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Abstract: One of the large-scale field waste rock experiments (test piles) conducted as part of the
Diavik Waste Rock Project was deconstructed, providing a spatially located set of geochemical,
mineralogical, and particle-size distribution samples. Geostatistical analyses were conducted for
sulfur and carbon content and saturated hydraulic conductivity, which affect the geochemical evo-
lution of waste rock, to investigate the spatial dependence of these parameters. Analyses included
population statistics, experimental semi-variogram estimation, and theoretical semi-variogram fitting.
Population statistics were calculated for additional data sets from samples collected during the con-
struction of the test piles. The population statistical analyses indicated that log-normal distribution
provided the best fit for all investigated data sets. Experimental semi-variograms were estimated for
the spatially located data set (test pile deconstruction) using the classical estimator, and theoretical
semi-variograms were fitted. This investigation showed that the spatial distribution of sulfur, carbon,
and hydraulic conductivity within the core of the test-pile experiments can be approximated using a
log-normal distribution with a mean and standard deviation calculated using the samples collected
during construction of the piles, and that little to no spatial relationship was present for these pa-
rameters at the scale of sampling. That the saturated hydraulic conductivity of the matrix material
can be represented by the same statistical distribution throughout the test pile is significant because
water flow, as well as mineral surface area and reactivity are dominantly controlled within the matrix
portion of the test pile. Reactive transport simulations are included to demonstrate the influence of
the matrix material on effluent geochemistry.

Keywords: geostatistics; heterogeneity; scale-up; waste rock

1. Introduction

Mineral and metal mining occurs throughout the world and generates large volumes
of wastes estimated at a rate exceeding 100 billion tonnes per year [1]. Poor quality effluent
from mine wastes is an extremely difficult problem to mitigate given the large volumes
of waste involved and geochemical complexity of mineral weathering processes. Mine-
waste rock stockpiled at the surface and exposed to oxygen and moisture can lead to high
porewater concentrations of sulfate and transition metals and metalloids, and acidic effluent.
To predict the quality of mine-waste effluent, empirical (e.g., scale factors) and mechanistic
(e.g., reactive transport models) methods have been used (e.g., [2–7]). Most methods of
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effluent assessment or prediction are dependent on the mine-waste characteristics that
contribute to the geochemical evolution of mine-waste rock, including the mineralogy
of the waste and the physical characteristics controlling water flow. Investigations of
waste rock weathering often rely on global parameters such as mean sulfur (S) and carbon
(C) content and saturated hydraulic conductivity (KS). This investigation was focused
on these three parameters because all are directly related to the geochemical evolution
of waste rock and all can be measured using simple well-defined techniques. Saturated
hydraulic conductivity was included, even though most waste rock piles are unsaturated,
because it can be estimated using particle-size distribution (PSD) and is a parameter that
is readily incorporated into models (compared to D10—the diameter of particle size for
which 10% of a given sample is smaller—for example). Limited investigations have been
conducted regarding the heterogeneity of these fundamental parameters. Fala et al. [8]
investigated the role of heterogeneity in hydrogeological properties (KS, suction, and
volumetric water content) on water flow through a hypothetical waste rock pile and found
that calculated flow patterns generally followed the distribution of KS within a waste
rock pile (i.e., higher flow corresponding to higher KS zones). The work of Fala et al. [8]
showed that coupling a heterogeneous KS distribution with a heterogeneous S and/or C
distribution in a mechanistic implementation could define further the role of mineralogical
and KS heterogeneity in the geochemical evolution of mine-waste rock.

There has been very little research on waste rock piles to indicate the spatial distribu-
tion of mineralogical and physical parameters. Stockwell et al. [9] deconstructed a 12 m
high waste rock pile at Key Lake, Saskatchewan, and collected samples to characterize
physical and geochemical parameters. The results of the study indicated highly variable
paste pH and aqueous SO4 concentrations that showed no spatial dependence within the
pile, and a correlation between these geochemical parameters and particle-size distribution
was not identified. Khalil et al. [10] collected mine waste samples at the abandoned Ketarra
mine in Morocco to assess the extent of metal impacts. They suggested a normal statistical
distribution was appropriate for solid samples collected at their study site, where samples
were widely distributed and collected from near the waste rock pile surface, and therefore
may not be indicative of distribution through the depth of the pile. Marescotti et al. [11]
used geostatistics to quantify the distribution of metals in waste rock samples from a
sulfidic waste rock pile. Their semi-variogram work indicated spatial relationships for
most of the assessed parameters, but, similar to the work of Khalil et al. [10], samples were
collected close to the surface of the waste rock pile. Recent work by Blannin et al. [12]
used geostatistics to assess sampling strategies for investigation of spatial variability of
selected metals in a tailings impoundment. Although this study focused on mill tailings,
which fundamentally differ from waste rock, the results indicated that geostatistics can be
successfully used in the assessment of anthropogenically deposited materials.

The Diavik Waste Rock Project experiments included two large-scale test piles that
were constructed from 2005 to 2006 at the Diavik Diamond Mine, NT, Canada (Diavik), to
investigate the geochemical evolution of low-sulfide waste rock. The densely instrumented
test piles were approximately 50 m × 60 m × 15 m and were constructed with waste rock
separated by S content: Type I (wt.% S < 0.04), Type II (0.04–0.08 wt.% S), and Type III
(wt.% S > 0.08). One of the test pile experiments was constructed entirely of Type I material
(average 0.035 wt.% S), and a second test pile experiment was constructed entirely of Type
III material (average 0.053 wt.% S) [13]. The waste rock used to construct the test-pile
experiments consisted of approximately 75% granite (primarily quartz, K-feldspar, and
albite), 14% pegmatitic granite (primarily quartz, K-feldspar, and albite), 10% biotite schist
(primarily albite, quartz, and biotite), and 1% diabase (primarily plagioclase) [13–15]. The
metal sulfide minerals, dominated by pyrrhotite [Fe0.852Ni0.004Co0.001S] [16], with small
contents of chalcopyrite [CuFeS2], sphalerite [ZnS], and pentlandite [(Fe,Ni)9S8], were
primarily contained in the biotite schist [15]. Mineralogical analyses indicated C was
present only as carbonate [16].
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The Type I test pile was deconstructed in 2014 to, in part, investigate the progress
of mineral weathering within the experiment. The test pile was excavated in a series of
benches that allowed sample collection for geochemical parameters and PSD throughout
the pile [17].

Effluent geochemistry from the Type III experiment was documented by Sinclair et al. [18]
and generally consisted of increasing concentrations of solutes (e.g., SO4, Ni, Co, Cu, Zn)
and acidic pH (average annual pH ranging from 4.7 to 4.3 between 2008 and 2012) indica-
tive of sulfide mineral weathering. Effluent geochemistry from the Type I experiment was
documented by Bailey [19] and was generally similar to the Type III effluent with lower
concentrations of solutes indicative of sulfide mineral weathering and circumneutral to
slightly acidic pH (average annual pH ranging from 5.9 to 6.7 between 2008 and 2012).

A summary of Diavik Waste Rock Project studies, focused primarily on the Type
III test pile experiment, includes initial characterization [13,20,21]; investigation of gas-
transport [22,23]; temperature [24]; hydrology [25]; microbiology, geochemistry, and miner-
alogy [13,18,26–30]; and reactive transport simulation [31,32].

The purpose of this study is to characterize the spatial distribution of S, C, and KS
of the matrix material (i.e., diameter < 5 mm) based on samples collected during the
construction of the Type I and Type III test piles and the deconstruction of the Type I
test pile. The geostatistical analysis is used to characterize the geochemical and physical
heterogeneity of a waste rock pile from the perspective of the influence of these parameters
on effluent quality. Additionally, reactive transport simulations are included to demonstrate
the influence of matrix material proportion on the geochemical evolution of waste rock.

2. Methodology

Geostatistical calculations for S, C, and KS were conducted on samples collected for
mineralogical analysis and PSD as part of the construction (Type I and Type III) and decon-
struction (Type I) of the test-pile experiments. Samples collected during the construction
of the Type I and/or Type III test piles are referred to as ‘construction’; samples collected
during the deconstruction of the Type I test pile are referred to as ‘deconstruction’. Samples
collected during the construction phase of the experiment generally had limited associated
spatial information; samples collected during the Type I deconstruction were spatially
located using a Real Time Kinetic Global Positioning System with +/−2 cm accuracy [17].

During construction of the test pile experiments, samples for analyses of S, C, and
PSD were collected from the truck loads prior to being bulldozed over the tip face [13]. The
majority of the construction samples were analyzed for S only. A total of 434 samples was
collected for analysis of S during the construction of the test piles (247 samples from the
Type I test pile and 187 from the Type III test pile). A total of 292 samples was collected for
PSD analysis during construction (165 samples from the Type I test pile and 127 from the
Type III test pile). Thirty of these PSD samples were analyzed for S and C in each grain size
fraction.

The construction PSD samples consisted of 5–10 kg of the <50 mm fraction of the waste
rock [20]. The geostatistical analysis documented here focuses on the PSD of the matrix
material (<5 mm fraction) because flow through matrix material was found to dominate
infiltration of water through the test pile [25]. Only PSD samples from the interior of the
pile were included in the statistical analyses of KS. Further detail regarding the collection of
mineralogical and PSD samples during the construction of the test piles was documented
by Smith et al. [13,20].

The test-pile experiments were constructed in phases to allow installation of instru-
mentation along tip faces of the piles at consistent intervals. Tip faces on which instruments
were installed were referred to as instrumentation faces. Spatial information obtained for
the construction samples was limited to the interval between two instrumentation faces
of the test pile. As a result, approximate horizontal spatial location was obtained, but no
vertical spatial information could be obtained, because each waste rock load was pushed
over the tip face to construct the test pile.
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During deconstruction of the Type I test pile (Figure 1), spatially located samples were
collected for mineralogical and PSD analysis. The Type I test pile was excavated in benches
approximately 3 m deep; subsequently, sloped trenches, approximately 20 m wide, were ex-
cavated to facilitate sample collection. Sample locations were selected to allow construction
of vertical and horizontal profiles of mineralogical, physical, and geochemical parameters
throughout the test-pile experiment. Samples for analysis of mineralogy and PSD were
collected from approximately the same locations. A total of 562 samples for mineralogy
analysis and 244 samples for PSD analysis was collected as part of the deconstruction
program. A subset of 118 deconstruction mineralogy samples was selected for the S and
C portion of the geostatistical analysis. Analysis of PSD was conducted for 141 spatially
located samples from the Type I test pile deconstruction experiment.
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Figure 1. Overview of test piles area during initial stages of the Type I test pile deconstruction (left)
and the Type I test pile at excavation of bench three with two sampling trenches (right). The white
line on the right photo shows the approximate location of the 15 m profile. Photographs courtesy of
Sean Sinclair.

Samples of approximately 70 kg were collected to assess the PSD of the <75 mm
fraction of the waste rock in the Type I test pile after 8 years of operation [33]. Consistent
with the construction samples, only the PSD of the matrix material (<5 mm fraction) was
used for the geostatistical analysis. More details regarding the deconstruction program
and specifics about the sampling procedures were documented by Atherton [17] and
Barsi et al. [33].

Four methods of calculating KS from the results of the PSD analysis were evaluated as
part of this investigation. The methods of Hazen [34], Schlichter [35], Terzaghi [36], and
Chapuis [37] (Equation (1)) were used to calculate KS and compared to the results of the
Neuner et al. [25] measurements.

KS = 2.4622

[
D2

10e3

(1 + e)

]0.7825

(1)

where KS is saturated hydraulic conductivity (cm s−1), D10 is the grain diameter at which
10% of the mass of a given sample is finer (mm), and e is the void ratio (m3 m−3). The
use of the Kozeny–Carman equation [38] was rejected due to the requirement for a soil
specific surface value. Neuner et al. [25] measured KS on 18 matrix material samples from
the Diavik experiments using constant-head permeameter tests.

The data analysis followed a standard geostatistical approach for characterization
of parameters to quantify the spatial distribution of S, C, and KS within the Type I test
pile. The approach included calculation of sample statistics, assessment of stationarity,
estimation of semi-variograms, and fitting of theoretical semi-variograms to estimated
semi-variograms.

Experimental semi-variograms were estimated for the transformed data (i.e., Ln(S),
Ln(C), and Ln(KS)) from the deconstruction of the Type I test pile. Three common variogram
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estimation methods were applied to assess the capability of the estimators to describe the
distribution of the waste rock in the Type I test pile. The classical variogram estimator [39] is:

γ(s) =
1

2N(s)

N(s)

∑
i=1

(yi − yi+s)
2 (2)

where N(s) is the number of data pairs separated by lag distance s, yi is the log-normally
transformed parameter at a given location, and yi+s is the log-normally transformed pa-
rameter at a second location of lag distance (s) from yi.

Two estimators generally considered to be more robust include the Cressie–Hawkins
estimator ([40]; Equation (3)) and the squared median of the absolute deviations (SMAD)
estimator ([41]; Equation (4)):

γ(s) =
1
2

[
1

N(s)

N(s)

∑
i=1

(yi − yi+s)
0.5

]4

/
(

0.457 +
0.49
N(s)

)
(3)

γ(s) = 2.198(median|yi − yi+s|)2 (4)

The theoretical semi-variogram models evaluated were pure nugget (Equation (5)),
exponential (Equation (6)), and Gaussian ([42]; Equation (7)).

γ(s) = σ2
Y{1− δ(s)} (5)

where σ2
Y is the global variance δ(s) and is the Kronecker delta equaling 1 when lag distance

s = 0 and 0 when s > 0.
γ(s) = σ2

0 + σ2
Y{1− exp(−s/λ)} (6)

where σ2
0 is the nugget and λ (m) is the correlation length.

γ(s) = σ2
0 + σ2

Y{1− exp(−s2/λ2)} (7)

To demonstrate the influence of matrix material content on the geochemical evolution
of the Diavik waste rock, a set of reactive transport simulations were conducted where
the proportion of matrix material was varied. The simulations were conducted with
the reactive transport code MIN3P [43] and based on the conceptual model presented
by Wilson et al. [31]. The simulation mineralogy was consistent with Diavik waste rock
including the sulfide minerals pyrrhotite, chalcopyrite, sphalerite, and pentlandite, and
the host minerals calcite, dolomite, biotite, muscovite, and albite. Secondary minerals
included Fe(III) (oxy)hydroxide, jarosite, gibbsite, gypsum, amorphous silica, and siderite.
The simulations were conducted with matrix proportions of 0.1, 0.15, 0.2, 0.25, and 0.3.
The simulations were conducted as a 2-D domain using a homogeneous matrix proportion
representing the geochemical evolution of waste rock within the core of the pile.

3. Results

In the earth sciences, geostatistical analyses are traditionally applied to materials that
occur as a result of natural geological processes. Here these techniques were applied to
constructed waste rock piles to provide a framework for characterization of the distribution
of physical, geochemical, and mineralogical properties throughout the interior of the
test piles.

3.1. Calculation of Hydraulic Conductivity

Based on the KS values calculated using the methods of Hazen [34], Schlichter [35],
Terzaghi [36], and Chapuis [37] (Table 1), the Chapuis [37] equation was selected as the
preferred method for calculation of KS for this geostatistical analysis due to comparable geo-
metric mean and standard deviation to the laboratory measured values of Neuner et al. [25].
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The values calculated using the Schlichter [35] method were also comparable to the mea-
sured values but were rejected due to the reliance of the method on empirical parameters
and temperature and a significantly lower standard deviation. The void ratio used in the
Chapuis [37] equation was based on the mean porosity of 0.25 reported by Neuner et al. [25].

Table 1. Summary of KS (m s−1) estimates.

Parameter Measured Hazen Schlichter Terzaghi Chapuis

geometric mean 9 × 10−6 5 × 10−5 5 × 10−6 3 × 10−4 4 × 10−5

standard deviation 1 × 10−5 1 × 10−5 1 × 10−6 8 × 10−5 8 × 10−6

minimum 2 × 10−6 2 × 10−5 3 × 10−6 1 × 10−4 2 × 10−5

maximum 3 × 10−5 9 × 10−5 1 × 10−5 6 × 10−4 7 × 10−5

Note: Measured values reprinted from [25], 2013, with permission from Elsevier.

3.2. Statistical Distribution

Visual inspection of the S, C, and KS profiles and calculation of sample statistics,
including mean and standard deviation for each of the construction and deconstruction
S, C, and KS data sets, did not exhibit any significant trends in the distribution of the
parameters (Figure 2). It is important to emphasize that the spatial plot of KS reflects only
the properties of the matrix, and not an effective bulk KS at the scale of the test pile.
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Figure 2. Location and distribution of S and C content and KS estimates from the deconstruction
dataset at the east–west oriented 15 m profile of the Type I test pile (see Figure 1 for approximate
location). Data were contoured using irregular data point triangulation in Tecplot 360 EX 2015. The
KS estimates shown are estimated from the PSD of the matrix material. Vertical axis is elevation (m
above sea level); horizontal axis starting point is arbitrary. Black dots represent sample locations; the
outline represents the profile of the deconstructed test pile.

Frequency density histograms of the distribution of the Type I construction, Type
I deconstruction, and Type III construction data sets for S, C, and KS were observed to
have skewness to the right, indicating a non-normal distribution (Figure 3). Chi-square
goodness-of-fit tests and quantile–quantile plots for each of the log-normally transformed
data sets (e.g., Y = Ln(KS)) indicated acceptance of the normal distribution hypothesis in
each case (Figure 3). The assumption of log-normal distribution was further analyzed using
10 subsets of 50 randomly selected values from the Type I deconstruction Ln(KS). Chi-
square goodness-of-fit tests conducted on these subsets indicated 90% of the subsets passed
the additional chi-square testing, suggesting the assumption of log-normal distribution for
the data sets was reasonable. The construction data set for Type I C contained less than
10 values; therefore, the distribution analysis was not conducted for this data set.



Minerals 2022, 12, 577 7 of 14

1 
 

 

Figure 3. Frequency histograms for Type I deconstruction S (wt.%), C (wt.%), KS (m s−1), Ln(S),
Ln(C), and Ln(KS) and quantile–quantile plots for Ln(S), Ln(C), and Ln(KS). The dashed line on the
histograms represents the normal distribution calculated from the population mean and standard
deviation; the solid line on the quantile–quantile plots represents the log-normal distribution.

The results of the statistical characterization indicate that the distribution of S, C,
and KS in the waste rock at the Diavik test piles can be approximated using a log-normal
distribution with mean and standard deviation calculated from samples collected during
construction. Waste rock piles that are segregated according to S content may require
individual distributions for S content associated with each section.

The correlation of S, C, and KS at co-located sampling points was calculated. The S
and C data exhibited low correlation with a correlation coefficient of −0.15 based on 120
co-located samples. The S and KS and C and KS data sets exhibited low correlation with
correlation coefficients of −0.11 and −0.21, respectively, based on 85 co-located samples for
each set. The correlation calculations indicated that the S content at a given location is not
related to the C content or KS at that same location and vice versa.

3.3. Stationarity

To characterize the spatial dependence of the Type I deconstruction data set, the as-
sumption of stationarity in the first two moments (mean and variance) for Ln(S), Ln(C),
and Ln(KS) was considered. Stationarity is defined in this context as the absence of signifi-
cant trends in mean and variance of the analyzed parameters with depth in the test-pile
experiment. The stationarity of the Ln(S), Ln(C), and Ln(KS) was tested by calculating
the mean and variance at each bench for the Type I deconstruction data and compared to
the overall mean and variance of the deconstruction data set (Figure 4). There was some
fluctuation in the mean and variance about the average in each case.; however, it appears
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that stationarity in the Ln(S), Ln(C), and Ln(KS) was a reasonable assumption for the Type
I test pile. The spatial information for the Type I and Type III construction data sets was
limited; however, analysis of the mean and variance of samples by instrumentation face
compared to the overall mean and variance indicated that the assumption of stationarity
appears reasonable for Ln(S) and Ln(KS) of the construction samples. The stationarity of
Ln(C) was not investigated using construction samples due to the low number of samples
analyzed for this parameter during construction of the test piles.

Minerals 2022, 12, x  8 of 15 
 

 

experiment. The stationarity of the Ln(S), Ln(C), and Ln(KS) was tested by calculating the 
mean and variance at each bench for the Type I deconstruction data and compared to the 
overall mean and variance of the deconstruction data set (Figure 4). There was some fluc-
tuation in the mean and variance about the average in each case.; however, it appears that 
stationarity in the Ln(S), Ln(C), and Ln(KS) was a reasonable assumption for the Type I test 
pile. The spatial information for the Type I and Type III construction data sets was limited; 
however, analysis of the mean and variance of samples by instrumentation face compared 
to the overall mean and variance indicated that the assumption of stationarity appears 
reasonable for Ln(S) and Ln(KS) of the construction samples. The stationarity of Ln(C) was 
not investigated using construction samples due to the low number of samples analyzed 
for this parameter during construction of the test piles.  

μ (Ln(S))
-6-4-2

B
en

ch

1

2

3

4

5

6

σ2 (Ln(S))
0.0 0.5 1.0

1

2

3

4

5

6

μ (Ln(C))
-6-4-2

1

2

3

4

5

6

σ2 (Ln(C))
0.00 0.05 0.10

1

2

3

4

5

6

μ (Ln(KS))
-12-10-8

1

2

3

4

5

μ (Ln(KS))
0.00 0.05 0.10

1

2

3

4

5

 
Figure 4. Mean (μ) and variance (σ2) of Ln(S), Ln(C), and Ln(KS) from the deconstruction samples 
calculated by deconstruction bench. Overall mean and variance shown with dashed line. PSD anal-
ysis was conducted for samples from benches 1 to 5 only. Bench 1 was at the top of the test pile; 
bench 6 was at the bottom. 

3.4. Experimental Semi-Variogram Estimation 
Horizontal and vertical semi-variograms were estimated for Ln(S), Ln(C), and Ln(KS) 

using each method (Figure 5). Horizontal semi-variograms were estimated from parame-
ter pairs that were separated by benches. The maximum vertical separation of horizontal 
Ln(S) and Ln(C) pairs was 2.6 m; the maximum vertical separation of horizontal Ln(KS) 
pairs was 3.7 m. Vertical semi-variograms were estimated from parameter pairs that were 
horizontally separated by a maximum of 3 m. Lag intervals were selected based on num-
ber of pairs available to provide a reasonable estimate. The horizontal lag interval selected 
for Ln(S) and Ln(C) was 4 m; the vertical lag interval selected for Ln(S) and Ln(C) was 1.5 
m. The lag intervals selected for Ln(KS) were 3 m and 1 m for horizontal and vertical lags, 
respectively. Visual inspection of the experimental semi-variograms indicated that the es-
timates calculated by the classical method provided the most stable trends in each case, 
and as such the classical method was selected as the estimator for fitting of the theoretical 
variograms.  

Figure 4. Mean (µ) and variance (σ2) of Ln(S), Ln(C), and Ln(KS) from the deconstruction samples
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3.4. Experimental Semi-Variogram Estimation

Horizontal and vertical semi-variograms were estimated for Ln(S), Ln(C), and Ln(KS)
using each method (Figure 5). Horizontal semi-variograms were estimated from parameter
pairs that were separated by benches. The maximum vertical separation of horizontal
Ln(S) and Ln(C) pairs was 2.6 m; the maximum vertical separation of horizontal Ln(KS)
pairs was 3.7 m. Vertical semi-variograms were estimated from parameter pairs that were
horizontally separated by a maximum of 3 m. Lag intervals were selected based on number
of pairs available to provide a reasonable estimate. The horizontal lag interval selected
for Ln(S) and Ln(C) was 4 m; the vertical lag interval selected for Ln(S) and Ln(C) was
1.5 m. The lag intervals selected for Ln(KS) were 3 m and 1 m for horizontal and vertical
lags, respectively. Visual inspection of the experimental semi-variograms indicated that the
estimates calculated by the classical method provided the most stable trends in each case,
and as such the classical method was selected as the estimator for fitting of the theoretical
variograms.
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Figure 5. Horizontal and vertical experimental semi-variograms for Ln(S), Ln(C), and Ln(KS) using
classical, Cressie–Hawkins, and SMAD estimators.
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3.5. Theoretical Semi-Variogram Fitting

Visual inspection of the experimental semi-variogram estimates indicated little ev-
idence of spatial dependence in Ln(S) and Ln(C) in the horizontal or vertical directions;
limited evidence of spatial dependence is observed for Ln(KS). To test this observation,
three common theoretical semi-variogram models were applied to the estimates. Models
were evaluated for fit by calculating the standard error of the regression (sum of squares).
The pure nugget model (Equation (5)) was selected for analysis because visual inspection
of the semi-variograms for Ln(S) and Ln(C) indicated no spatial dependence at the selected
lag intervals. The exponential model (Equation (6)) was selected based on the success of
other researchers in fitting the model to semi-variograms of Ln(KS) for fine-grained sands
(e.g., [44–46]). The Gaussian model (Equation (7)) was selected based on visual inspection
of the experimental Ln(KS) semi-variograms.

Fitting of the estimated semi-variogram for Ln(S) and Ln(C) indicated that in all cases
there was very little to no evidence of spatial dependence at scales of 4 m (horizontal) and
1.5 m (vertical) with negligible differences in standard errors for the three theoretical models.
As a result, the pure nugget model was selected to represent the spatial dependence of Ln(S)
and Ln(C) (Figure 6). The pure nugget model fitting parameter (σ2

Y) was 0.28 for Ln(S)
(horizontal and vertical) and 0.05 for Ln(C) (horizontal and vertical). The horizontal and
vertical semi-variograms for Ln(KS) indicated limited spatial dependence with the Gaussian
model providing the best fit with σ2

Y of 0.043, λ of 10 m, and σ2
0 of 0.025 (Figure 6).
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Figure 6. Theoretical semi-variogram fits to classical horizontal and vertical semi-variogram estimates
for Ln(S), Ln(C), and Ln(KS). The pure nugget model is fit to Ln(S) and Ln(C) experimental semi-
variograms; the Gaussian model is fit to Ln(KS) experimental semi-variograms.

3.6. Reactive Transport Simulations

The effluent geochemistry for selected parameters from the simulations (Figure 7)
indicated that concentrations were influenced in proportion to the increase or decrease
of matrix content for some parameters (e.g., Fe, Ni, Co, Cu). Sulfate and Ca concentra-
tions decreased proportionally with the matrix material content but did not increase with
increased matrix material content; the simulation results indicated that as solute concen-
trations increased, the precipitation of gypsum limited the maximum concentrations of
Ca and SO4 in the higher matrix proportion scenarios. For some parameters (e.g., Cu, Al)
the matrix proportion significantly influenced the effluent concentrations, whereas the
impact of an increase or decrease in the matrix proportion had little influence on the pH,
which was constrained by the dissolution of carbonate minerals and aluminum-bearing
phases. The proportion of matrix material within a pile is an important factor in assessing
the geochemical evolution of a waste rock pile.
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4. Discussion

The geostatistical characterization of S, C, and KS was used to investigate the spatial
distribution of these parameters that are fundamental to the assessment of the geochemical
evolution of waste rock. The statistical distributions of S, C, and KS were determined to be
log-normal, which is common in natural systems [46–48].

4.1. Statistical Comparison of Construction Samples

Comparison of Ln(S), Ln(C), and Ln(KS) for the Type I and Type III construction sample
results indicated that the assumption of log-normally distributed data and stationarity in
the first two moments was reasonable at each test pile. The variances of Ln(S) and Ln(C)
were consistent between the Type I and Type III test piles. The means of Ln(S) and Ln(C)
were not consistent between the test piles, reflecting the slightly differing S and C contents
of the two piles. The mean and variance of Ln(KS) were consistent between the two test
piles. The similarity in parameter distribution, mean variance, and stationarity suggested
that the KS of the two test piles are statistically similar, and that PSD of the matrix material
collected at the Type I pile could be used to describe the heterogeneity in KS of the Type
III pile despite difference in S content between the two piles. This consistency is expected
given the similar blast design and transport methods used for the source material, the
similar construction methods used for the test piles, and the similar mineralogy of host
material in the two piles. This result could likely be applied to other waste rock piles where
host rock mineralogy is relatively homogeneous.

4.2. Theoretical Semi-Variogram Fitting

The pure nugget theoretical semi-variogram model (Equation (5)) that provided the
best fit to the Ln(S) and Ln(C) semi-variogram estimates was somewhat expected in view of
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the sampling density of the Type I deconstruction program, and the construction techniques
used to build the test piles. The use of the pure nugget model indicates that any discernable
trends in the spatial distribution of S and C were at a scale smaller than the sampling
density. The results of this study indicate that following blasting and transport to the
test-pile construction site, and deposition at the test pile, any spatial dependence in S and C
in the rock prior to blasting at a scale of >2 m (approximate spatial distribution of samples
collected in this study) would likely be lost.

The absence of spatial dependence in S and C could be influenced by factors including
(i) mining and pile construction methods, (ii) distribution of the lithology, (iii) sampling
density used to determine the spatial dependence of S and/or C, and/or (iv) estimated semi-
variograms for S and C considering the spatial dependence in the pile as a whole, which
may have eliminated smaller scale detail. The results of the spatial analyses highlighted the
importance of considering sampling density that is based on the physical characteristics of
the material being investigated. This geostatistical analysis indicated that higher sampling
density would be required to investigate small-scale variability of mineralogy and physical
parameters within waste rock.

The Gaussian model provided the best fit to the Ln(KS) horizontal and vertical semi-
variograms, with the spatial dependence being slightly more prominent in the horizontal
direction. The poorer fit at larger lag distances in the vertical direction is likely the result
of relatively low numbers of pairs (i.e., <10 for lag >7.5 m). Both directions were fit using
a relatively large nugget value (59% of the underlying variance) and, coupled with the
relatively small range of KS values (within one order of magnitude), suggests limited spatial
dependence (i.e., the KS of the matrix material was not depth dependent).

Research of the internal structure of waste rock piles has indicated in some cases the
presence of low KS lenses associated with traffic surfaces created during pile construc-
tion [49,50]. Internal traffic surfaces were not created as part of the construction of the test
piles due to the method of construction; however, it is likely that the presence of surface
and internal traffic surfaces could significantly alter the hydrogeologic regime within a pile.

Differences in sample collection methods could have also influenced the PSD results
(i.e., construction versus deconstruction). Analysis of the stationarity of the mean and
variance of Ln(KS) indicated that KS did not vary significantly with depth within the core
of the Type I test pile experiment. The lack of depth dependence in KS likely results from
using only the PSD of the matrix material within the pile. Using the Chapuis equation
(Equation (1)) and the PSD for particle sizes < 75 mm from the Type I test pile deconstruction,
Barsi et al. [33] found that the bulk KS increased with depth in the Type I test pile. The
results of this study indicate that the matrix material KS was not depth dependent.

4.3. Reactive Transport Simulations

The relative uniformity of matrix KS in the test pile experiments is significant because
matrix material is a controlling component in the test pile hydrology; most of the water flow
is conveyed through the fine-grained matrix of the test pile. Furthermore, due to the large
surface area of the fine fraction, the geochemical evolution of the pore water is dominantly
controlled by the matrix material (e.g., [51]). The uniformity of the matrix material within
the pile suggests all portions of the test pile that include matrix material could contribute
to the solute loading, with the exception of stagnant zones that are isolated from flow
by obstructions (e.g., matrix material located below large boulders). This observation
is consistent with previous research (e.g., [52]) that indicated relatively uniform solute
loading (approximately one order of magnitude) from different parts of a single pile. The
results of the reactive transport simulations indicate that most parameters are at least
somewhat influenced by the matrix material content within the pile and are consistent with
the observation of the importance of matrix material proportion within a waste rock pile.
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5. Conclusions

Analysis of the population statistics from samples collected during the construction
of the Type I and Type III test piles and deconstruction of the Type I test pile indicated
that each data set was log-normally distributed with consistent mean and variance among
sub-populations of the same parameter.

Geostatistical analyses of the spatially located deconstruction samples indicated lim-
ited spatial dependence of the KS field within the matrix material of the Type I test pile at
a scale of 3 m horizontal and 1 m vertical. The KS of the matrix material was not depth
dependent. It was determined that no spatial dependence in the structures of the S and C
distribution was present in the Type I test pile at a scale of 4 m horizontal and 1.5 m vertical.
This result was expected given the methods used to construct the test-pile experiments.
Sampling density during the deconstruction of the Type I test pile likely contributed to
the results of the geostatistical characterization; however, given the extremely large size
of typical waste rock piles, a denser characterization of the spatial distribution of S, C,
and KS is not likely to contribute significantly to an overall assessment of the geochemical
evolution of waste rock.

The results of the geostatistical characterization suggest that the spatial distribution of
S, C, and KS in the test piles, which can be characterized as randomly heterogeneous, is
likely due to construction methods; the distributions of S and C within the test pile could
also be influenced by their distribution within the original lithology. The heterogeneity of S,
C, and KS in the waste rock at the Diavik test piles can be approximated using a log-normal
distribution with mean and standard deviation calculated from samples collected during
construction. This is an important conclusion, suggesting that heterogeneity representative
of physical and mineralogical conditions of a pile can be implemented in a spatially random
manner according to measured log-normal distribution statistics. Waste rock piles that
are portioned according to S content may require individual distributions for S content
associated with each segregated component. The lack of spatial dependence in matrix KS
is significant because of the importance of the matrix material in controlling water flow
through the test-pile experiments. Due to the large surface area of the matrix material,
the geochemical evolution of pore water is dominantly controlled by this finer fraction.
Reactive transport simulations conducted using differing proportions of matrix material
indicate that most parameters are at least somewhat influenced by the matrix material
content within the pile.

The uniformity of the matrix material throughout the pile suggests that contributions
to the solute loading from the pile would be dependent on the spatial distribution of matrix
material in a pile. The proportion of matrix material within a pile is an important factor in
assessing the geochemical evolution of a waste rock pile.
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