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Abstract: In the age of big data, the prediction and evaluation of geological mineral resources have
gradually entered a new stage, intelligent prospecting. This review briefly summarizes the research
development of textual data mining and spatial data mining. It is considered that the current research
on mineral resource prediction has integrated logical reasoning, theoretical models, computational
simulations, and other scientific research models, and has gradually advanced toward a new model.
This type of new model has tried to mine unknown and effective knowledge from big data by
intelligent analysis methods. However, many challenges have come forward, including four aspects:
(i) discovery of prospecting big data based on geological knowledge system; (ii) construction of
the conceptual prospecting model by intelligent text mining; (iii) mineral prediction by intelligent
spatial big data mining; (iv) sharing and visualization of the mineral prediction data. By extending
the geological analysis in the process of prospecting prediction to the logical rules associated with
expert knowledge points, the theory and methods of intelligent mineral prediction were preliminarily
established based on geological big data. The core of the theory is to promote the flow, invocation,
circulation, and optimization of the three key factors of “knowledge”, “model”, and “data”, and to
preliminarily constitute the prototype of intelligent linkage mechanisms. It could be divided into
four parts: intelligent datamation, intelligent informatization, intelligent knowledgeization, and
intelligent servitization.

Keywords: the fourth paradigm; geological big data; prospecting prediction; intelligent algorithm

1. Introduction

With global informatization entering an advanced stage, the big data era is being
gradually embraced. With the rapid development of emerging technologies, such as cloud
computing and artificial intelligence, big data technologies and applications have seen
breakthroughs in diverse fields. Recently, journals, such as Nature and Science, have suc-
cessively published special issues on big data, putting forward relevant concepts including
“data is gold” and “data is science”. McKinsey, a globally renowned consulting company,
has stated the following: “Data has entered every industry and business scope, becoming
an essential productive factor. The discovery, mining, and application of big data will
contribute to new productivity growth and technological innovation” [1]. Besides the
4V characteristics of big data [2], geological big data have the following features: direc-
tion, space–time, diversity, polymorphism, causality, multisource, variability, uniqueness,
combination, heterogeneity, nonlinearity, sampling, randomness, fuzziness, scarcity, as-
sociation, and zonality. As a key component of geoscientific big data, geological big data
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contain unstructured, structured, and semistructured information from numerous subdisci-
plines including stratigraphy, sedimentology, geomorphology, geotectonics, paleontology,
mineralogy, mathematical geology, geochronology, cartography, petroleum geology, hy-
drogeology, and geothermal research. As a cross discipline between geological science
and mathematics, mathematical geology can be considered the “data science” aspect of
geological science.

In China, the applied research field of mathematical geology is the quantitative pre-
diction and evaluation of mineral resources, with the longest history, the widest aspects,
the most participants, and the most prominent achievements [3]. As the material basis
for human survival, mineral resources are not only the pillar for the development of an
information society, but also the premise for industrialization construction, playing a sig-
nificant and strategic role in promoting the development of the national economy. With
increasing demand for mineral resources, there are increasingly fewer surface-exposed and
shallow ores, adding to the challenges of prospecting. Countries around the world have
started exploring deep underground ore deposits, the success rate of which depends on the
in-depth study of metallogenic regularity and scientific research on the theory and methods
of mineral resource prediction and evaluation. Zhao reported that the introduction of
big data in the field of geosciences is an inevitable development trend, so as to leap from
“mathematical geology” to “digital geology”, and in order to conduct scientific quantitative
evaluation and analysis of prospecting prediction [4]. With the sharp growth in the volume
and complexity of geological big data, the current new challenge in intelligent prospecting
is how to expand the application of intelligent prospecting means from digital data to
textual, 2D, and 3D spatial data, based on geological expertise and experience, to ensure
the efficiency and precision of prospecting prediction. So far, few scholars have proposed
the theory and method of intelligent prospecting prediction that is based on geological big
data, and the technological process of intelligent prediction that is based on big data has
not yet been established.

Hence, from the perspective of textual and spatial big data mining, this study intended
to thoroughly and meticulously analyze problems and solutions of big data intelligent
prospecting prediction, to provide certain theoretical and technical support for the develop-
ment of intelligent prospecting prediction under the background of big data.

2. Development of Geological Big Data

As information technology is constantly changing in the big data age, the application
of geological big data and artificial intelligence has become a research hotspot in recent
years, which means that the ideas, technologies, and methods of big data in the information
age are gradually being successfully applied in the geological field. Currently, geologi-
cal archives, geological survey database, and geological document databases of various
countries have provided multilevel and all-round geological data, including textual and
spatial data, and mining models for unstructured, semistructured, and structured data.
Geological big data are a type of spatiotemporal big data, which are mainly generated in the
investigation, exploration, and corresponding geological scientific research processes in the
fields of basic geology, mineral geology, hydrogeology, engineering geology, environmental
geology, and hazardous geology; the data also come from the exploitation and utilization
of energy and mineral resources, the monitoring, prevention, and control processes of the
environment and disasters, and various space-based and air-based ground remote-sensing
observation activities. The approaches to obtain data include geophysics, geochemistry,
drilling, remote sensing, as well as various applications, such as mapping compiles, analyt-
ical calculation, analog simulation, prediction evaluation, and intelligent control, which
exist in multiple forms, such as texts, graphics, acoustic images, and specimens [5]. Hence,
how to effectively acquire, screen, sort, and excavate effective geological information from
massive and complicated big data to better serve geological construction is one of the major
research directions of many domestic scholars. With this research topic as the focus, some
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achievements have been made in the platform construction and data processing methods
for geological big data.

Studies on geological big data strongly depend on the construction of big data plat-
forms. Thus, the organization and implementation of geological and spatiotemporal big
data relationships between various topics largely depend on the solutions and overall
architecture of big data platforms, the secure storage of big data, indexing, scheduling
mechanisms, engine methods and technologies of big data, management function moni-
toring, as well as the supercomputing of early warning and control data links. Countries
around the world are vigorously promoting the construction and development of geological
big data platforms. For instance, in 2007, the European Union (EU) released the “Act of In-
frastructure for Spatial Information in the European Community”, enabling environmental
spatial data to be shared across the EU. Subsequently, The National Science Foundation
of the United States officially launched the “Earth Cube” project in 2012, which success-
fully integrated a large amount of geological data, as well as relevant information and
knowledge. Characterized by openness, transparency, and strong comprehensiveness, the
“Earth Cube” project substantially improves the flow of knowledge and communication [6].
Peter Baumann et al. from the University of Bremen in Germany successfully developed
EarthServer for an earth data analysis engine in 2015, which includes functions such as
data access, data analysis, data retrieval, and information extraction, and achieved an
open, cross-platform, and easy-to-operate geological data access mechanism [7]. Currently,
many countries have established their own geological big-data-sharing platforms (such
as Geo Connections in Canada and Geospatial One-Stop in the United States), and have
realized effective search, access, and reception of geospatial information, thus assisting
government sectors of national, provincial, and other levels in decision-making. In 2012, the
Geological Information Technology Laboratory of Ministry of Land and Resources success-
fully established GeoBDA, a technical experimental platform for studying geological big
data technologies [8]. In 2013, Hadoop-distributed infrastructure was gradually upgraded
to standard storage architecture for geological big data [9]. Simultaneously, developers
employed the MapReduce programming model to significantly enhance the computing
efficiency of massive geological datasets through parallel computing [10–12]. In 2014,
China’s first independently developed geological big data platform began trial operation
at Tibet Geological Survey Academy. Subsequently, China Geological Survey released
an intelligent spatial data platform in 2016. In 2018, the Chinese Academy of Sciences
launched a strategic scientific research project known as CASEarth, which is committed
to supporting major scientific discoveries and macro decisions. In 2019, the Deep-time
Digital Earth (DDE), led by Chinese academics Chengshan et al., which was integrated
with the ideas provided by 254 scientists from 24 countries, was officially launched. Its
five scientific objectives include reconstructing earth science knowledge system in big data,
building the largest multisource heterogeneous data system for earth science, creating the
world’s leading one-stop processing analysis platform for earth science, solving major
scientific problems of earth science driven by big data, and forming a deep communication
integration platform of the digital earth, so as to create the first “Geological Google”.

Regarding the intelligent analysis and deep mining methods for geological big data,
Chinese researchers have made remarkable achievements in the acquisition, organization
and management, preprocessing, analysis, and visualization fields; the most representative
ones include geological anomaly extraction based on mining algorithms; research and
development into geological big data integration and platform architecture; an intelligent
retrieval system and virtual visualization technology for geological big data. When com-
bined with the service demands of practical applications, the geological big data analysis
technology has been extensively applied in fields such as basic geological survey [13],
exploration and evaluation of oil and gas resources [14,15], intelligent cities [16], land and
resource administration [17], ocean exploration (seabed prospecting) [18], remote sensing
of big data [19], and mineral exploration and evaluation [20]. In particular, the intelligent
analysis algorithm for big data mining has made breakthroughs in diverse fields, such
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as geochemical anomaly extraction, gravity and magnetic anomaly extraction, logging
lithology identification, spatial prediction for seismic and sedimentary facies, earthquake
time prediction, and exploration and evaluation of mineral resources, bringing about a
profound impact on the field of geology. Mineral resources are one of the essential material
bases supporting the development of the national economy. Therefore, the application of
this intelligent analysis algorithm to the exploration and evaluation of mineral resources is
an inevitable trend in the development of mathematical geology; this is also the first step in
realizing intelligent prospecting. The combined application of the new theory and the new
technology is of great significance for breakthroughs in prospecting and in enhancing the
assurance degree of mineral resources.

3. Development of the Quantitative Prediction Theory of Big Data

In the big data age, the prediction and evaluation of geological mineral resources
have gradually entered a new stage, transforming from digital prospecting to intelligent
prospecting. In terms of big data sharing, multiple big data cloud platforms, such as cloud
computing, data cloud, and automatic text reading, have been constructed. The corre-
sponding big data analysis methods also provide some help in the quantitative evaluation
of mineral resources. Zhao (2013) stressed the importance of research on digital geology
and stated that digital geology in the big data age promotes the development of geological
prospecting and that focus should be on digital geology and mineral prediction [4]. In
addition, geological big data should be studied and utilized based on the characteristics
of the geological data and the geological demands [21]. The theory of prospecting, based
on geological big data, has also been systematically summarized [22]. Combining the pre-
dictive thinking method in the big data age with the prediction and evaluation of mineral
resources, and based on the causality theory, trend theory, and the relation of information
change theory, Professor Xiao further explored four theories: mineral prediction model
theory, mineral prediction correlation theory, trend analysis method, and differentiation
theory [23]. In the context of big data science becoming a new scientific paradigm, Yu put
forward a new model-driven method for the quantitative prediction and evaluation of
mineral resources; it utilizes the geological theory to guide geological data analysis and
computer technology for the data mining of geological big data, as well as for the quantita-
tive prediction and evaluation of mineral resources [24]. After systematically summarizing
the application of geological big data in the study of metallogenic regularity, metallogenic
series, and metallogenic systems, Wang concluded that geological big data can provide
new ideas for metallogenic theory and prediction [25]. Professor Chen believed that only
by effectively extracting information according to demands, mining useful knowledge, and
applying it to government decision-making, management services, and scientific research
can future information wealth be obtained; thus, the author proposed the data cycle theory,
based on demand main line and data chain main line [2]. Based on the “double-chain”
theory and aiming at the quantitative prediction and evaluation of mineral resources, Xiang
proposed a big data prediction and evaluation theory based on these “two main lines”,
which has been successfully incorporated into the prediction theory [26].

In summary, the essence of big data is massive data. If there is no clear demand or
effective mining means, data will remain data. The core idea of big data is not prediction;
rather, the process from the known to the unknown can be called the predictive thinking
method, which involves the excavating of potential knowledge through data mining
methods. If the predictive thinking of big data were to be applied to mineral resource
prediction, we not only need to introduce a variety of data analysis algorithms, but also
have to establish a perfect and effective theoretical system of big data prediction methods,
so as to advance mineral resource prediction toward intellectualization.

4. Development of Intelligent Mining Methods for Big Data

With the wide application of big data, different data mining processes have been
summarized in various fields. The most representative one is the Cross-industry Standard
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Process for Data Mining (CRISP-DM) process proposed by the European Union, comprising
six steps: business understanding, data understanding, data preparation, modeling, evalu-
ation, and deployment. According to Zhou, the process of data mining comprises three
stages: data preparation, data mining, and result expression and interpretation [5]. The data
mining process should start with actual requirements and end with solutions to problems.
Furthermore, the design of specific processes is based on mining requirements. For the
demands of prospecting prediction, the data mining process in this study includes demand
definition, data preparation, data mining, model evaluation, and knowledge expression.

Data mining is a complex iterative process. For the massive amounts of big data used,
the various artificial intelligence algorithms represented by machine learning provide a
broad application space for big data mining. Currently, artificial intelligence, machine
learning, and deep learning are the three hot words used in current research, which are
sometimes used interchangeably. The Alpha Go program of Google Deep Mind beat world
Go champions Shishi and Jie, making deep learning an instant focus of global media.
However, deep learning did not suddenly appear. There is a close connection between
deep learning, artificial intelligence, big data, and machine learning (Figure 1).
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Undoubtedly, the current big data mining in prospecting prediction is far from the
level of artificial intelligence. The application of big data mining methods in earth science
remains in its infancy. With the increase in research and exploration investment, the massive
amounts of heterogeneous geological data in various databases have seen a rapid growth.
Conventional analysis methods cannot thoroughly mine the deep correlations that are
hidden in various geological data. Through the development of data mining technology,
the heterogeneous and spatial geological data can be analyzed. Through spatial, correlation,
classification, regression, and cluster analyses of geological data, abnormal extraction,
prospecting prediction, and geological background discrimination have been performed,
so as to conduct effective production practice activities, such as mineral exploration and
prediction [5]. There are numerous means of geological big data mining. Geological big
data contain unstructured, semistructured, and structured information, including textual,
spatial, multimedia, and other diversified and massive data. In view of the demand for a
quantitative prediction of mineral resources, this paper summarizes research progress from
two aspects: intelligent mining methods for textual big data and spatial big data.

4.1. Development of Intelligent Mining Methods for Textual Big Data

For geological research in the big data age, it is necessary to comprehensively collect
various geological survey data, including semistructured and structured data, as well as
unstructured journal literature, technical reports, scientific papers, and geological reports.
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As a result of the recent open data initiatives, various government agencies and scientific
organizations have started publishing open data online for widespread use [27,28]. Geo-
science textual data are a key part of open data. Accumulated over hundreds of years, most
of the geological theory and research results are in the form of words and diagrams. The
mining of these accumulated data and the extraction of their geological knowledge are of
great significance for prospecting. Facing the ever-increasing amount of textual data, how
to intelligently classify and organize such geological textual data and understand, analyze,
and visualize their semantic associations have become the core problems in transforming
geological big data from data to knowledge.

Text mining was first proposed by Feldman in 1995. Table 1 shows the key technical
processes of text mining, including dataset acquisition, text preprocessing, data mining,
and visualization. For English documents, feature extraction, mining model construction,
and mining algorithms are relatively mature techniques, which have been successfully
applied in many fields [29–33]. Relevant Chinese researchers have mainly focused on
the construction of Chinese language models, Chinese word segmentation and tagging,
various algorithm improvements, and professional applications. There is a significant
difference between the language models of Chinese and English. Although text mining
in Chinese has some theoretical foundations and research results [34–36], many technical
difficulties remain. On the one hand, geology majors have high professional requirements
for word segmentation. The generalized word segmentation method cannot meet the actual
requirements. On the other hand, geological texts have the characteristics of description
differences, compilation diversity, and geological expertise. The textual representation of
conventional feature vectors cannot intuitively express professional geological semantic
information, cannot meet the diverse and grammatical characteristics of geological texts,
and cannot dig deep in the prospecting of information in geological texts. The hybrid
dictionary-based word segmentation and analysis method proposed by Wang et al., (2018)
for geological dictionary segmentation problems can only handle a single geological re-
port [37]. Automated technologies, such as acquisition, preprocessing, mining, and visual
analysis of massive geological text data, are difficult to realize.

Table 1. Key technical processes and content of text mining.

Technical Process Technology/Content

Dataset Text databases, web pages, documents, e-books, etc.

Text preprocessing Noise removal, word segmentation, parts-of-speech tagging, stop-word removal, feature
representation, feature extraction, etc.

Data mining
Named entity recognition, word frequency analysis, sentiment analysis, automatic summarization,
semantic network, similarity analysis, classification, clustering, association rules, intelligent
retrieval, regression, trend analysis, etc.

Visualization Knowledge and conclusions, graphical interface, command line, word cloud, knowledge graph, etc.

Deep learning was proposed by Hinton in 2006, providing a new direction for textual
data mining [38–40]. With the development of deep learning, neural network methods have
achieved outstanding results in the semantic analysis of natural language processing (NLP),
query retrieval, sentence classification modeling, and other conventional methods [41,42].
As one of the most robust deep learning classification algorithms [43], convolutional neural
networks (CNNs) have been successfully applied in NLP [44]. Sun completed the multilabel
sentiment classification of Weibo through supervised multisentiment classification learning,
based on a CNN model [45]. Subsequently, Feng et al., (2018) successfully applied the
M-CNN algorithm to multilabel emotion detection [46]. Researchers have made multiple
attempts to extract structured information from unstructured networks to build knowledge
bases and transform textual information into semantic networks [47,48]. Google’s knowl-
edge graph representation provides a new idea for the visual representation of NLP [49].
A knowledge graph, as an essential semantic network [50], is a data organization form or
product that expresses entities, concepts, and their semantic relationships through directed
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graphs. They have been widely used in the field of geology [51,52].Wang successfully
applied the knowledge graph to represent key information in geological unstructured text
and demonstrated the application potential of NLP and knowledge graph techniques in
geoscience research [37]. Morrison et al., (2017) used network analysis methods to represent
and mine the information hidden in mine-type, location, and observational data [53]. Wu
proposed a construction method for the conceptual prospecting model, based on metallo-
genic theory, using geoscience-based textual big data discovery and mining technologies,
and verified this method through a typical study area research [54].

For a quantitative prediction of mineral resources, academic literature on the public-
domain network and mineral exploration reports on local area networks involves a multi-
tude of key prospecting information, such as prospecting background, prospecting age, min-
eralization type, and genetic type. The application of text mining technology in prospecting
information mining is a development trend, which not only helps extract prospecting
information from diverse, massive, heterogeneous geological textual big data, but also
provides new ideas and directions for constructing prospecting models.

4.2. Development of Intelligent Mining Algorithms for Spatial Big Data

As global informatization enters an advanced stage, the big data age is imminent [22,55].
Geological data, as the basis in professional fields, are consistent with the characteristics
of big data. The main development trends in this field include the combination of big
data knowledge discovery technology and deep mining methods for mineral intelligence
prediction evaluation, as well as enhancing the effectiveness and accuracy of prospecting
prediction [1]. In addition, it is necessary to emphasize the joint application of new theories
and methods [23,24,56]. Faced with increasingly difficult prospecting challenges, the quanti-
tative prediction of mineral resources has gradually shifted from easily identifiable, shallow
deposits to hidden, deep deposits. The conventional 2D prospecting prediction method
cannot meet the demands of mineral exploration. Three-dimensional mineral resource
prediction implies the growth of data dimensions and the enhancement of data relevance.
In other words, machine learning is being increasingly integrated with mineral resource
prediction. The acquired ground features and geological and geochemical information
are derived from the spatial information collected from the same objects using different
monitoring methods. This series of spatial information also includes prospecting informa-
tion, underground mineral information, and geological evolution information. Using deep
learning methods to mine spatial information in the field of geosciences is of great value for
prospecting prediction. With the core of combining mineral deposit theory with intelligent
mining methods, this approach can address the developmental challenges in this field.

With the continuous improvement in the prospecting theory in recent years, big data
machine learning methods have achieved preliminary success in geoscience information
processing, prospecting anomaly information extraction, and comprehensive information
prospecting prediction [57]. As an important branch of artificial intelligence, machine learn-
ing provides an effective means for processing a large number of evidence feature layers
related to prospecting prediction, big data analysis, pattern recognition, and prediction,
as well as technical support for constructing intelligent prospecting models based on big
data. Since machine learning can extract potential nonlinear relationships between known
deposits and feature layers, it has a strong comprehensive prediction capability [58]. Due
to the complex prospecting geological conditions, geological data often exhibit nonlin-
ear characteristics. Hence, machine learning can better represent the complex, nonlinear
relationship between mineralization and evidence elements [59,60]. Currently, machine
learning algorithms that are applied to mineral resource evaluation mainly include ar-
tificial neural networks [61], support vector machines [60,62–64], random forest [65–67],
Boltzmann machines [68], extreme learning [69], and maximum entropy models [70,71]. In
2017, Zuo and Xiong identified and extracted multivariate geochemical anomalies in Fe
polymetallic deposits found in southwestern Fujian Province with the support of machine
learning analysis and geological big data [72]. Furthermore, scholars have successfully
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applied machine learning to extract abnormal information from geological big data, thus
realizing a quantitative prediction of mineral resources [73–80].

However, 3D deep prospecting information has multisource and multimodal char-
acteristics, which pose challenges for its classification and prediction. Therefore, the
conventional machine learning algorithms lack the necessary performance [81,82]. It is
appropriate and important to use deep learning in prospecting prediction, which is also a
meaningful exploration experiment for the application of big data intelligent algorithms in
geological research [83–85]. Deep learning is a special machine learning method, which
includes CNNs [45,86], recurrent neural networks (RNNs) [87], stacked automatic cod-
ing [39,88], deep networks with constrained Boltzmann machines at the core (deep belief
networks and deep Boltzmann machines) [89], as well as multilayer feedback recurrent
neural networks and full CNNs [90]. Deep learning has also made breakthroughs in logging
lithology identification, seismic fault identification [91], and seismic time prediction [92],
bringing a profound impact to the geoscience community. Through the combination of
mineral deposit prospecting theory and deep learning method, the problem of prospecting
prediction can be solved [93]. Currently, deep learning algorithms have achieved good
application effects in 2D prospecting anomaly extraction, such as in the prospecting of geo-
chemical anomaly extraction [72,94–96], the prospecting of gravity and magnetic anomaly
extraction [97], and comprehensive prospecting prediction [98–102], particularly through
using the CNN algorithm.

However, a 2D intelligent mining algorithm can only extract surface features; it
ignores the 3D spatial features when prospecting geological bodies located underground.
With the quantitative prediction of mineral resources gradually entering the era of 3D
prediction [103–108], existing prospecting prediction studies have the following problems:
(1) the emphasis is on the quantitative extraction of anomalies; the importance of spatially
distributed features, and the correlation between different prospecting conditions is ignored.
(2) In the past, the utilization rate of boreholes depended on whether ore was found. In
addition, the weight-of-evidence method only operates on positive examples. How do we
make reasonable use of negative samples? (3) The previous approach involved focusing
on important ore-controlling factors, while ignoring other seemingly unimportant factors,
even in conventional machine learning algorithms. However, this approach is not rigorous.
Therefore, it is necessary to set up an intelligent prospecting system on the basis of both
geological background and big data, so as to improve the intelligence of prospecting
prediction. In addition to extracting the relationship between spatial positions in an image
as done by 2D CNNs, 3D convolutional neural networks (3D-CNN) can additionally extract
the relevant time-domain information in continuous images [109], with wide usage in
medical diagnosis [110–112], sign language action recognition [113,114], facial expression
recognition [115], brain signal recognition [116], as well as many other fields [117–122].
For prospecting prediction, the spatial information in the data from the fields of geology,
geochemistry, and geophysical research obtained by different monitoring methods contains
many ore-forming anomalies. Therefore, the application of the 3D-CNN in underground
space feature recognition, underground anomaly extraction, and comprehensive prediction
is of great significance.

How to extract effective information from such multiple, massive, heterogeneous
information for the analysis of prospecting geological conditions? How to extract time-
series features and spatial correlation based on a 3D geological model? How to improve
the intelligence of the forecasting process? How to realize the combination of geological
expertise and intelligent algorithms? These are the challenges in the intelligent mining of
spatial prospecting data. To address asymmetric data information in prospecting prediction,
the application prospects of transfer learning are also worth considering.

5. Challenges in Intelligent Prospecting Prediction

Many scholars have conducted useful explorations in this field. However, the cur-
rent data mining in prospecting prediction has remained in the stage of digital “artificial
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prospecting”. There is a certain gap in the realization of intelligent prospecting. With the
advent of the big data age, there is no big-data-prospecting prediction theory guided by
the knowledge of geological experts, with “geological line”, “technical line”, and “data
line” as the main line, and the promotion of prospecting prediction intelligence as the
demand. Therefore, a series of intelligent analysis technologies is required to support
big data discovery, big data update storage, big data feature analysis, and comprehensive
quantitative prediction, thereby promoting the flow and optimization of three core elements
of “data”, “model”, and “knowledge”. As for the transformation from the prospecting of
data and informatization to intelligence, the main challenges are as follows.

5.1. Discovering of Big Data for Prospecting Prediction Based on Knowledge Systems

For data mining in prospecting prediction, mineral expert knowledge bases and min-
eral databases are the bases for research. With the rapid development of information
technology, China has accumulated a large amount of data and experience in the field of
mineral exploration. To fully discover the underlying data and in order to perform classi-
fication, storage, statistics, and mining, there is an urgent need to realize the integration
of new technologies and new methods. Effective big data discovery methods can provide
not only basic data for data mining in study areas, but also solutions for constructing large
mineral databases. For new data discovery technologies, four major difficulties should
be overcome: regionalism, comprehensiveness, professionalism, and multilingualism. Re-
garding regionalism, how to obtain effective data from 233 countries and regions around
the world? Regarding comprehensiveness, the conventional database query method with
string matching, such as using keywords and subject words, cannot accurately and com-
prehensively query the massive mineral-related data. How to obtain relevant data more
comprehensively and systematically according to the demand? Regarding professionalism,
how to accurately obtain the target field data list from the various academic conference
websites, geological collection institutions, scientific research institutions, search engines,
large publishers, geoscience journals, geoscience publishers, and e-book publishers, and
then realize real-time updates? Regarding multilingualism, how to break the language
barriers to maximize the integration between “big science” and “big data”, as well as in
the sharing of cross-border mineral data? The current application of the big data discovery
technology in the field of prospecting prediction lacks real solutions and research models.
There is no theoretical system or technical method for big data discovery that truly inte-
grates expert knowledge; this limits its application in the inter-disciplinary fields of earth
science, mathematics, and information science to a certain extent.

5.2. Construction of a Conceptual Prospecting Model Based on Text Mining

The construction of a conceptual model for regional prospecting is the key link in
the quantitative prediction of mineral resources. The conceptual prospecting model refers
to the textual representation of a mineral deposit model based on various geological
prospecting theories with ore-controlling characteristics, signs, and data combinations
(excluding genesis and assumptions), including deposit models, regional prospecting
models, and local prospecting models, which can be used to guide mineral resource
prediction. The conceptual model for regional prospecting mentioned in this paper is for
a specific study area. Prospecting prediction requires a comprehensive consideration of
various factors, such as expert opinions, geological background, and prospecting type,
through a certain set of rules. Among them, the most influential factor of prospecting
prediction is the experience and knowledge of the prospector. The research achievements
made by mineral experts mainly correspond to large amounts of unstructured textual
big data, such as technical reports, exploration reports, and news websites. Textual big
data contain important knowledge and experience. In the face of various NLP analysis
methods, the following problems need to be solved: how to apply such technology in
order to intelligently classify, store, and extract useful prospecting information for massive
textual data, how to realize an in-depth analysis, understanding, and visualization of
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the semantic correlations in geological text, and how to construct a conceptual model for
regional prospecting.

Methods that can extract important information, such as the prospecting age, prospect-
ing background, genetic type, and mineralization type, not only involve simple text pro-
cessing, but also mineral experts’ knowledge and effective NLP means. How to integrate
the predictive thinking of big data and mining methods guided by the knowledge system
into the quantitative prediction of mineral resources? How to use previous knowledge to
optimize the intelligent mining model? How to construct a regional conceptual prospecting
model of the study area and realize the automatic expansion of the deposit model base?
Addressing these questions is the only way to advance intelligent prospecting prediction.
However, the current method system requires further improvement.

5.3. Realizing Intelligent Mining Technology Based on Spatial Big Data

With the advent of the big data age, the evaluation of mineral resource prediction is
gradually shifting from digital prospecting to intelligent prospecting. Despite the endless
number of theoretical methods for big data intelligent prospecting, most of them have
not realized technical innovations. Currently, intelligent prospecting based on big data
remains in its infancy. How to integrate the idea of big data intelligent prospecting into
the demand line of intelligent prospecting? How to construct a prediction theory and
technical framework that promotes the process of intelligent prospecting? How to expand
the connotation of geological big data from numbers into unstructured, semistructured,
and structured data, such as geoscience textual data, 2D image data, and even 3D model
data, particularly in the intelligent mining of spatial data? These are the major technical
difficulties in big data prospecting.

In addition, prospecting prediction requires a comprehensive consideration of various
factors, such as expert opinion, geological background, and prospecting type, through a
certain set of rules. How to combine the knowledge of geological experts with artificial
intelligence to realize an organic combination of data-driven, model-driven, and knowledge-
driven patterns, a systematic evolution path incorporated with prior scientific knowledge,
and the leap from artificial intelligence to precise artificial intelligence? How to monitor
the automatic acquisition and updating of geological big data, and to improve system
decision-making through the self-optimization mechanism of the model? These are the
core aspects to realize in the transformation of prospecting prediction models under the
fourth scientific paradigm.

5.4. Sharing and Visualizing the Prospecting Prediction Big Data

Generally, the sharing and visualization of big data is the terminal link to realize
auxiliary decision-making through big data mining. The effective use of geological big
data can solve scientific problems such as prospecting prediction, geological law research,
and resource evaluation. This ultimately requires some methods to express it and serve
the user community. The core of big data lies in the flow of data. Therefore, the sharing
of data plays a vital role. The textual, spatial, process, and result data obtained in the
big-data-prospecting prediction process often have complex storage structures and large
amounts of information. In addition to the diversity, mass, and heterogeneity of general big
data, this type of data has unique characteristics such as space–time, variability, causality,
and correlation. Currently, the mature Virtual Reality Platform (VRP) multivariate data
integration technology can only realize offline sharing. A platform that can maximize the
sharing and re-datafication of predictive big data other than confidential data is lacking;
this is one of the main unresolved problems.

The data generated in intelligent prospecting prediction based on geological big data
not only have a simple data layer, but also include an information layer, a knowledge
layer, and even a decision-making layer, such as an expert knowledge graph, network
structure tree, and intelligent prediction model. For intelligent prospecting, these inference
data and knowledge networks have storage value. Currently, there is no such storage
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system to effectively store and manage all the intermediate data, including basic data,
algorithm models, expert knowledge, and common software. Therefore, it is meaningful
and challenging to establish an intelligent mineral prediction platform that integrates
digital expression, quantitative correlation, virtual simulation, and quantitative prediction
with a data base (DB), model base (MB), and knowledge base (KB) as the bases, and
with spatiotemporal cloud storage and a spatiotemporal data base, knowledge base, and
knowledge graph, as well as high-performance computing, virtual visualization, and
application development as the support.

6. Theory and Method of Intelligent Mineral Prediction

Characterized by their massive scale, heterogeneity, multimodality, complex corre-
lations, and dynamic emergence, big data require efficient computing models and meth-
ods [84]. Moreover, earth science research remains a “multiparadigm” mixture as a whole,
where the main body remains in the first paradigm of “logical reasoning”, while some have
entered the second paradigm of “theoretical modeling”. A few disciplines have explored
the third paradigm of “computational simulation”, which is gradually advancing toward
the fourth paradigm of “data analysis”; this requires combining the specific characteristics
of earth science and proposing a new theory for the prospecting prediction of geological
big data. The intelligent prospecting prototype theory and methods of geological big data
proposed in this study (Figure 2) attempt to transform the “logical reasoning” in the first
paradigm to knowledge graph association rules, and transform the “theoretical modeling”
in the second paradigm to the reasoning rules in the algorithm model, which successfully
combines geological knowledge and “artificial intelligence” in the “fourth paradigm”.
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Specifically, the intelligent prospecting theory and method of geological big data
implies the consideration of “geological”, “technicality”, and “data” as the three main
lines. Unlike the conventional quantitative prediction method, it adopts the hybrid-driven
pattern for prospecting prediction under the big data. The hybrid pattern is composed
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of a knowledge-driven pattern based on a geological, model-driven pattern, which in
turn is based on technical, and data-driven pattern based on data. The core of the theory
is to promote the flow, invocation, circulation, and optimization of the three key factors
of “knowledge”, “model”, and “data”, and preliminarily constitute a prototype of the
intelligent linkage mechanism, which advances the data-based and information-based
prospecting stage to the smart and intelligent stage. Aiming at the quantitative prediction
based on geological big data, the data line can be divided into the following four parts.

6.1. Intelligent Datamation

The theoretical method of intelligent discovery and acquisition of geological big data
provides a theoretical basis for the process of intelligent datamation. The comprehen-
siveness, professionalism, and effectiveness of the relevant data required for prospecting
prediction directly determine the accuracy of intelligent prospecting prediction results in
the big data age, which is also the basis for conducting intelligent prediction. The previous
prediction has been often based on existing geological data in geological departments;
however, the advent of the big data age has tremendously expanded our data sources.
Hence, it is necessary to establish a perfect intelligent data discovery and update system
based on the unique characteristics of geological big data, so as to effectively screen and ex-
tract semistructured, structured, and unstructured data. Through the intelligent discovery,
intelligent screening, intelligent matching, and intelligent updating of data, the data can
be automatically classified and stored, providing detailed textual and spatial data for the
informatization and knowledgeization processes.

6.2. Intelligent Informatization

The theoretical methods of integration, storage, and automatic updating of multivari-
ate, massive big data not only provide theoretical and methodological support for data
informatization, but also provide powerful background support for intelligent servitization
and intelligent redatamation. The normal operation of an intelligent system is inseparable
from the intelligent flow of geological data. Currently, the integration of geological data
typically revolves around the integration of spatial location, ignoring the significance and
value of the data itself. Therefore, based on the theoretical and methodological frame-
work of spatial data integration (Figure 3), including data source integration, geometric
integration, and band abstract integration, this study fully utilizes constraints related to
various geological meanings and knowledge to establish a multivariate data integration and
management system based on a unified basic geographic space. Accordingly, the spatial
data (such as geology, structure, mineralized point, geophysics, geochemistry, and remote
sensing), textual data (such as exploration reports, references, news, and information),
algorithm model (such as intelligent mining algorithm models), and expert knowledge
(such as prospecting concept model bases, knowledge graphs, and logical trees) can be
unified and integrated into the system platform. Thus, the data exchange and sharing can
be achieved through the intelligent prospecting prediction platform, ultimately serving the
social demands.

6.3. Intelligently Knowledgeable

The theoretical method of metallogenic feature analysis under big data provides a theo-
retical basis for the knowledgeization of big data in intelligent prospecting decision making,
which aims to construct a conceptual model and a prediction model for prospecting. The
analysis and extraction of metallogenic features under geological big data involve not only
the extraction of key metallogenic information from text corpus, but also the analysis and
extraction of metallogenic features from multidimensional spatial data distribution. Based
on the textual big data feature extraction, the conceptual prospecting model is constructed,
so as to guide the construction of the prospecting prediction model based on the feature
analysis of the spatial data. The analysis of metallogenic features involves multiple struc-
tured, semistructured, and unstructured information; analysis methods include the NLP
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method, artificial intelligence mining method, geostatistics method, nonlinear analysis
method, and multidimensional space analysis method. Prospecting prediction models
can be divided into knowledge-driven, data-driven, and hybrid-driven models [123–125].
The primary task of metallogenic prediction is to develop a mineral resources prediction
technology rooted in metallogenic regularity. In this regard, big data intelligent mining
methods, such as deep learning, are data-driven models, which can extract useful features
from massive data and form a predictive-thinking pattern from the known to the unknown.
However, these have drawbacks in that they only focus on correlations rather than causality
and only emphasize results rather than processes. Hence, how to better integrate the geo-
logical knowledge into metallogenic regularity or metallogenic models with the intelligent
mining method is undoubtedly the key for intelligent metallogenic prediction under the
big data background.
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Intelligent knowledgeization refers to the process of forming unknown and poten-
tial knowledge through the intelligent deep mining of textual and spatial data, based
on hybrid-driven patterns. This progress not only combines the knowledge graphs and
knowledge logical structure of geological experts with conceptual prospecting models of
nearly hundreds of ore deposits in guiding data-driven mining, but also ensures the flow,
invocation, circulation, and optimization of “knowledge” carriers. “Knowledge” carriers
here refer to new knowledge nodes, new logical structures, and new conceptual prospecting
models from the mining process. Data mining methods refer to the process of searching
and excavating currently unknown but valuable potential information from massive data
by combining the modern big data technology and artificial intelligence technology with
conventional data analysis methods [126]. Data mining involves a variety of algorithms,
such as Naive Bayes, neural network, K neighborhood, decision tree, and other machine
learning algorithms, as well as the association analysis, clustering analysis, classification
regression tree, and support vector machine algorithm based on statistical learning theory.
Data mining is closely associated with various information technologies such as statistics,
artificial intelligence, expert systems, and database systems. Currently, many researchers
have extensively applied multiple technologies to data-intensive industries or fields. The
concept of knowledge discovery was first proposed in the 11th International Joint Con-
ference on Artificial Intelligence (1989), where the most important core link was data
mining. The data mining knowledge generally includes regularities, concepts, patterns,
and rules [20].
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Based on the extracted key prospecting for textual information and key spatial vector
information, this study conducted in-depth mining to obtain the following two aspects of
knowledge: (i) to clarify the metallogenic background, metallogenic period, genetic type,
and mineralization type, in order to establish the metallogenic regularity and metallogenic
model, so as to determine the conceptual prospecting model of the study area; (ii) to train
the reasoning rules of the prospecting prediction model for the self-optimization of the
model and accurate artificial intelligence, incorporated with prior scientific knowledge.

On the one hand, to establish the conceptual prospecting model, owing to over
300 years of results accumulated in geology research, the development of earth science
information systems should be based on the existing geological theories and research
results. Its innovation is to integrate the “discipline accumulation” recorded in the form of
texts and graphs into geological big data analysis. A metallogenic system is a process of
controlling all the geological elements and mineralization of the formation, change, and
preservation of ore deposits in a certain geological spatiotemporal domain, as well as the
integrity within ore deposit series and mineralization anomaly series, which is a natural
system with a metallogenic function. Certain “metallogenic background, metallogenic
age, genetic type and mineralization types” determine certain “metallogenic conditions,
ore-controlling factors, prospecting signs, and mineralization anomalies”, which further
determine a certain “prospecting model”. Therefore, combined with the series of prospect-
ing model achievements in the big data discovery of the earth system, this study extracted
knowledge of metallogenic regularity and metallogenic models based on multiple data
mining methods, such as the NLP technology, data classification technology, and machine
(deep) learning technology, and constructed a prospecting model of the study area, which
is another key factor in realizing intelligent prospecting theories.

On the other hand, aiming at intelligent prospecting, this paper proposes extracting
the core prediction data of the study area based on the vector layer base and 3D geological
model data, to determine the characteristics of the geological spatial data and the rela-
tionship between geological bodies. To extract the metallogenic anomaly features from
spatial vector data, this study combined the conventional quantitative feature extraction
methods, including the various extraction methods for useful metallogenic information,
such as structural development features, structural zone features, structural ore-guiding
features, and rock mass features. Meanwhile, based on the super computing power and
the method of artificial intelligence, the automatic metallogenic predictive features of the
geological big data were studied, verifying the correlation between multiple geological
variables and the ore bodies. By comparing the metallogenic prediction ability of different
prediction methods in the random combination of different ore-controlling factors, this
study conducted the intelligent optimization and evaluation of the metallogenic prediction
method, so as to determine the optimal prediction model and factor combination suitable
for the study area, thereby increasing the prospecting accuracy.

The metallogenic features that were difficult to be extracted due to asymmetric infor-
mation were processed with geological knowledge transfer via transfer learning, which
combines geological expert knowledge and artificial intelligence. It realizes the system evo-
lution path incorporated with prior scientific knowledge, characterized with stochastic and
nonlinear relationships, and transforms deep learning, based on the adjustable parameters,
into operational learning, based on the system, forming a systematic algorithm model base,
so as to leap from artificial intelligence to precise artificial intelligence. Consequently, the
entire process of information extraction, knowledge integration, knowledge reasoning, and
intelligent predictive analysis is realized.

6.4. Intelligent Servitization

The theory and method of big-data-prospecting prediction not only provides theoreti-
cal and methodological support for the servitization link of intelligent prospecting, but is
also the final stage of intelligent prospecting prediction. Therefore, studies must prioritize
the comprehensive analysis of the results of metallogenic feature extraction and ultimately
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serve mineral exploration. This will help achieve two objectives: (1) accomplishing the task
of intelligent prospecting and improving its accuracy and efficiency; (2) forming friendly
knowledge expression and transmission, this study established an intelligent mineral pre-
diction platform based on geological big data, with the decision-making system as the core,
and the DB, MB, and KB as the bases. Moreover, supported by the five engines of spa-
tiotemporal cloud storage and spatiotemporal data bases, knowledge bases and knowledge
graphs, high-performance computing, virtual visualization, and application development,
and with prospecting prediction and geological data sharing as the practical application,
this platform integrates digital expression, quantitative correlation, virtual simulation, and
quantitative prediction.

On the one hand, to improve the efficiency and accuracy of the mineral resource
prediction, this paper proposes not only the intelligent prediction method incorporated
with the prior knowledge of experts, but also a series of model evaluation methods to
ensure the stability and effectiveness of the prediction model. In the process, the algorithm
automatically learns the logical rules and establishes the mechanism of random combination
of the ore-controlling factors, to gradually approach the optimal combination and achieve
the ore targets. Considering that the random combination quantity can reach hundreds
of thousands or even millions, this paper proposes determining the optimal parameter
method based on the fractal theory, which shortens the learning time of the computer and
accelerates the convergence speed of the model, enabling the prediction model to quickly
determine the optimal solution and achieve self-optimization. This method is useful in
intelligent spatial data mining as well as in the decision-making analysis.

On the other hand, for friendly knowledge expression and transmission, this study
conducted integrated processing for the metallogenic knowledge acquired in the process of
prediction and is expressed in a visual manner, whereby the results can be easily perceived.
With the decision-making system as the core and prospecting prediction and geological data
sharing as the practical application, this paper proposes and establishes an intelligent min-
eral prediction platform based on geological big data, which integrates digital expression,
quantitative correlation, virtual simulation, and quantitative prediction. The metallogenic
knowledge obtained by text mining is expressed by a knowledge graph, which is helpful
for mineral resource prediction and is easier to understand. For the knowledge acquired in
the process of spatial data mining, this research visualizes not only the convolution kernel
of the training model, but also the digital model and prediction results obtained using
the Web3D method. This is helpful for better understanding the spatial characteristics of
underground metallogenic space and the spatial relationship between underground and
surface, so as to provide a reasonable basis for mineral exploration.

In summary, in addition to the above four parts, the intelligent prospecting prototype
theory and method of geological big data also provide the theoretical and methodological
basis for the redatamation process of “knowledge”, “model”, and “data”. Big data not only
contain predictive-thinking patterns, but also have dynamic features; this is reflected in the
redatamation process and is also the core of the intelligent prospecting theory. To avoid
forming “data islands”, this paper presents a data flow model of intelligent redatamation,
with KB, DB, and MB as the bases. The automatic matching and update mechanism
of the core database can be achieved by constantly incorporating operational data, the
obtained “new knowledge”, “new model”, and “new data” from users, via the cloud
storage architecture, into the three bases.

7. Conclusions

With the rapid development of earth science, manual data analysis cannot in a timely
manner “digest” the rapid growth in the volume and complexity of data. Characterized
by multisource heterogeneity, different datums, multiple features, and complex seman-
tics, geological big data typically have a complex relationship with mineralization. The
“dimension disaster” encountered in high-dimensional space statistics severely affects the
statistical modeling and results from multisource observational data; it may reduce the
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reliability of the prospecting prediction results. Moreover, the potential ore-controlling
factors are likely to be neglected. Therefore, when combined with the predictive modeling
of big data and the reasoning of artificial intelligence, establishing an efficient, unified,
intelligent prospecting prediction process is necessary for mineral resource prediction in
the big data age. This paper reviewed the intelligent prospecting theory and method of ge-
ological big data, aiming to create a big-data-prospecting prediction system combined with
knowledge-driven, model-driven, and data-driven patterns, so as to make the prediction
process smart and intelligent in the big data age.
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