 0.36 98.51 0.98 – 0.98 – – – 1.98 0.04
6 54.47 bdl bdl bdl 43.80 0.48 98.75 0.95 – 0.95 – – – 2.00 0.05
7 54.93 bdl bdl bdl 42.54 0.53 98.00 0.98 – 0.98 – – – 1.97 0.06
8 54.59 bdl bdl bdl 42.88 0.63 98.10 0.96 – 0.96 – – – 1.97 0.07
9 Ktu Bdl 38.92 30.25 29.22 bdl bdl 98.39 – 0.98 0.98 0.64 0.38 1.02 – –
10 Mch Bdl 24.56 32.80 41.78 bdl bdl 99.14 0.00 1.01 1.01 1.12 0.87 1.99 – –
11 Bdl 24.52 33.66 41.03 bdl bdl 99.21 0.00 1.00 1.00 1.15 0.85 2.00 – –
12 Bdl 24.72 33.22 41.53 bdl bdl 99.47 0.00 1.01 1.01 1.13 0.86 1.99 – –
13 3.82 22.58 28.29 44.49 bdl bdl 99.18 0.09 0.96 1.04 1.00 0.96 1.96 – –
14 4.54 21.31 28.04 45.37 bdl bdl 99.26 0.11 0.91 1.02 1.00 0.99 1.98 – –
15 3.09 22.56 28.16 45.24 bdl bdl 99.05 0.07 0.96 1.03 1.00 0.98 1.97 – –
16 3.41 22.35 28.42 46.12 bdl bdl 100.30 0.08 0.94 1.02 1.00 0.99 1.98 – –
17 1.86 23.99 32.29 40.59 bdl bdl 98.73 0.04 0.99 1.03 1.11 0.85 1.97 – –
18 bdl 24.41 33.53 41.18 bdl bdl 99.12 0.00 1.00 1.00 1.14 0.86 2.00 – –
19 bdl 24.05 28.48 45.60 bdl bdl 98.13 0.00 1.02 1.02 1.00 0.98 1.98 – –
20 bdl 23.71 28.76 45.85 bdl bdl 98.32 0.00 1.00 1.00 1.01 0.99 2.00 – –
21 bdl 24.34 31.82 42.66 bdl bdl 98.82 0.00 1.01 1.01 1.10 0.90 1.99 – –
22 5.59 20.50 27.09 45.61 bdl bdl 98.79 0.13 0.89 1.02 0.98 1.00 1.98 – –
23 2.06 23.71 29.87 43.39 bdl bdl 99.03 0.05 0.99 1.04 1.04 0.92 1.96 – –
24 5.76 20.91 26.83 46.13 bdl bdl 99.63 0.13 0.90 1.03 0.96 1.01 1.97 – –
25 Mon 31.89 5.50 45.19 16.49 bdl bdl 99.07 0.76 0.24 1.00 1.64 0.37 2.00 – –
26 36.29 1.76 40.65 19.33 bdl bdl 98.03 0.91 0.08 0.99 1.56 0.45 2.01 – –
27 35.47 1.94 41.01 20.01 bdl bdl 98.43 0.88 0.09 0.97 1.56 0.47 2.03 – –
28 Mrk 9.39 21.04 52.96 16.58 bdl bdl 99.97 0.20 0.80 1.00 1.68 0.32 2.00 – –
29 6.05 22.64 52.16 17.54 bdl bdl 98.39 0.13 0.87 0.99 1.67 0.34 2.01 – –
30 5.36 23.55 52.88 16.52 bdl bdl 98.31 0.11 0.89 1.01 1.68 0.32 1.99 – –

Note: Results of quantitative SEM/EDS analyses are listed in weight %. The atomic proportions are based on a
total of 3 atoms per formula unit (apfu) for sperrylite (Spy), michenerite (Mch), moncheite (Mon) and merenskyite
(Mrk), and on a total of 2 apfu for kotulskite (Ktu). bdl: below detection limit.
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4. Discussion

The presence of pyromorphite–phosphohedyphane solid solution in association with
zones of massive PGE-bearing Cu–Ni sulfide ore provides a direct indication of the role of Cl
at the hydrothermal stage in the Monchepluton cumulates. The abundance of galena, Bi-, Te,
and As-enriched species of Pd and Pt is consistent with deposition from hydrothermal fluids
late in the crystallization history of the complex. The observed assemblages enriched in Bi
imply a relative decrease in temperatures of crystallization of the bismuthotelluride species.
Experimental results [18] indicate that michenerite is stable below 500 ◦C, whereas the
melting point of the end member of the merenskyite series (740 ◦C) decreases to 500–525 ◦C
for the Bi-enriched phases having greater extents of Bi-for-Te substitution. Sperrylite is
also known to form at a postmagmatic hydrothermal stage in layered intrusions [19]. We
therefore presume that the phosphohedyphane-like phase represents a part of the late
Pb–S–Te–Bi–As-enriched assemblages deposited hydrothermally during the formation of
the sulfide veins.

In Table 3, we review [6,20–45] the occurrences of Cl-rich minerals known in basic–
ultrabasic complexes emplaced in different geological settings worldwide. These phases
include hydroxychlorides, such as (Fe,Mn)(OH)Cl and hibbingite (Fe2(OH)3Cl) from the
Sudbury complex, Canada, hibbingite in the Duluth layered complex, USA, members
of the hibbingite–kempite (Mn2(OH)3Cl) series, djerfisherite (K6(Fe,Cu,Ni)25S26Cl) and
thalfenisite, its thallium analog (Tl6(Fe,Ni)25S26Cl), pyrosmalite-(Fe) in the Noril’sk complex
of Russia, djerfisherite in the Guli and Yoko-Dovyren complexes, Russia, a penfieldite-type
phase (Pb2Cl3(OH)) in the Bushveld complex, South Africa, and unnamed Pd–Bi chlorides
from Noril’sk and Sudbury.
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Table 3. A review of various minerals and phases enriched in Cl from basic–ultrabasic complexes.

Minerals Complex, Locality Occurrence Comment References

Chlorapatite

Bushveld, South Africa Lower zone [20,21]
Stillwater, Montana, USA [21]

Koitelainen, Keivitsa-
Satovaara, Finland Cl-rich Amp [22]

Lukkulaisvaara, northern
Karelia, Russia Clap in Ol cumulates [23]

Kläppsjö, Sweden Gabbro Clap–PGM [24]
Kivakka, northern Karelia, Russia Lower zones Clap–PGM [25,26]

Monchepluton, Kola Peninsula, Russia
Mounts Nittis, Kumuzh’ya,
Travyanaya, Sopcha, Nyud

and Poaz

Clap in ultramafic-mafic
cumulates [6]

Noril’sk, Siberia, Russia Oktyabr’sky deposit Pd–Pt, Au–Ag atypical ore [27]

Cl-bearing Ap Yoko-Dovyren, Baikal region, Russia PGM-bearing horizon ≤2.42 wt.% Cl [28,29]

Cl-bearing mica Yoko-Dovyren, Baikal region, Russia PGM-bearing horizon ≤0.58 wt.% Cl [28,29]

Cl analog of
ferrokinoshitalite Yoko-Dovyren, Baikal region, Russia Pl-bearing peridotite [30]

Cl-rich annite Noril’sk, Siberia, Russia Oktyabr’sky deposit ≤7.54 wt.% Cl atypical ore [27]

Cl-rich hastingsite Noril’sk, Siberia, Russia Oktyabr’sky
deposit ≤4.06 wt.% Cl atypical ore [27]

“Ferro-chloro-
pargasite”

Lukkulaisvaara, northern Karelia, Russia Pegmatitic orthopyroxenite Fcprg–PGM [31,32]
Tudor, Ontario, Canada Gabbro [33]

Monchepluton, Kola Peninsula, Russia Gabbronorite, Mount Poaz [6]

Pd–Bi chlorides
Noril’sk, Siberia, Russia Ore-bearing zone [34]

Sudbury, Ontario, Canada Strathcona Deep Copper zone [35]

Hibbingite
Sudbury, Ontario, Canada Strathcona Deep Copper zone [36]
Duluth, Minnesota, USA Troctolite [37,38]
Noril’sk, Siberia, Russia Ore zone Solid solution with kempite [39]

Pyrosmalite-(Fe) Noril’sk, Siberia, Russia Oktyabr’sky, massive sulfide Pys-Fe–Tty [40]

Penfieldite-type
phase Bushveld, South Africa Merensky Reef With PGM in orthocumulate [41]

Djerfisherite
Noril’sk, Siberia, Russia Cu–Ni ores [42]

Guli complex, Polar Siberia, Russia Dunitic rocks [43]
Yoko-Dovyren, Baikal region, Russia Magnesian skarn Included in Spl, Tro [44]

Thalfenisite Noril’sk, Siberia, Russia Cu–Ni ores [45]

Note: Symbols used: Amp: amphibole, Clap: chlorapatite, Fcprg: ferro-chloro-pargasite, Ol: olivine, Pl: plagio-
clase, PGM: platinum-group minerals, Spl: spinel, Tty: tatyanaite, Tro: troilite.

On the basis of findings in the reviewed occurrences (Table 3), we infer that Cl-rich
compounds typically form at relatively low temperatures as a consequence of build-up in
levels of Cl attained locally during late or final stages of formation, or during stages of post-
magmatic alteration of the complexes. Chlorapatite, which is the most abundant expression
of Cl buildup, crystallized from pockets of intercumulus melts [6,21,25] or is a result of
phase transformations involving fluorapatite as a precursor phase [46]. In addition, Cl was
important in PGE remobilization in the Duluth complex, Minnesota, USA [47]. The amphi-
bole “ferro-chloro-pargasite” likely precipitated from a late phase of hydrous Cl-bearing
fluids (e.g., micro-inclusions hosted by PGM), or formed as a result of transformation
reactions, which involved a primary plagioclase during deuteric (autometasomatic) events
of alteration [6,31,32]. Many of the uncommon compounds rich in Cl likely formed from
residual droplets of highly fractionated melts or crystallized from remaining microvolumes
of aqueous hydrochloric solutions [41].

The Behavior of Cl during Crystallization of the Monchepluton Complex and the Origin of
Calcian Pyromorphite

A recent evaluation of geochemical trends and their link to compositions of rock-
forming silicate and oxide minerals at Monchepluton indicates that variations in apatite
differ from trends reported for other layered intrusions [6]. Chlorapatite (>6 wt.% Cl) is
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invariably abundant, and compositional variations in apatite are generally similar in all of
the geological divisions of the complex (i.e., the Mounts Nittis, Kumuzhya, Travyanaya,
Sopcha, Nyud and Poaz). No relationship exists between the Cl content of apatite and
the degree of magnesium enrichment in the coexisting magmatic silicates. Two fields of
apatite compositions are recognized: ≤3 wt.% and >6 wt.% Cl, which overlap extensively,
consistent with two generations of apatite. The first nucleated early during crystalliza-
tion of pockets of H2O-bearing intercumulus melts. An inferred stage of degassing of
the crystallizing melt likely caused a decoupling of Cl and F. Fluorine at Monchepluton
essentially remained in the melt, whereas Cl was partitioned efficiently to an H2O-bearing
fluid phase. As a result, at the early stage, the apatite incorporated combinations of the
components hydroxylapatite and fluorapatite, with a low content of Cl. At a late stage, chlo-
rapatite precipitated from a Cl-rich fluid. Consequently, “ferro-chloro-pargasite” (4.1 wt.%
Cl) formed via reactions of that fluid with plagioclase and pyroxene during an event of
autometasomatic alteration occurring in relatively evolved cumulates of gabbronoritic
sequences of the Poaz massif (Figure 2) [6].

Features of the geochemical behavior of Cl [6] are useful in recognizing a mode of
formation of the phosphohedyphane-like phase occurring in a sulfide vein of the Monchep-
luton complex. The investigated veins occur close to the nexus (Figure 2); they are repre-
sentative examples that belong to the entire system of steeply dipping veins of massive
sulfide ores (0.1 to 1.4 km long and up to 0.5 m in thickness, locally up to 2–3 m thick).
These veins presumably formed by remobilization of early occurrences of magmatic sulfide
melts, accumulating and filling the space along the system of early brittle faults developed
in the nexus region of the complex: [6] and references therein. In accordance with previous
observations at Monchepluton [6], we presume that Cl was locally abundant in a late fluid
during the formation of the sulfide Cu–Ni–PGE mineralization of the veins. We propose a
secondary origin, related to a low-temperature oxidation of a Pb-bearing precursor, pre-
sumably galena, to account for the presence of a pyromorphite–phosphohedyphane solid
solution at Monchepluton. This mechanism and mode of formation are consistent with
findings on related Cl-rich phosphates of Pb and Ca from other localities [11,17].

We believe that the lead-bearing phosphate likely formed at elevated levels of f O2 via
two-stage reactions of precursor grains of galena with components of the residual fluid
saturated with respect to an apatite-supergroup mineral and containing Ca (and minor Ba)
as incompatible components during crystallization of the sulfide ore:

2PbS + 3O2 → 2PbO + 2SO2 (1)

and
4CaO + 16PbO + 2P2O5 + Cl + 9O2 → 4[CaPb4(PO4)3Cl] (2)

Grains of barite, also present in the heavy-mineral concentrate of the veins, could well
form according to the following reaction: Ba + SO2 + O2 → BaSO4.

The inferred regime of progressive increase in f O2 is further corroborated by the
common occurrence of highly oxidized varieties of ochreous and porous ores, which
commonly accompany the primary sulfide ores in the veins at Monchepluton. A progressive
rise in intrinsic f O2 is also inferred for some other ultrabasic complexes in the Serpentinite
belt of the Kola Peninsula [48–50].

5. Conclusions

(1) We describe the occurrence of a pyromorphite–phosphohedyphane solid solution in
zones of massive PGE-bearing Cu–Ni sulfide mineralization in the Monchepluton
complex. An elevated level of Cl developed in the cumulates at the hydrothermal
stage and migrated along the system of early brittle faults.

(2) The phosphohedyphane-like phase is a member of the late Pb–S–Te–Bi–As-enriched
assemblages, which include Pd–Pt bismuthotellurides and sperrylite, all deposited
hydrothermally, from ~750 to below 500 ◦C, during the formation of the sulfide veins.
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(3) A secondary origin is inferred, involving a low-temperature oxidation of a Pb-bearing
precursor, presumably galena, to form grains of the phosphohedyphane-like phase.
This mechanism and mode of formation are consistent with findings on related Cl-rich
phosphates of Pb and Ca from other localities, which are reviewed.

(4) There was a progressive increase in f O2, in agreement with the abundance of oxidized
varieties of ores in association with primary ores in the veins at Monchepluton and at
other ultrabasic complexes of the Kola Peninsula.
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