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Abstract: The Yamrang Pegmatite in the Ikhabu Pegmatite Field, Eastern Nepal is Nepal’s primary
source of aquamarine. This paper reports detailed mineralogy and whole rock granite and pegmatite
geochemistry, and major and trace element data for alkali feldspar and muscovite in order to classify
the aquamarine-bearing Yamrang Pegmatite, elucidate beryl-saturation processes and evaluate
potential geochemical exploration tools for beryl-pegmatites. Five internal mineralogical/textural
zones were identified in the Yamrang Pegmatite; zone 1 (saccharoidal albite); zone 2 (blocky perthitic
microcline); zone 3 (muscovite–microcline–quartz); zone 4 (beryl-quartz), and zone 5 (miarolitic
cavities). Zones 1–4 represent the magmatic stage, while zone 5 formed during the hydrothermal
stage of pegmatite genesis. Spectacular aquamarines are recovered from miarolitic zone 5, while
beryl saturation is found in zones 3, 4, and 5. Based on beryllium (Be) content, Be partition among co-
existing minerals at the magmatic stage is beryl > muscovite > tourmaline > alkali feldspar > quartz.
In contrast, the sequence at the hydrothermal stage is beryl > muscovite > albite > tourmaline > quartz.
The Be content in rock-forming minerals decreases from pegmatite margin to core, and tourmaline
could have played a significant role in Be enrichment processes in the marginal pegmatite zone. High
temperature, a low degree of fractionation, and the dominance of Be-compatible mineral phases
such as muscovite, calcium-rich alkali feldspar and tourmaline resulted in beryl undersaturation in
marginal zones. However, low temperature, high fractional crystallization, and low abundance of
Be-compatible mineral phases resulted in beryl saturation in inner zones. The strongly peraluminous
nature, low total REE content (<500 ppm), mineral assemblage of beryl, tourmaline, spessartine,
columbite-tantalite, depletion of Ba, Nb, and enrichment of Pb, Rb, Cs in the primitive mantle
normalized multi-element plots suggest that the beryl-bearing Yamrang Pegmatite corresponds to the
LCT pegmatite family. Alkali feldspar with K/Rb values of 30–150, Rb ~3000 ppm, Cs >100 ppm, and
muscovite, with K/Rb ranging 18–50, Rb ~6000 ppm, Cs > 500 ppm, and Ta > 65 ppm in inner zones
(3–5), indicate that the Yamrang Pegmatite is an intermediate-fractionated, beryl-type rare-element
(REL) pegmatite. It is probable that whole rock Be content of >10 ppm could be considered an
exploration guide to beryl mineralization in the region.

Keywords: Yamrang Pegmatite; mineral chemistry of alkali feldspar and muscovite; beryl saturation
process; Be partition sequence; Eastern Nepal Himalaya
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1. Introduction

Beryl (Be3Al2Si6O18) is an important beryllium (Be) ore and a valuable gem. It is the
most common Be mineral in the Earth’s crust, occurring in granites, pegmatites, and veins
at magmatic and hydrothermal stages. Emerald and aquamarine are the most valuable gem
varieties of beryl, formed by the addition of chromophores Cr3+/V3+ for green emerald
and Fe3+ for blue aquamarine. Rare-element pegmatites (REL) are a major source of
beryl and other rare metals. Accounting for 1–2% of all granitic pegmatites, they may
contain significant amounts of beryl, lithium aluminosilicates, phosphates, except for
apatite, oxides, except for magnetite or ilmenite, and other rare minerals [1]. The study and
classification of pegmatites primarily focuses on their rare-element mineralogy with REL
pegmatites widely classified into the LCT (enriched in Li, Cs, Ta) or NYF (enriched in Nb,
Y, F) petrogenetic families [2,3]. LCT pegmatites are of great economic interest as they host
several economic rare-metal minerals such as spodumene, lepidolite, pollucite, petalite,
columbite-tantalite, beryl, cassiterite, etc. Besides being an important Be ore and valuable
gem, beryl is an early rare-metal mineral, crystallizing from fertile magma, that may evolve
to deposit Nb, Ta, Li, Cs minerals. Hence, establishing the geological, geochemical, and
mineralogical characteristics of beryl pegmatite has ramifications for the exploration of
other highly economic commodities.

We investigated the field geology, mineralogy, and whole rock chemistry of pegmatites
and granites from Eastern Nepal in order to identify barren and Be-rich bodies. We then
concentrated our detailed studies on beryl-mineralized pegmatites in the Ikhabu Pegmatite
Field (IPF), focusing on the large Yamrang Pegmatite. The Yamrang Pegmatite is intruded
on the lower part of the Higher Himalayan Sequence in the Taplejung district of Eastern
Nepal (Figure 1).

For the first time, this study reports major and trace element data for alkali feldspar
and muscovite from the Yamrang Pegmatite, and whole rock chemistry of barren and
Be-rich pegmatites from the region. The Be partition sequence in rock-forming minerals
is compared with experimental data. This contribution aims to classify the beryl-bearing
pegmatites from the area, investigate the beryl-saturation process and evaluate potential
geochemical exploration guides for beryl-pegmatites. Results will provide the first insights
into the properties of REL pegmatites from the region and aid in rare-metal exploration in
the Himalayan belt in general, and in similar tectonic settings elsewhere.

2. Regional Geological Setting
2.1. Geology

The Himalayan orogenic belt resulted from the Cenozoic Indo-Asian collision along
the Yarlung–Zangbo Suture Zone and extends 2400 km from Namche Barwa in the east to
Nanga Parbat in the west. It comprises the Sub-Himalayan sequence, Lesser Himalayan
sequence (LHS), Higher Himalayan sequence (HHS), and Tethyan Himalayan sequence
(THS) from south to north (Figure 1).

The Eastern Nepal Higher Himalaya (Tamor–Kanchenjunga region) is bounded by the
Main Central Thrust (MCT) in the south and South Tibetan Detachment System (STDS) in
the north, and is divided into three lithological units; (a) Junbesi Paragneiss, (b) Kanchen-
junga Migmatite, and (c) Kanchenjunga Paragneiss (Sil-Bt quartzo-feldspathic paragneiss
in Figure 1) formation from the bottom to top [4–6]. They are correlated with Formation I,
II, and III of Le Fort (1975) [7], respectively.

The Precambrian to Cambrian Junbesi Paragneiss (Formation I) is a 4–7 km thick unit
with St-Ky gneiss at the lower part and Sil-grade migmatitic gneiss, concordant leucosomes,
and discrete leucogranite dikes and sills at the top [4–6] (Figure 1). The gradational boundary
between Junbesi Paragneiss and Kanchenjunga Migmatite (Formation II) is marked by an
increased proportion of Sil-migmatite and roughly coincides with the position of the High
Himal Thrust (HHT 1) [4,8]. The Kanchenjunga Migmatite is a 5–18 km thick unit comprising
a sillimanite ± cordierite-bearing migmatitic gneiss, and quartzite with subordinate calc-
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silicates metabasites [6]. Cordierite-bearing migmatites appear in the mid-portion of the
Kanchenjunga Migmatite and are restricted to the north of HHT 2 [8,9] (Figure 1).
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Figure 1. Regional Geological Map of Tamor–Kanchenjunga region, Eastern Nepal, showing the
Ikhabu Pegmatite Field (IPF) and sample locations (compiled after [4–6,8]. Lower data clusters show
the Chyanthapu area, and upper data clusters show the Kanchenjunga area. Abbreviations: LHS,
Lesser Himalayan Sequence; HHS, Higher Himalayan Sequence; LMCT, Lower Main Central Thrust;
MCT, Main Central Thrust; HHT, High Himal Thrust (HHT-1, HHT of [4]; HHT-2, HHT of [5]); STDS,
South Tibet Detachment System; Bt, biotite; Sil, sillimanite. Mineral abbreviations are after [10].

The Kangchenjunga Migmatite has a gradational boundary with the overlying Kanchen-
junga Paragneiss (Formation III) (Schelling, 1992). The Kanchenjunga Paragneiss formation
is a 3–6 km thick unit consisting of Bt-Sil-gneiss/schist, quartzite, and widespread in-
trusions of Cambrian–Ordovician granites (510–480 Ma, now orthogneiss) [7,11–13] and
Miocene (23–12 Ma) leucogranite sills and dikes [14–16] (Figures 1 and 2a–d).
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Figure 2. Field photographs of pegmatites and granites. (a) Orthogneiss exposure at Lonak (Kanchen-
junga area); (b) Field view of Kanchenjunga–Jannu leucogranite at Mt. Jannu base camp; (c) Tour-
leucogranite crosscutting the orthogneiss; (d) Tour-leucogranite; (e) Barren pegmatite intruded on
banded gneiss at Chyanthapu area; (f,g) Be-rich pegmatite showing angular and sharp contact with
host-rock gneiss at Ikhabu area; (h) Beryl seen in the outcrop of Be-rich pegmatite at Ikhabu area.
Mineral abbreviations: Brl, beryl; Qz, quartz; Tur, tourmaline. Mineral abbreviations are after [10].

The studied beryl-mineralized pegmatites belong to the Ikhabu Pegmatite Field of
Eastern Nepal. They are intruded into the middle part of the Junbesi Paragneiss in the
vicinity of the sillimanite-in isograd (Figure 1). The beryl pegmatites are characterized by
a mineral assemblage of quartz, K-feldspar, albite, muscovite, tourmaline, garnet, beryl,
and ± rutile or columbite-tantalite (Figure 2h). The host rock (kyanite to sillimanite grade,
locally migmatitic gneiss; Figure 2f,g) strikes NW–SE and dips NE at 25◦–35◦. The studied
barren pegmatites are from the lower part of the Junbesi Paragneiss, closer to the Main
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Central Thrust at the Ankhop–Chyanthapu area. These pegmatites vary from 10 cm to
7 m in thickness. These are common pegmatites with a mineral assemblage of quartz,
K-feldspar, albite, biotite, muscovite, tourmaline, and garnet (Figure 2e).

2.2. Granitic Plutons

Two types of granitic plutons are identified in the Eastern Nepal Higher Himalayan Se-
quence: (1) pre-Himalayan granites (orthogneiss) (510–480 Ma) of Kanchenjunga Paragneiss
(formation III) formed by Cambrian–Ordovician magmatism [7,11–13] and (2) Himalayan
leucogranites (23–12 Ma) formed by Miocene magmatism [14–16]. Leucogranites are essen-
tially seen above HHT 1 as thin dykes and sills. The proportion of leucogranites increases
from 10 to 20% at 4000 m to >60% above 6000 m altitude and they comprise the Kanchen-
junga and Jannu mountain peaks [4,17]. The leucogranites at the Mt. Kanchenjunga-Mt
Jannu area are known as the Kanchenjunga–Jannu leucogranites [17]. The plutons studied
in this work are from the Kanchenjunga Paragneiss formation, upper part of HHS around
the Lonak–Kanchenjunga–Jannu area, about 35–40 km northeast of the IPF, and from the
Junbesi Paragneiss formation, lower part of HHS around Chyanthapu, about 35–40 km
southeast from IPF (Figures 1 and 2).

The coarse-grained orthogneiss consists of quartz, augen-shaped K-feldspar, plagio-
clase, garnet, tourmaline, biotite, muscovite, and occasionally cordierite and sillimanite
(Figure 2a,c). The foliation is defined by biotite, tourmaline, and augen feldspar. The
leucogranite sills and dikes were intruded into paragneiss and orthogneiss (Figure 2b,c). Hi-
malayan leucogranites are divided into four types; biotite-, two-mica (Ms > Bt)-, tourmaline-,
and garnet-leucogranites, based on dominant mineralogy [18–22]. Fine to medium-grained
tourmaline-leucogranite consisting of quartz, feldspar, muscovite and tourmaline is domi-
nant in the Kanchenjunga–Jannu area (Figure 2d); however, garnet-leucogranite fragments
were also found around the base camp at Mt. Kanchenjunga and Mt. Jannu. All orthogneiss
samples were collected from the Kanchenjunga area, while leucogranite samples were from
the Kanchenjunga–Jannu and Chyanthapu areas.

3. Geology of Yamrang Pegmatite

Aquamarines were first discovered in Nepal in 1934 [23] and they are now famous
worldwide. The Ikhabu pegmatites had been previously mentioned as a source of aquama-
rine in Nepal [24–26]; however, no further information is available in the literature. The
present work represents the first detailed geological information on the beryl (aquamarine)-
bearing pegmatites from Nepal Himalaya.

The beryl-bearing Ikhabu pegmatites are intruded into Ky-Sil grade biotite-schist to
migmatitic gneiss in the middle part of the Junbesi paragneiss formation (Figures 2 and 3).
They are tabular to lenticular dikes with an undifferentiated, homogeneous to well-zoned
character, ranging in width from 1 to 27 m and with a visible length from a few meters to
130 m. They show angular and sharp contact with country rocks (Figure 2f,g) and exhibit
little to no deformation, implying that they are younger than Himalayan metamorphism.
The long axes of larger dikes frequently follow the strike of the foliation, with pinched
and inflated edges. The major minerals are quartz, alkali feldspar, muscovite >> biotite,
with tourmaline and garnet as common accessories. Rare-metal minerals include beryl,
columbite–tantalite, rutile, zircon, monazite, and xenotime (Figures 3 and 4). Big granitic
bodies were not exposed in the area; however, migmatites and thin to thick leucogranite
sills are frequent in the upper part of the Junbesi Paragneiss [4,5,8].
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Figure 3. Field photographs and sketch map of the Yamrang Pegmatite. (a) Location of Yamrang
Pegmatite at Yamrang hill; (b) Exposure of Yamrang Pegmatite, zone 3; (c) Schematic sketch of
internal zonation of the Yamrang Pegmatite. Mineral abbreviations: Brl, beryl; Mc, microcline; Ms,
muscovite; Qz, quartz. Mineral abbreviations are after [10].
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Figure 4. Field photographs and photomicrographs of the Yamrang Pegmatite. (a) Yamrang Pegmatite
and host-rock gneiss contact zone; (b) Biotite-rich schistose gneiss hosting Yamrang Pegmatite under
plane-polarized light; (c) Sample from saccharoidal albite zone showing albite-quartz assemblage;
(d) Blocky perthitic microcline zone with miarolitic cavities; (e) Beryl and aquamarine in association
with K-feldspar; (f) Quartz-beryl association from core zone; (g) Pegmatite sample showing graphic
texture; (h) Aquamarine, quartz, and tourmaline gems from Yamrang Pegmatite; (i) Smoky quartz,
muscovite books and albite assemblage from miarolitic cavities. Mineral abbreviations: Ab, albite;
Aqm, aquamarine; Brl, beryl; Bt, biotite; Grt, garnet; Kfs, K-feldspar; Ms, muscovite; Pl, plagioclase;
Qz, quartz; Tur, tourmaline. Mineral abbreviations are after [10].

The large Yamrang Pegmatite is located at the NE aspect of Yamrang hill at Sangsabu village
in the Taplejung district, Eastern Nepal (Figure 3). The hill is steep and covered with dense
vegetation. The Yamrang Pegmatite-host rock contact was not exposed in the field, however, a
small section of sharp contact was observed in the roof of the Yamrang Pegmatite manual mining
site. The pegmatite intruded kyanite grade, medium-grained, highly deformed, strongly foliated,
biotite-rich schistose gneiss and was exposed at 1840 m elevation. Its exposed dimension is 27 m
wide and 130 m long (Figure 3). The Yamrang Pegmatite shows axial-symmetric zonation and can
be differentiated into five mineralogical–textural zones (Figures 3c and 4, Table 1). All zones have
gradational contact except zone 5, which is overprinted on zones 2 and 3. Zones 1–4 represent
the magmatic stage of the Yamrang Pegmatite, while zone 5 represents the hydrothermal stage.
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Table 1. Description of internal zonation of Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF),
Eastern Nepal.

Zone
Number

Zone Name
(Sequential)

Zone Name
(Mineralogical) Thickness

Main Mineral
Assemblage

(Relative
Abundances wt.%)

Accessory and
(Rare) Minerals Descriptive Features Texture

Zone 1 Marginal Zone Saccharoidal
albite 2 m Ab (56), Mc (8), Qz

(30), Ms (4)
Drv-Srl, (Fl, Zrn,

Mnz)
saccharoidal albite, inwardly
oriented tourmaline layers

Fine to
medium-grained

Zone 2
Outer

Intermediate
Zone

Blocky perthitic
microcline 4–7 m Ab (10), Mc (70),

Qz (15), Ms (3)
Sps, Srl-Drv,
(Zrn, Mnz)

Massive microcline, graphic
pegmatite, platy albite, quartz

lenses, muscovite clusters

monomineralic,
massive

Zone 3
Inner

Intermediate
Zone

Muscovite-
microcline-

quartz
5–6 m Ab (15), Mc (40),

Qz (25), Ms (15)

Brl, Sps, Rt, Srl,
(Col-Tan, Zrn,

Mnz, Xtm)

coarse graphic pegmatite, platy
albite, book muscovite veins,

quartz-beryl pods,
quartz-muscovite nests

coarse-grained to
massive

Zone 4 Core Zone Beryl-quartz 1–1.5 m Mc (5), Qz (60), Ms
(1), Brl (33) Srl, (Zrn, Mnz) quartz-beryl 90%, microcline

patches at core margin
medium to

coarse-grained

Zone 5 Miarolitic
Zone Albite-quartz few to tens

of cm
Ab (40), Mc (15),
Qz (25), Ms (15)

Brl, Aqm,
Col-Tan, Rt, Srl,

Hem,
(Zrn, Mnz, Xtm)

clay filled pockets, platy albite,
dipyramidal smoky quartz,

aquamarine, muscovite books,
overprinted on zone 2 and 3,

fine to
coarse-grained

Note: Ab, albite; Aqm, aquamarine; Mc, microcline; Qz, quartz; Ms, muscovite; Brl; beryl; Col-Tan, columbite-
tantalite; Drv-Srl, dravite-schorl; Fl, fluorite; Zrn, zircon; Mnz, monazite; Sps, spessartine; Rt, rutile; Xtm, xenotime;
Hem, hematite. Mineral abbreviations are after [10].

Zone 1 is the marginal saccharoidal albite zone, with a 1.5–2 m thick saccharoidal
albite and quartz mineral assemblage, containing subordinate muscovite and accessory
fine tourmaline (Figures 3c and 4c). Zone 2 is the blocky perthitic microcline zone, 4.5–7 m
thick with a mineral assemblage of perthitic microcline + quartz ± platy albite with ac-
cessory garnet and tourmaline (Figure 4d). Zone 3 is the muscovite–microcline-quartz
zone, 5–6 m thick and containing coarse perthitic-microcline, quartz, albite, muscovite,
subordinate tourmaline and garnet, and rare mineral beryl, columbite-tantalite, and rutile
(Figure 3b). Zone 4 is the core zone, measuring 1–1.5 m wide and consisting of a coarse
beryl–quartz assemblage (Figure 4f). Zone 5 comprises a group of miarolitic cavities over-
printed on zones 2 and 3, mainly along the eastern boundaries of zones 2 and 3, and 3 and
4 (Figures 3c and 4d). Aquamarine, translucent white beryls associated with platy albite,
euhedral smoky quartz, book muscovite, and fine-grained columbite-tantalite are found in
the miarolitic cavities (Figure 4h,i).

4. Analytical Methods

Petrographic observation and visual determination of modal mineral abundance in
the thin section were performed under a polarizing microscope. Based on petrographic
observation, representative samples were carefully selected for further analysis. Thin
sections were used for electron probe microanalysis (EPMA), major element determination
and in-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)
trace element analysis of minerals.

4.1. Whole-Rock Major and Trace Element Analysis

We divided our whole rock samples into five clusters: beryl-bearing pegmatite (Ikhabu
pegmatites), paragneiss (host rock of Ikhabu pegmatites), barren pegmatite, orthogneiss, and
leucogranite. Fresh whole rock samples (11 beryl pegmatites, 10 barren pegmatites, 3 orthogneiss
and 9 leucogranites) were selected for whole rock major and trace element analyses (Supplemen-
tary Table S1). Studying pegmatite geochemistry from representative bulk samples is challenging
given the heterogeneous texture and large mineral crystals. However, when samples are chosen
carefully and combined with mineral chemistry, we can still enhance our understanding of
pegmatite chemistry. In the case of the zoned Yamrang Pegmatite, large samples (2–5 kg) from
internal zones (zone 1-YRP-1, YRP-11, YRP-13; zone 2-YRP-2; zone 3-YRP-6, YRP-7, YRP-9;
zone 5-IW-8) were selected, each representative of the texture and mineral assemblage/mineral
distribution of that zone. Similarly, from the barren pegmatites and beryl-bearing Wairung (IW-1)
and Sangsabu (IW-5, IW-6) pegmatites that lack internal zonation and contain giant crystals, large
samples (2–5 kg) representative of texture and pegmatite mineral assemblage were selected.
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Analyses were conducted at Beijing Createch Testing Technology Co. Ltd. The whole
rock was crushed to 200 mesh using a tungsten carbide ball mill. Major element compositions
were determined on fused glass disks using an X-ray fluorescence spectrometer (XRF-1800,
SHIMADZU, Kyoto, Japan) with an analytical precision within ±2% for the oxides present in
an abundance > 0.5 wt.% and within ±5% for oxides > 0.1 wt.%. Loss on ignition (LOI) was
measured for each sample after heating to 1000 ◦C for three hours in a muffle furnace.

Trace element analysis of an aliquot of whole rocks (40 mg) was performed using
inductively coupled plasma mass spectrometry (Agilent 7500, Santa Clara, CA, USA) after
acid digestion of samples in a HF + HNO3 flux for 48 h at about 190 ◦C. The solution
was evaporated to incipient dryness, dissolved in concentrated HNO3, and evaporated at
150 ◦C to dispel the fluorides. The samples were diluted to about 80 g for analysis after
being re-dissolved in 30% HNO3 overnight. An internal standard solution containing Rh
monitored signal drift during ion counting. Analytical results for USGS standards indicated
that the uncertainties for most elements were within 5%. The analytical procedures for
whole-rock major and trace elements were similar to those described by [27].

4.2. Electron Microprobe Analysis

Major element compositions and BSE images of alkali feldspar and muscovite in carbon-
coated thin sections were acquired using an electron probe microanalyzer, JEOL JXA-8100 at the
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
Academy of Sciences, Beijing, China. An accelerating voltage of 15 kV, beam current of 10 nA,
counting time of 10–30 s on each peak, and a beam diameter of 5 µm were used to carry out
routine quantitative analyses. Natural samples and synthetic oxides were used for standard
calibration: albite for Na, fluorite for F, BaSO4 for Ba, apatite for P, diopside for Ca, Mg, and
Si, SrSO4 for Sr, bustamite for Mn, K-feldspar for K, Al2O3 for Al, Fe2O3 for Fe, rutile for Ti,
Rb glass for Rb and pollucite for Cs. Raw data reduction was undertaken using a routine ZAF
procedure. All elements were analyzed at greater than 98% precision. The structural formula
for feldspar was calculated based on eight oxygen atoms, and end members were calculated as
Or, Ab, and An. The structural formula for the muscovite was calculated based on 24 atoms of
O, OH, and F. Li2O calculation was done after [28], and H2O calculation was done after [29].

4.3. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

The trace element content of the alkali feldspar and muscovite was determined after
removing the carbon coating from the thin sections used for EPMA. The experiment was
carried out on an Agilent 7500a Q-ICP-MS instrument (Agilent Technologies, Santa Clara,
CA, USA) coupled to a 193 nm ArF excimer laser system (Geolas HD, Lambda Physik,
Göttingen, Germany) or an Analyte G2 193 nm ArF excimer laser ablation system at the
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
Chinese Academy of Sciences. The approach was similar to [30,31], with isotopes measured
in peak-hopping mode with a laser beam diameter of ca. 44 µm and a 5 Hz repetition
rate. The laser energy density was ~6 J cm−2. Helium was employed as the ablation gas to
improve the transporting efficiency of ablated aerosols. NIST SRM 610 reference glass was
used as calibration material, and ARM-1 [32] and BCR-2G were analyzed for data quality
control. Silicon (29Si) was used as an internal standard, using the Si value determined from
EPMA analysis. The raw data were reduced using GLITTER [33]. For most trace elements
(>0.10 µg/g), the accuracy was better than ±10%, with analytical precision (1 RSD) of ±10%.

5. Results
5.1. Whole-Rock Chemistry

The major and trace element results for whole rock analysis are presented in Table 2,
Supplementary Table S1. Most of the studied rocks plot in the granite field. Some samples
from the alkali feldspar-rich zones of Yamrang Pegmatite plot in quartz-monzonite and syenite
areas (Figure 5a). Since alkali feldspar has a high K and Na content, the bulk composition
falls in the syenite, rather than the granite, field. All rocks analyzed have a peralkaline and



Minerals 2022, 12, 564 10 of 30

peraluminous nature and plot in the S-type field with ASI index > 1.1 (1.2–3.3) (Figure 5b).
The total REE content of studied pegmatite and granite samples ranges from 1 to 161 ppm,
while paragneiss samples contain 121–178 ppm total REE (Supplementary Table S1).

Table 2. Whole-rock major and trace element composition of selected pegmatite, gneiss and gran-
ite samples.

Lithology Beryl Pegmatite Paragneiss Barren Pegmatite Leucogranite Orthogneiss

Sample Zone 1 Zone 2 Zone 3 Zone 5 WP SP YRP-14 IW-7 WPT-88 WPT-112 KGP-20 WPT-205 KGP-6

wt.%
SiO2 73.15 79.16 70.22 75.10 73.24 72.36 71.83 81.73 78.28 73.39 73.11 75.76 76.49

Al2O3 16.28 11.76 16.14 15.06 14.75 16.63 12.11 7.92 13.05 15.15 14.52 14.10 13.62
TiO2 0.02 0.05 0.01 0.01 0.03 0.05 0.50 0.22 0.06 0.02 0.14 0.01 0.11

TFe2O3 0.39 0.58 0.19 0.27 0.15 0.16 2.21 2.32 0.67 0.47 1.13 0.45 0.47
MgO 0.07 0.05 0.00 0.01 0.06 0.10 2.74 3.15 0.22 0.13 0.23 0.11 0.22
MnO 0.03 0.02 0.09 0.26 0.00 0.00 0.03 0.00 0.02 0.05 0.03 0.03 0.01
CaO 0.51 0.70 0.13 0.47 0.36 2.21 1.58 0.46 0.55 0.57 1.10 0.30 0.56

Na2O 7.43 3.98 2.73 8.31 2.63 6.52 1.71 2.46 0.92 3.39 3.42 4.22 6.32
K2O 1.59 3.18 10.11 0.28 7.46 0.54 2.69 1.12 4.35 6.24 4.74 4.47 0.86
P2O5 0.16 0.12 0.12 0.13 0.14 0.09 0.05 0.06 0.37 0.17 0.12 0.24 0.15
LOI 0.36 0.39 0.25 0.08 0.51 0.47 4.42 0.51 1.47 0.29 0.84 0.27 0.27

TOTAL 100.0 100.0 100.0 100.0 99.3 99.1 99.9 100.0 100.0 99.9 99.4 100.0 99.1
A/CNK 1.71 1.50 1.25 1.66 1.41 1.79 2.03 1.96 2.24 1.5 1.57 1.57 1.76
µg/g

Li 16.96 32.39 18.86 7.06 bdl 2.20 14.29 11.33 12.43 68.76 67.51 27.05 12.07
Be 531 8.56 17.37 115 4.01 11.26 2.42 0.45 2.85 1.71 10.82 1.41 0.57
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.46 76.07 0.00 187 0.00
Sc 1.64 0.66 0.31 0.31 0.09 0.69 11.85 4.57 18.31 1.85 1.47 2.95 4.05
Ti 0.00 0.00 0.00 0.00 113 56.32 0.00 0.00 0.00 0.00 721 0.00 437
V 0.25 0.27 0.11 0.26 4.25 7.09 295 24.53 0.80 1.67 9.83 0.44 5.39
Cr 3.31 1.69 0.93 2.19 0.00 0.00 58.43 25.38 2.83 4.23 0.00 5.28 0.00
Mn 0.00 0.00 0.00 0.00 21.19 29.87 0.00 0.00 0.00 0.00 200 0.00 56.14
Co 0.33 0.70 0.08 0.09 0.44 0.18 2.19 3.71 0.50 0.48 0.92 0.18 0.30
Ni 1.56 0.75 0.63 0.67 0.75 0.82 7.72 9.85 0.47 0.73 0.78 0.47 0.70
Cu 2.32 7.78 1.13 2.16 1.12 1.08 4.77 1.36 2.27 2.37 0.43 2.80 0.15
Zn 12.25 21.78 2.75 3.54 0.07 5.37 123 14.23 10.40 4.63 44.00 7.86 7.65
Ga 12.46 7.52 9.32 14.15 3.98 11.95 17.26 10.10 20.40 11.38 12.90 10.51 13.16
Rb 160 161 1083 17.20 289.10 9.58 133 41.01 181 285 440 141 31.46
Sr 2.02 21.14 1.95 0.61 36.49 88.43 76.74 22.58 35.16 154 65.21 19.94 52.06
Zr 170 3.51 4.86 10.71 20.85 11.80 56.46 57.12 16.59 16.95 69.89 16.37 54.16
Nb 7.90 8.85 8.20 59.61 3.38 1.53 12.48 7.76 20.39 0.89 20.51 1.20 22.88
Mo 0.05 0.01 0.01 0.02 0.05 0.02 11.73 0.07 0.02 0.06 0.16 0.03 0.19
Sn 0.00 0.00 0.00 0.00 6.06 1.64 0.00 0.00 0.00 0.00 21.23 0.00 7.28
Cd 0.24 0.12 0.09 0.34 0.00 0.00 0.10 0.01 0.02 0.09 0.00 0.09 0.00
In 0.01 0.01 0.01 0.01 0.00 0.00 0.07 0.02 0.15 0.04 0.00 0.03 0.00
Cs 53.63 23.10 93.32 6.22 57.45 0.60 6.72 1.84 6.73 5.66 33.95 0.18 1.00
Ba 2.93 32.97 5.51 3.13 1069 28.96 438 93.56 165.47 711.31 193 47.06 24.26
Hf 8.63 0.15 0.28 0.71 1.01 0.50 1.61 1.74 0.57 0.44 3.40 0.44 3.00
Ta 2.83 2.11 1.19 17.12 2.06 0.66 0.86 0.69 1.67 0.13 7.18 0.10 11.52
W 0.86 1.33 0.69 1.34 8.74 3.38 1.46 0.37 22.66 0.23 6.17 0.11 3.26
Tl 1.10 0.83 5.25 0.20 1.52 0.06 1.40 0.15 0.96 1.74 2.63 0.87 0.19
Pb 29.00 66.32 77.25 23.05 68.49 93.78 27.65 3.07 17.64 39.65 76.52 25.87 5.18
Bi 2.52 11.99 4.18 0.76 0.00 0.00 0.44 0.01 0.10 0.06 0.00 0.06 0.00
Th 3.11 1.25 0.80 2.22 1.01 0.62 12.48 15.08 0.47 0.64 14.88 0.15 8.20
U 25.39 3.09 14.76 5.87 9.39 28.66 7.05 3.45 0.93 0.58 50.10 0.86 11.85

µg/g
Y 37.27 5.06 0.45 4.14 4.59 7.49 17.28 10.71 14.38 2.41 14.88 1.98 12.03
La 6.70 1.46 0.33 1.85 2.24 4.13 38.23 25.62 2.42 3.34 17.83 0.93 3.26
Ce 12.25 2.38 0.51 3.60 4.47 6.44 65.32 46.62 8.00 5.50 35.60 1.76 6.94
Pr 1.40 0.25 0.05 0.37 0.47 0.65 8.95 6.22 0.96 0.43 4.18 0.16 0.85
Nd 4.50 0.81 0.16 1.04 1.61 2.15 29.84 20.04 4.19 1.37 15.22 0.52 3.09
Sm 1.61 0.27 0.04 0.44 0.40 0.54 4.94 3.60 2.19 0.27 3.79 0.16 1.11
Eu 0.04 0.26 0.02 0.01 0.29 1.13 0.89 0.68 0.19 0.78 0.55 0.04 0.14
Gd 1.79 0.30 0.03 0.36 0.51 0.71 4.19 2.97 2.08 0.24 4.37 0.15 1.70
Tb 0.63 0.09 0.01 0.12 0.11 0.20 0.61 0.41 0.57 0.04 0.71 0.04 0.43
Dy 5.70 0.77 0.06 0.75 0.74 1.23 3.05 1.98 3.34 0.29 3.53 0.30 2.44
Ho 1.19 0.15 0.01 0.09 0.17 0.28 0.60 0.35 0.53 0.06 0.63 0.05 0.47
Er 4.24 0.49 0.03 0.20 0.59 0.94 1.64 0.96 1.37 0.18 1.64 0.17 1.36
Tm 1.11 0.12 0.03 0.06 0.10 0.15 0.25 0.12 0.25 0.04 0.22 0.04 0.22
Yb 9.18 0.72 0.04 0.26 0.81 1.06 1.55 0.63 1.57 0.27 1.44 0.31 1.63
Lu 1.61 0.12 0.01 0.04 0.10 0.13 0.22 0.09 0.20 0.04 0.16 0.04 0.21

∑REE 89.2 13.2 1.76 13.3 17.2 27.2 178 121 42.3 15.3 105 6.65 35.9

Note: bdl indicates signal below the detection limit; Zone 1, 2, 3, 4 are from the Yamrang Pegmatite; WP, Wairung
Pegmatite; SP, Sang-sabu Pegmatite; Major mineral associations are: Zone 1, albite, quartz, tourmaline; Zone 2,
blocky perthitic microcline; Zone 3, musco-vite, microcline, quartz; Zone 5, miarolitic albite, quartz, beryl; WP,
graphic quartz & K-feldspar, muscovite; SP, graphic quartz & feld-spar, tourmaline.
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The beryl-bearing Ikhabu pegmatites have generally high total alkali contents (14 wt.%)
and a high Fe (1.3 wt.%) and Be content (4–531 ppm). Other notable elements include
Ca (2.2 wt.%), P (0.5 wt.%), Nb up to 60 ppm, and Ta up to 17 ppm (Table 2). The
barren pegmatites have a relatively lower Be content (<4.5 ppm), and a high Nb content
(73 ppm) with 13 ppm Ta, 2.4 wt.% Ca, 1.5 wt.% Fe and 0.5 wt.% P. The abundance of
Be, Li, Cs, Ta, and Nb in the whole rocks is shown in Figure 6. Enrichments of Be, Cs,
and Nb is noted in beryl-bearing Ikhabu pegmatites. Lithium is enriched in orthogneiss
(average-34.3, range 12–72 ppm), leucogranite (average-23.3, range 0.7–66 ppm), and barren
pegmatite (average-22, range 6–69 ppm) relative to the Ikhabu pegmatites (average-13.3,
range-0.7–33 ppm) (Supplementary Table S1). All studied rocks show a higher Nb than Ta
content (Figure 6). Among the granitic plutons, two samples of tourmaline-leucogranite
(KGP-18 and KGP-20) are enriched in Be (up to 11 ppm), Nb (21 ppm) and Ta (8 ppm)
(Figure 6). These leucogranites are also enriched in Fe (~1.2 wt.%) and Ca (~1.2 wt.%), with
P (0.1 wt.%), Mg (0.3 wt.%), and Ti (0.1 wt.%). The Be content in other plutons is <3 ppm,
although some are richer in Nb (~33 ppm) and Ta (12 ppm). The paragneiss host rocks of
Ikhabu pegmatites are rich in Fe (2.3 wt.%), with Ca (1.6 wt.%), Mg (3.2 wt.%), Ti (0.5 wt.%),
and P (~0.1 wt.%). The host rock of the Yamrang Pegmatite (YRP-14) contain ~2.4 ppm Be
and ~12.5 ppm Nb with low Ta (1 ppm) (Table 2).

Chondrite-normalized REE distribution patterns for the pegmatite samples show
LREE enrichments and both negative and positive Eu anomalies (Figure 7a,c). Positive Eu
anomalies in some pegmatite samples were probably due to wall rock interaction or weak
plagioclase fractionation; however, this does not affect the overall REE trend [34]. Beryl
pegmatites have a gentler REE chondrite pattern with a flatter HREE pattern than barren
pegmatites (Figure 7a,c). Some beryl pegmatite samples show a positive Tm anomaly.
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Figure 7. Chondrite-normalized REE patterns and primitive mantle-normalized multi-element
patterns for (a,b) Be-rich pegmatite; (c,d) Barren pegmatites, and (e,f) Orthogneiss and leucogranites.
Chondrite values are from [37], and primitive mantle values are from [38].

Chondrite-normalized REE distribution patterns for the leucogranites and orthogneiss
samples are similar, showing enrichment of light REE and negative Eu anomalies (Figure 7e).
However, the orthogneiss and Chyanthapu leucogranites show a flatter HREE pattern than
the Kanchenjunga leucogranites (Figure 7e).

The primitive mantle normalized multi-element diagrams for beryl-pegmatites, barren
pegmatites, leucogranites, and orthogneiss show a depletion of Ba, Nb, Sr, and moderate
to strong enrichment of Cs, Rb, U, K, Pb (Figure 7b,d,f). Beryl pegmatites have a steeper
normalized multi-element pattern than barren pegmatites, leucogranites, and orthogneiss,
with stronger element enrichments and depletions (Figure 7b).

5.2. Feldspar Chemistry

Feldspars were sampled and analyzed from all five zones of the Yamrang Pegmatite.
Samples YRP-1A, YRP-11A, YRP-13A were from zone 1; YRP-2B, YRP-12A from zone 2,
YRP-4, YRP-9A from zone 3, and YRP-7E was from zone 5. YRP-8B is the microcline sample
from the core margin associated with quartz and beryl. We have assigned it to core zone 4.
The feldspar in samples from zones 1 and 5 is albite, while zones 2, 3, and 4 contain perthitic
microcline (Figure 8). Feldspar samples show a homogeneous texture in BSE images.

Endmembers were determined in terms of Ab, An, and Or using feldspar major
element data from various zones. The representative major element contents are shown in
Table 3, and a full set of data is provided in Supplementary Table S2. The alkali feldspars
from zones 1 and 5 were albite (Na-alkali feldspar), and those from zones 2, 3, and 4
were perthitic microcline (K-alkali feldspar). Alkali feldspar from zone 1 has a higher
An component (An9–12), while the innermost part (core) has the lowest An (An0.1–0.7)
(Figure 9). Albite from zone 1 consists of Ab87–100, An0–12, Or0–2. The albite sample from
zone 5 is Ab96–98, An2–4, Or0.5–1, whereas the microcline composition from zone 2 is Ab10–98,
An0–2, Or1–91. Zone 3 feldspar is Ab10–99, An0–2, Or1–90 and zone 4 is Ab12–99, An0–1,
Or1–88 (Figure 9).

The average trace element data for the alkali feldspar (excluding the albite phase from
perthitic microcline) is presented in Table 4, and the full set of data is given in Supplemen-
tary Table S3. Alkali feldspar from the Yamrang Pegmatite consists of average contents of
K-42,479 ppm (range 114–165,414 ppm), Rb-543 ppm (range 1–2925 ppm), Cs-46 ppm (range
0–323 ppm), P-293 ppm (range 22–906 ppm), Ga-11.4 ppm (range 1–30 ppm), Nb < 1 ppm,
Ba-179 ppm (range 1–462 ppm), and Ta below the limit of detection. The K/Rb values
range from 46 to 1265, with K/Cs, Rb/Sr and Nb/Ta values of 375–13,259, 0–2259, and
3–20, respectively (Figure 10, Supplementary Table S3). The Cs vs. K/Rb plot for alkali
feldspar shows an overall negative correlation between K/Rb and Cs, and data reach the
Be-pegmatite field (Figure 10a). The median K/Cs value for alkali feldspar decreases from
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zones 2 to 5, with zone 1 and 3 being similar. The median K/Rb value also decreases from
zones 1 to 5, with zone 5 being slightly higher than zone 4. The median Nb/Ta and Rb/Sr
increase from zone 1 to 4 but Rb/Sr decreases in zone 5 (Figure 10).
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Figure 8. Photomicrographs and BSE images of alkali feldspar, muscovite, and quartz from the
Yamrang Pegmatite. (a) Assemblage of albite, primary muscovite, and secondary mica overgrowing
albite from zone 1 under cross-polarized light; (b) BSE image of homogeneous muscovite and
quartz from zone 2; (c) Perthitic microcline and tourmaline from zone 2 under plane-polarized light;
(d) Assemblage of perthitic microcline, anhedral quartz, and tourmaline from zone 3 under cross-
polarized light; (e) BSE image of perthitic microcline from zone 4; (f) BSE image of homogeneous
quartz from the core; (g) BSE image of muscovite sampled near core zone 4; (h) BSE image of miarolitic
homogeneous muscovite and quartz; (i) Platy albite and muscovite books assemblage from miaroles
under cross-polarized light. Mineral abbreviations: Ab, albite; Mc, microcline; Ms, muscovite; Qz,
quartz; Tur, tourmaline. Mineral abbreviations are after [10].
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Table 3. The representative EPMA major element composition of alkali feldspar from the Yamrang
Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal.

Zone 1 (Marginal Zone) Zone 2 (Outer IZ) Zone 3 (Inner IZ) Zone 4 (Core) Zone 5
(Miarolitic Zone)

Albite Microcline Microcline Microcline Albite

Sample YRP-
1A-F1

YRP-
1A-F2

YRP-
1A-F3

YRP-
12A-F1

YRP-
12A-F5

YRP-
6A-F1

YRP-4-
F2

YRP-
9A-F1

YRP-
8B-F2

YRP-
8B-F5

YRP-
7B-F2

YRP-
7B-F3

SiO2
(wt%) 65.16 65.04 64.86 63.82 64.44 64.60 65.36 64.47 64.30 64.32 67.86 68.22

TiO2 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.00
Al2O3 20.93 21.02 20.91 17.72 18.23 17.99 18.19 17.71 18.01 17.91 19.56 18.86
FeO 0.01 0.00 0.06 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.01 0.00
MnO 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.02 0.03 0.00 0.00
MgO 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02
CaO 2.56 2.50 2.49 0.01 0.00 0.04 0.04 0.00 0.05 0.01 0.78 0.36

Na2O 10.65 10.59 10.66 1.47 1.00 1.06 1.16 1.32 1.58 1.30 11.67 12.03
K2O 0.20 0.13 0.30 13.60 14.57 14.54 14.12 14.04 13.87 13.94 0.17 0.09
Total 99.52 99.28 99.28 96.61 98.26 98.30 98.89 97.58 97.84 97.54 100.07 99.59

Oxygen atoms = 8
Si (apfu) 2.870 2.873 2.863 3.042 3.027 3.033 3.051 3.045 3.023 3.040 2.960 2.984

Ti 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000
Al 1.087 1.094 1.088 0.995 1.009 0.995 1.001 0.986 0.998 0.998 1.005 0.972
Fe 0.000 0.000 0.002 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000
Mn 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.000
Mg 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001
Ca 0.121 0.118 0.118 0.001 0.000 0.002 0.002 0.000 0.002 0.001 0.036 0.017
Na 0.910 0.907 0.912 0.136 0.091 0.097 0.105 0.121 0.144 0.119 0.987 1.020
K 0.011 0.007 0.017 0.827 0.872 0.870 0.841 0.846 0.831 0.840 0.009 0.005

Total 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
End members
Ab 87.29 87.85 87.12 14.08 9.48 9.97 11.06 12.51 14.75 12.38 95.59 97.91
An 11.61 11.44 11.26 0.06 0.01 0.19 0.20 0.00 0.25 0.05 3.51 1.63
Or 1.10 0.70 1.62 85.85 90.51 89.84 88.74 87.49 85.00 87.57 0.90 0.46

Note: IZ, Intermediate zone; structural formulae were calculated based on 8 No. of oxygen.
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Table 4. The average LA-ICP-MS trace element composition of alkali feldspar from the Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal.

Zone 1 (Marginal Zone) Zone 2 (Outer IZ) Zone 3 (Inner IZ) Zone 4 (Core) Zone 5 (Miarolitic Zone)

Phase Albite Microcline Microcline Microcline Albite

n = 16 n = 5 n = 5 n = 3 n = 5

Element Avg Min Max σ Avg Min Max σ Avg Min Max σ Avg Min Max σ Avg Min Max σ

Li
(ppm) 2.31 1.27 4.27 0.81 6.30 3.66 11.1 2.88 24.2 3.47 48.7 19.8 48.6 19.9 69.0 25.6 - bdl bdl -

Be 5.61 1.27 10.4 3.42 5.29 4.36 7.15 1.19 5.51 3.48 8.52 2.32 4.12 3.94 4.40 2.28 13.3 11.3 15.7 1.71
B 22.5 11.4 43.8 8.7 26.7 21.1 37.5 7.5 38.1 27.3 49.0 15.4 - bdl bdl - - bdl bdl -
P 84.5 41.5 215 52.3 376 307 405 40.2 479 308 599 108 695 671 709 263 841 794 906 40.5

K/103 2.33 0.65 3.91 1.18 148 143 154 4.19 132 90.8 165 30.7 139 134 143 65.5 6.19 1.19 15.4 5.94
Ti 98.2 5.5 156 40.9 6.8 5.10 9.7 1.99 20.2 3.6 47.7 24.0 5.91 5.91 5.91 49.8 4.46 3.81 5.10 0.91
Ga 8.24 1.21 18.7 5.81 12.6 11.6 14.0 0.94 13.0 10.3 14.9 1.7 18.6 14.0 21.1 6.93 28.8 27.6 30.2 1.13
Rb 5.87 0.94 11.3 3.11 937 884 977 33.8 1272 816 1669 320 2697 2417 2925 980 72.8 2.08 177 78.9
Sr 119 6.33 237 83.7 22.7 17.0 34.3 6.7 17.0 1.0 69.2 29.2 5.01 1.07 7.35 64.6 0.94 0.52 1.74 0.49
Nb 0.55 0.40 0.79 0.14 0.25 0.22 0.28 0.04 - bdl bdl - - bdl bdl - - bdl bdl -
Sn 2.95 0.76 6.92 1.79 4.30 3.46 4.89 0.75 4.56 4.14 4.99 0.37 7.76 5.57 9.06 2.18 2.16 2.16 2.16 -
Sb 1.06 0.35 2.70 0.73 - bdl bdl - - bdl bdl - 0.92 bdl bdl - 1.63 1.47 1.78 0.22
Cs 0.48 0.45 0.54 0.04 19.1 12.7 40.6 12.1 95.4 13.5 323 131 106 82.9 122 104 22.7 5.95 41.0 17.6
Ba 217 0.92 462 151 71 43.4 95 19.0 41.1 1.72 145 59.6 29.9 29.8 30.0 112 21.1 bdl bdl -
La 5.04 2.80 8.00 1.90 0.14 0.12 0.17 0.02 0.68 0.11 2.11 0.96 - bdl bdl - 0.71 0.32 1.66 0.55
Ce 7.93 3.76 13.0 3.24 0.13 0.11 0.15 0.03 0.88 0.06 3.81 1.64 0.07 0.07 0.07 3.23 0.85 0.25 2.21 0.78
Ta 0.08 0.05 0.19 0.05 - bdl bdl - - bdl bdl - - bdl bdl - - bdl bdl -
Pb 23.5 1.02 153 44.7 186 167 236 28.4 158 118 194 35.8 133 113 167 64.1 58.7 38.9 98.3 24.1

K/Rb 540 345 1265 227 158 153 162 3.98 105 87.7 121 12.6 52.1 45.9 59.0 42.6 338 86.7 1017 454
K/Cs 4067 1439 7238 2554 9426 3683 12,052 3315 4091 387 6731 2824 1361 1101 1721 2309 455 375 566 99.5

Nb/Ta 7.16 2.70 10.0 2.23 - - - - - - - - - - - - - - - -
Rb/Sr 0.06 0.01 0.23 0.05 43.5 27.6 52.0 9.39 425 11.8 1196 452 1024 398 2259 627 65.0 4.00 169 71.9

Note: IZ, Intermediate zone; σ, one standard deviation; bdl, below detection limit for the utilized method; -, value could not be determined. The data of albite phase of perthitic
microcline from zone 2–4 are excluded in this table but are provided in Supplementary Table S3.
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Nb/Ta; (f) Rb/Sr of alkali feldspar from five zones of the Yamrang Pegmatite. Connecting lines join 

the median value. Ratios are calculated as ppm/ppm. Discrimination lines of barren, Be-, and Li, Be- 

pegmatites are from [39] as presented in [40]. 

  

Figure 10. (a) Plot of K/Rb vs. Cs (ppm); Box and whisker plots of (b) Be; (c) K/Cs; (d) K/Rb;
(e) Nb/Ta; (f) Rb/Sr of alkali feldspar from five zones of the Yamrang Pegmatite. Connecting lines
join the median value. Ratios are calculated as ppm/ppm. Discrimination lines of barren, Be-, and Li,
Be- pegmatites are from [39] as presented in [40].

At the magmatic stage, the Be content in alkali feldspar roughly decreases from outer
to inner zones (zone 1–4), with an average of 5.6 ppm (range 1–10 ppm) in zone 1, 5.3 ppm
(range 4–7 ppm) in zone 2, 5.5 ppm (range 3.5–8.5 ppm) in zone 3, and approximately 4 ppm in
zone 4 (Figure 10b, Supplementary Table S3). The miarolitic albite from zone 5 (representing
the hydrothermal stage) has the highest Be content of 11–16 ppm, higher than that in the zones
representing the magmatic stage (zones 1–4) (Figure 10b). The Be content is higher in alkali
feldspar from zone 1 (up to 10 ppm), and this zone also has the highest An component (An9–12)
among all magmatic zones (zone 1–4). Be in alkali feldspar shows a strong positive correlation
with Cl, Cr, Ga (r > 0.7) and a strong negative correlation with V, Ni (r < −0.7).
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5.3. Muscovite Chemistry

Muscovite was sampled from different zones of the Yamrang Pegmatite (Figure 8); however,
muscovite was not obtained from the core zone 4. Sample YRP-10A represents the innermost
part of zone 3, closest to the core zone. Sample YRP-13B was from zone 1, YRP-2B was from
zone 2, YRP-6A and YRP-10A were from zone 3, and YRP-5B and YRP-7F were from zone 5.
The zone 1 sample shows secondary muscovite overgrowing albite (Figure 8a), while other
samples show primary muscovite. Muscovite has a homogeneous texture in BSE images.

Representative muscovite major and trace element data from different zones of the
Yamrang Pegmatite are shown in Tables 5 and 6. The full set of data are given in Sup-
plementary Tables S4 and S5. The Mg-Li vs. Fe+Mg+Ti-AlVI diagram for mica [41] in
Figure 11a shows the composition of muscovite from the Yamrang Pegmatite. In Figure 11b,
the Fe/(Fe+Mg) vs. Al plot shows that all analyzed muscovite was primary.

Table 5. The representative EPMA major element composition of muscovite from the Yamrang
Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal.

Sample
Zone 1 (Marginal Zone) Zone 2 (Outer IZ) Zone 3 (Inner IZ) Zone 4 (Core) Zone 5 (Miarolitic Zone)
YRP-13B-

M1
YRP-13B-

M2
YRP-2B-

M1
YRP-2B-

M2
YRP-6A-

M1
YRP-6A-

M2
YRP-

10A-M1
YRP-

10A-M2
YRP-5B-

M1
YRP-7F-

M2

SiO2 47.08 47.95 46.98 47.15 48.25 47.87 46.19 47.00 47.29 47.77
TiO2 0.13 0.22 0.20 0.24 0.11 0.12 0.16 0.13 0.13 0.51

Al2O3 32.19 32.10 33.12 32.88 34.88 34.90 32.94 33.35 33.55 32.69
FeO 2.41 2.29 2.36 2.30 2.01 1.94 1.91 1.93 1.90 2.15
MnO 0.12 0.07 0.05 0.09 0.05 0.09 0.05 0.05 0.04 0.04
MgO 0.87 1.17 1.12 1.10 0.47 0.42 0.94 0.83 0.85 0.94
CaO 0.01 0.01 0.00 0.00 0.01 0.00 0.04 0.00 0.04 0.04

Na2O 0.33 0.42 0.74 0.64 0.87 0.82 0.84 0.71 0.57 0.56
K2O 9.53 9.39 9.08 9.13 9.09 9.13 9.26 9.40 9.30 9.34

F 0.25 0.51 0.18 0.21 0.23 0.30 0.41 0.23 0.30 0.19
Cl 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Cr2O3 0.02 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.02
NiO 0.02 0.00 0.01 0.01 0.00 0.05 0.00 0.00 0.01 0.03

Li2O* 0.00 0.08 0.00 0.00 0.00 0.02 0.05 0.00 0.02 0.00
H2O* 4.27 4.21 4.36 4.34 4.45 4.40 4.19 4.33 4.31 4.38

Subtotal 97.24 98.43 98.22 98.10 100.45 100.08 96.98 97.96 98.31 98.66
O=F,Cl 0.11 0.22 0.08 0.09 0.10 0.12 0.17 0.10 0.13 0.08
Total 97.13 98.21 98.15 98.02 100.35 99.95 96.81 97.86 98.18 98.58

Structural formulae based on O, OH, F = 24
Si 6.43 6.46 6.34 6.37 6.34 6.32 6.32 6.35 6.36 6.41

Al iv 1.57 1.54 1.66 1.63 1.66 1.68 1.68 1.65 1.64 1.59
Y

Al vi 3.61 3.56 3.61 3.60 3.74 3.75 3.63 3.67 3.68 3.58
Ti 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.05
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.28 0.26 0.27 0.26 0.22 0.21 0.22 0.22 0.21 0.24
Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00
Mg 0.18 0.23 0.23 0.22 0.09 0.08 0.19 0.17 0.17 0.19
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Li* 0.00 0.04 0.00 0.00 0.00 0.01 0.03 0.00 0.01 0.00
X
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01
Na 0.09 0.11 0.19 0.17 0.22 0.21 0.22 0.19 0.15 0.15
K 1.66 1.61 1.56 1.57 1.52 1.54 1.62 1.62 1.60 1.60

OH* 3.89 3.78 3.92 3.91 3.90 3.88 3.82 3.90 3.87 3.92
F 0.11 0.22 0.08 0.09 0.10 0.12 0.18 0.10 0.13 0.08

TOTAL 17.84 17.85 17.88 17.86 17.82 17.83 17.94 17.88 17.84 17.82
Y total 4.09 4.13 4.13 4.12 4.07 4.08 4.09 4.07 4.09 4.07
X total 1.75 1.73 1.76 1.74 1.75 1.75 1.84 1.81 1.75 1.75
Al total 5.18 5.10 5.27 5.23 5.40 5.43 5.31 5.31 5.32 5.17

Fe/Fe+Mg 0.61 0.52 0.54 0.54 0.70 0.72 0.53 0.57 0.56 0.56
Fe+Mg+Aliv+Ti 4.07 4.07 4.12 4.11 4.07 4.06 4.06 4.07 4.08 4.06

Mg-Li 0.18 0.19 0.23 0.22 0.09 0.07 0.16 0.17 0.16 0.19
Fe+Mg+Ti-Alvi −3.14 −3.04 −3.09 −3.10 −3.42 −3.44 −3.21 −3.27 −3.28 −3.10

Note: IZ, Intermediate zone; *, calculated from stoichiometry; Li2O* calculation after [28]; H2O* calculation after [29].
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Table 6. The average LA-ICP-MS trace element composition of muscovite from the Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal.

Element
Zone 1 (Marginal Zone) Zone 2 (Outer IZ) Zone 3 (Inner IZ) Zone 4 (Core) Zone 5 (Miarolitic Zone)

n = 16 n = 5 n = 5 n = 3 n = 5
Avg Min Max σ Avg Min Max σ Avg Min Max σ Avg Min Max σ Avg Min Max σ

Li (ppm) 526 432 593 84.0 360 329 392 20.1 282 256 327 24.3 535 519 558 16.5 567 480 696 62.9
Be 30.3 29.9 30.8 0.49 23.2 18.3 28.0 2.94 29.4 25.6 33.4 2.84 29.8 21.0 46.9 10.6 28.8 24.3 32.0 2.71
B 154 109 199 44.7 167 114 195 29.1 200.5 193.5 205.4 4.57 162 131 200 28.5 140 119 167 14.5

Na 4237 3562 4928 683 4145 3473 4488 325 5459 5367 5546 63.6 5436 4114 6869 981 4259 3238 5081 599
Mg 4521 3939 4847 505 4883 4553 5219 248 2233 2159 2393 75.7 5079 4543 5738 486 5184 4512 5851 498
P 77.5 67.3 88.5 10.6 65.2 55.1 72.8 9.12 63.2 52.6 81.8 11.0 82.6 57.5 101 22.4 87.9 71.6 113 14.6

K/103 110 110 110 0.29 109 108 111 1.22 103 100 105 2.04 104 99 113 5.51 127 122 136 5.02
Sc 14.2 13.9 14.9 0.55 18.4 13.5 20.3 2.3 15.6 15.0 16.2 0.48 15.0 11.3 18.0 2.88 10.5 2.64 20.8 7.95
Ti 1009 749 1248 250 1197 1128 1286 57.0 706 678 732 16.1 1016 902 1240 146 2574 1176 4491 1485

Mn 460 410 489 44.0 275 248 297 22.9 421 406 439 10.5 428 360 524 70.5 674 515 986 171
Fe 15,337 14,085 15,997 1086 15,394 14,500 16,072 544 15,229 14,521 15,752 402 14,695 12,833 16,168 1575 21,384 16,703 29,575 4730
Zn 73.1 54.4 89.3 17.5 55.6 48.4 65.4 6.3 104 95.0 120 7.8 62.6 18.9 75.3 24.4 98.8 59.7 203 41.3
Ga 128 112 159 26.5 90.5 87.4 92.5 1.8 146 141 151 3.1 117 106 125 8.29 155 134 181 18.2
Rb 2475 1540 4057 1377 920 774 1354 196 2125 2056 2202 49 1525 1480 1561 40.8 4398 2172 6881 2288
Sr 0.73 0.42 0.97 0.28 1.5 0.9 2.0 0.4 0.47 0.18 0.77 0.30 - bdl bdl - 0.44 0.35 0.56 0.07
Zr 1.60 0.54 3.28 1.47 2.5 1.4 3.1 0.6 1.29 1.00 1.85 0.29 2.75 1.84 4.20 0.93 2.22 1.74 2.55 0.25
Nb 296 186 367 96.5 87.6 68.7 142 24.4 245 236 252 6.64 158 136 182 18.0 450 213 701 234
In 1.15 0.45 1.95 0.75 0.5 0.3 0.8 0.2 0.73 0.50 0.96 0.15 - bdl bdl - 2.05 0.61 3.58 1.41
Sn 246 73.5 473 205 87.4 63.3 154 31.4 140 133 144 4.48 68.4 58.7 84.5 12.8 491 113 880 385
Cs 188 47.6 390 179 37.1 13.8 121 39.9 63.6 61.9 66.2 1.48 32.6 30.7 34.4 1.46 310 54.0 621 264.8
Ba 29.3 21.1 34.1 7.16 26.3 18.8 49.6 10.5 - bdl bdl - 10.6 2.68 17.7 7.85 3.32 1.14 6.77 2.14
Ta 103 43.6 176 66.9 12.4 4.9 45.0 14.6 15.1 13.9 15.9 0.80 14.5 9.8 22.4 5.13 90.8 17.9 174 72.1
W 38.3 28.4 44.4 8.68 46.6 42.6 49.8 2.7 42.1 38.1 44.6 2.26 41.5 32.2 61.8 11.6 49.0 45.4 53.4 2.7
Pb 9.7 6.9 11.9 2.6 13.7 12.2 15.2 0.9 7.52 6.97 7.95 0.36 12.1 9.7 15.5 2.34 16.3 12.8 20.5 2.4

K/Rb 52.8 27.2 71.2 22.9 122 80.7 140 19.6 48.4 47.8 49.9 0.71 68.0 63.2 72.9 3.55 38.9 18.0 59.9 21.2
K/Cs 1150 282 2305 1042 5270 906 7900 2801 1618 1573 1675 36.5 3184 2961 3423 199 1207 199 2375 1044

Nb/Ta 3.4 1.9 4.3 1.3 11.0 3.1 15.9 4.4 16.2 15.3 17.0 0.69 11.6 8.15 13.8 2.42 7.3 4.0 12.9 3.4
Rb/Sr 3369 2258 4183 997 624 389 937 182 6434 2751 11,837 4781 - - - - 10,070 4309 19,660 5700

Note: IZ, Intermediate zone; σ, one standard deviation; bdl, below detection limit; -, value could not be determined.
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Figure 11. (a) Fe+Mg+T-AlVI vs. Mg-Li diagram of mica showing the position of muscovite of
Yamrang Pegmatite [41]; (b) Total Al (apfu) vs. Fe/(Fe+Mg) diagram of muscovite from Yamrang
Pegmatite. The discrimination line of primary and secondary muscovite is from [42].

The K/Rb value ranges from 18 to 140, K/Cs from 199 to 7900, Rb/Sr from 170 to 19,660,
and Nb/Ta from 2 to 17 (Table 6). In Figure 12a, the Cs vs. K/Rb plot of muscovite shows
an overall negative correlation between K/Rb and Cs, and data points are distributed
between Mus-class and REL-class pegmatites. In Figure 12b, the Be vs. K/Rb plot of
muscovite shows few data points falling in the REL-class pegmatite field. Muscovites
from the miarolitic zone are the most enriched in Be and Cs. The median Be content of
muscovite fluctuates less in all zones, ranging from 23 to 30 ppm (Figure 12c). The median
muscovite K/Rb and K/Cs value decreases from zones 2 to 5 (Figure 12d,e). The Nb/Ta
ratio is highest at zone 3, corresponding to columbite-tantalite mineralization (Figure 12f).
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Figure 12. Plots of (a) K/Rb vs. Cs (ppm); (b) K/Rb vs. Be (ppm); Box and whisker plots of (c) Be;
(d) K/Rb; (e) K/Cs; (f) Nb/Ta of muscovite from five zones of Yamrang Pegmatite. Connecting lines
join the median value. Ratios are calculated from ppm/ppm value. Discrimination lines of Mus-class
pegmatites and REL-class pegmatites are from [43], as presented in [40].

6. Discussion
6.1. Classification of the Yamrang Pegmatite

Geoscientists have made many attempts to find a suitable classification scheme for
pegmatites [2,3,24,39,44–47]. Ginsburg et al. (1979) [45] divided pegmatites into four
categories based on the depth of emplacement, relationship to metamorphism, and granitic
plutons: abyssal, muscovite, rare-element (REL) and miarolitic classes. Later this was
revised into five classes: abyssal, muscovite, muscovite-rare-element, rare-element, and
miarolitic, along with the introduction of two distinct petrogenetic families (LCT and NYF)
by Černý and Ercit (2005) [2,3], which are widely used today (Figure 13).
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Figure 13. Schematic P-T fields of regional host rocks of five classes of granitic pegmatites: abyssal
(AB), muscovite (MS), muscovite - rare-element (MSREL), rare-element (REL), and miarolitic (MI)
(redrawn from [3]). Yellow star denotes the Yamrang Pegmatite in the REL pegmatite field.
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Economically important, rare-element class pegmatites containing an economic concen-
tration of lithophile rare elements are divided into two subclasses: REL-REE, corresponding
to the NYF family, and REL-Li, corresponding to the LCT family. REL-REE subclass peg-
matites are derived from post to anorogenic metaluminous to peraluminous granites with
allanite, monazite, euxenite, and gadolinite as distinctive minerals. In contrast, REE-Li
pegmatites are derived chiefly from syn to late orogenic peraluminous granites and in-
trude upper-greenschist to amphibolite facies host rocks (Figure 13) with beryl, columbite,
tantalite, spodumene, petalite as distinctive minerals [2,3]. The Yamrang Pegmatite in-
truded into amphibolite facies Ky-Sil grade schistose gneiss, and contains beryl, with
columbite-tantalite in inner zones (3–5). These features are consistent with the REL class,
beryl type, beryl-columbite subtype pegmatite (Figure 13). The alkali feldspar, having
K/Rb 30–150, Rb ~3000 ppm and Cs > 100 ppm, and muscovite having K/Rb 18–50, Rb
~6000 ppm, Cs > 500 ppm and Ta > 65 ppm indicates that the Yamrang Pegmatite is a low
to intermediately fractionated REL pegmatite (Figures 10 and 12) [48]. Barton and Young
(2002) [49] divided Be-mineralization based on alumina and silica saturation into four types:
strongly to weakly peraluminous, metaluminous to weakly peraluminous, peralkaline to
metaluminous quartz-saturated, and silica-undersaturated peralkaline types. According to
their classification, the pegmatitic Be-mineralization of the Ikhabu pegmatite Field with a
high ASI index > 1.2 can be classified as a strong to weak peraluminous type.

Černý (1991) and Černý and Ercit (2005) [2,3] split REL class pegmatites into two
distinct petrogenetic families: LCT and NYF types, based on trace element signatures. The
LCT family is related to S-type sources in an orogenic setting with a peraluminous nature,
abundant rare alkalis, Be, Bo, P and Sn, with a low total REE content (<500 ppm), and a
low Nb/Ta ratio. In contrast, the NYF family is related to A-type sources commonly in
an anorogenic setting, with a subaluminous to metaluminous nature, enriched HREE and
F, and high Nb/Ta ratios [1–3]. The LCT and NYF families were proposed using trace-
element signatures expressed by exotic minerals such as spodumene, pollucite, tantalite,
pyrochlore, etc., which are only exhibited by the most fractionated pegmatites [2,3,50,51].
Hence, the LCT pegmatites are expected to be enriched in distinctive elements, Li, Cs, and
Ta; however, this is not always the case with less fractionated pegmatites. Besides the
enrichment of distinctive minerals, several other characteristics are used to classify the
pegmatite into the LCT family, such as peraluminous nature, high Be, Rb, Sn, Ga, B, P, F,
low total REE content (<500 ppm), low U, Y, Zr, Ti, a mineral assemblage of abundant beryl,
tourmaline, muscovite, spessartine, minor presence of topaz, apatite and also association
with an orogenic setting [3,50,52,53].

The whole rock geochemistry of the studied pegmatites and granites shows a strong
peraluminous nature (ASI index of 1.2–3.3) and plots in the S-type field (Figure 5). The
total REE content of the studied pegmatite and granite samples is very low, ranging from
1 to 161 ppm (Supplementary Table S1). The REE chondrite-normalized patterns show
a negative slope with a negative Eu anomaly, although some pegmatite samples show a
positive Eu anomaly. The primitive mantle normalized multi-element diagrams for the
Yamrang Pegmatite show strong enrichment of Cs, Rb, Pb, U, K, and depletion of Ba, Nb, Sr,
indicating a continental crustal origin. The Yamrang Pegmatite displays characteristics of
low to intermediate fractionation, and does not exhibit an enrichment of distinctive minerals
(Li, Cs, Ta) typical of LCT pegmatite; however, its strongly peraluminous nature, low total
REE content, mineral assemblage of beryl, tourmaline, spessartine and columbite–tantalite,
depletion of Ba and Nb, and enrichment of Pb, Rb and Cs in primitive mantle normalized
multi-element plots suggest that the beryl-bearing Yamrang Pegmatite corresponds to the
LCT pegmatite family.

This study also shows that the studied orthogneiss and leucogranite are S-type plutons.
The S-type source of the orthogneiss and leucogranite agrees with previous research on
these Himalaya plutons [54–56]. The S-type leucogranites with Be enrichment (up to
8–11 ppm) support the possibility of rare-metal mineralization prospects in the terrain, as
discovered in other parts of the Himalayas [20,57–60].
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6.2. Beryl Saturation Process in Yamrang Pegmatite
6.2.1. Magmatic Stage

The rare-element pegmatite whole-rock Be contents are reported in the range of
~32–575 ppm [61,62]. The whole-rock sample from the zone 1 of the Yamrang Pegmatite is
enriched in Be (up to 531 ppm; sample YRP-11), but is not beryl saturated with a mineral
assemblage of albite (60%), quartz (35%), with subordinate muscovite and tourmaline
(5%). The Be content in quartz reported from worldwide REL pegmatites is the lowest
(average, 0.1–0.44 ppm) [63,64] of all rock-forming minerals discussed in this paper. Hence,
we assigned quartz to the bottom of the Be partition sequence. Albite from zone 1 has
a relatively higher calcium component (An9–12) and a higher Be content (~10.4 ppm)
than alkali feldspar from other zones (2–4). In addition, the Be content of muscovite
(~31 ppm) and tourmaline (~15 ppm) from this zone is relatively higher than from later
zones (zones 3, 4) (Be contents of beryl and tourmaline discussed in this paper are taken
from our unpublished data). Accordingly, the Be partition sequence as determined by
the Be content in coexisting minerals from zone 1 is muscovite > tourmaline > albite >
quartz (Figure 14). The Be content in muscovite from zone 2 is (~28 ppm), with tourmaline
and perthitic microcline having ~11 ppm and ~7 ppm, respectively. This yields a Be
partition sequence of muscovite > tourmaline > microcline > quartz for this zone (Figure 14).
Experimental models of beryl saturation show that at high temperatures (~700 ◦C), 99% of
the Be in the melt can be accommodated by rock-forming minerals [65]. While beryl may
not crystallize from a melt with 140 ppm Be at 700 ◦C, at a lower temperature (~400 ◦C),
even 40 ppm Be in the melt can trigger beryl crystallization [65]. Beryl undersaturation in
zones 1 and 2 probably occurred due to high-temperature conditions at the early pegmatite
intrusion and consolidation stage. Additionally, Be is most compatible in plagioclase
with a composition of An31, and Be compatibility decreases with digression from An30,
on either side [65]. In agreement with this study, alkali feldspar enriched in the calcic
component (An9–12) from marginal zone 1 had a higher Be content (up to 10 ppm) than
the inner magmatic zones (zones 2–4). The ASI index of marginal zone 1 is lower (1.7)
than that of inner zones (2.2), which may have increased the solubility of Be in the melt,
favoring retention in the melt over partitioning into crystals under the higher temperature
conditions [66].

Zone 3 is the first zone of magmatic beryl saturation, where beryl coexists with quartz
and K-feldspar (microcline). Beryl appears during the late magmatic stages in zone 3 and
exhibits a single episode of beryl saturation. This zone has low whole-rock Be content
(5–31 ppm), with 4–9 ppm Be in microcline and 4–10 ppm Be in tourmaline, but the zone 3
muscovite has a similar Be content (26–33 ppm) as muscovite in other zones. The Be
partition sequence for zone 3 is beryl > muscovite > tourmaline > microcline > quartz
(Figure 14). In zone 4, beryl coexists with K-feldspar and quartz at the core margin and
forms a beryl and quartz assemblage at the center. The microcline from the zone 4 has the
lowest Be content (~4 ppm) among all zones, while muscovite is enriched in Be (21–47 ppm)
relative to other zones. It should be noted that microcline and muscovite samples were
not precisely taken from the core but were as close to the core as possible. The Be partition
sequence for zone 4 is beryl > muscovite > microcline > quartz (Figure 14).

Evensen and London (2002) calculated Be partition coefficients for a variety of rock-
forming minerals, demonstrating that Be is compatible in the order of cordierite >> calcic
oligoclase (An31) > white mica > dark mica > albite > alkali feldspar ∼= quartz [65]. Similarly,
Hezel et al. (2011) studied the Be partition sequence among cogenetic minerals in natural
samples based on their Be concentration showing the order as staurolite > plagioclase >
muscovite > tourmaline > biotite > K-feldspar > garnet [67]. The Be partition sequences
among coexisting minerals at the Yamrang Pegmatite magmatic stage is in agreement with
these experimental and natural sample data.
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Figure 14. Box and whisker plot of Be-concentration in minerals and whole rock samples from five
zones of Yamrang Pegmatite. Zone 1–4 represents the magmatic stage, and zone 5 represents the
hydrothermal stage. Beryl saturation occurred at the late magmatic to the hydrothermal stage. Be
content of beryl and tourmaline are taken from unpublished data of this author.

Low temperatures were likely prevalent during the late pegmatite crystallization stage,
significantly increasing beryl saturation and many other factors likely contributed to beryl
saturation in zones 3–5. As crystallization progressed towards the core of the pegmatite,
calcic alkali feldspars were deposited in the outer zones, and incompatible elements and
fluxes were concentrated in the residual melt. Hence, Be was saturated in the inner zones.
In addition, interior zones with a low abundance of minerals compatible with Be, such as
calcic albite and tourmaline, may have meant the melt became increasingly enriched in Be,
facilitating beryl saturation late in pegmatite crystallization.

6.2.2. Hydrothermal Stage

Miarolitic cavities are empirical evidence of aqueous fluid and record fluid saturation
conditions during pegmatite crystallization [50,51,68,69]. Texturally late, miarolitic cavities
(designated as zone 5) represent the hydrothermal stage of Yamrang Pegmatite (Figure 14).
Zone 5 is not geometrically conformable with previous magmatic zones; rather, it comprises
a group of pockets overprinted on magmatic zones along the core margin and along the
boundary of zone 2 and 3 in the east portion. Not all pockets have the same mineral
assemblages or evolution stages. Beryl-bearing pockets show the highest stage of evolution
with a typical mineral assemblage of albite-quartz-muscovite-tourmaline-beryl, which was
also obtained experimentally from vapor precipitation [70]. The Be partition sequence
among the coexisting minerals from zone 5 is beryl > muscovite > albite > tourmaline
> quartz (Figure 14). In contrast to the magmatic zones, we observed Be to be more
compatible in albite than in tourmaline in the miarolitic cavities. The pocket-forming P-T
conditions in the pegmatite system are constrained as 2–3 kbar and 550 ◦C to as low as
300 ◦C [45,50,51], suggesting low-temperature conditions during crystallization of zone 5.
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Low temperatures can induce beryl saturation at a low concentration of Be in the melt [65];
however, the whole-rock Be content is high (114 ppm) in the miarolitic zone. This suggests
Be was enriched in the fluid during the late stages of magmatic crystallization, although
Be is less compatible in the vapor phase than in silicate melt with a melt/vapor partition
coefficient of 0.2 at 650 ◦C [70]. A high concentration of Be in the fluid and low-temperature
conditions probably facilitated beryl saturation in miarolitic cavities.

6.3. Exploration Implications

Whole rock samples of barren pegmatite yielded < 4.5 ppm of Be, while beryl-
pegmatites predominantly had >10 ppm Be (Figure 6), which agrees with the range of Be
concentration in fertile granites as listed in [48] (1–604 ppm). The chondrite-normalized
REE patterns of beryl-bearing pegmatites have a gentler negative slope than barren peg-
matites. The HREE pattern of beryl-pegmatites is flatter than that of barren pegmatites,
likely due to the fractionation of garnets. The primitive mantle normalized multi-element
diagrams for beryl-pegmatites and barren pegmatites look similar, however, the pattern
for beryl pegmatites is steeper with stronger enrichment and depletion of elements, and
barren pegmatites show more extreme Ti depletion than beryl pegmatites (Figure 7).

The median K/Rb, K/Cs, and Be content of alkali feldspar and muscovite roughly
decreases from outer to inner zones in the Yamrang Pegmatite, reflecting increasing frac-
tionation [2,48,50,71]. However, it should be noted that several fractionation indices break
their trend in zone 2 (Figures 10 and 12) and further research will investigate this feature.

The Be content of alkali feldspar ranges from 1 to 16 ppm in the Yamrang Pegmatite. A
similar range of alkali feldspar Be content is reported from the Koktokay No. 3 (2–18 ppm)
and Luumäki gem beryl pegmatites (7–24 ppm) [72,73]. The median Be content of mus-
covite shows little variation within zones, ranging from 23 to 30 ppm, similar to the
Be concentration range in muscovite from REL-pegmatites such as the Koktokay No. 3
(8–71 ppm), Kenticha (11–38 ppm), and Renli pegmatites (10–23 ppm) [72,74,75]. While the
~10 ppm of Be in alkali feldspar and ~30 ppm of Be muscovite could be a useful indicator of
proximal beryl mineralization, the lack of data on Be content in barren pegmatite feldspar
and mica make this supposition inconclusive. Nonetheless, whole-rock Be contents of
>10 ppm may serve as a potential exploration vector to beryl mineralization in the region.
In addition, knowledge of the beryl concentration in zones 3, 4, and 5 may help refine
selective mining of the Yamrang Pegmatite.

Beryllium shows a strong positive correlation with Cl, Cr, Ga (r > 0.7) and a strong
negative correlation with V, Ni (r < −0.7) in alkali feldspar. These elements in alkali feldspar
can also be potential indicators of Be enrichment. We also observed that tourmaline has
a significant Be concentration (up to 15 ppm), similar to alkali feldspar (1–16 ppm) in the
Yamrang Pegmatite. Tourmaline comprises a significant volume in the marginal zones in
pegmatites and likely plays an important role in the Be enrichment process.

Future work should focus on comparing the mineral chemistry of the Yamrang Peg-
matite with barren pegmatites and Be-rich leucogranites. More data on mineral geochem-
istry from different zones will help elucidate Be-enrichment processes during the magmatic
and hydrothermal stages.

7. Conclusions

The conclusions of this study can be summarized as follows:

1. The Yamrang Pegmatite can be classified as an intermediate-fractionated REL class,
beryl type, beryl-columbite subtype pegmatite of the LCT family.

2. High temperature, low fractionation, dominance of Be-compatible mineral phases
such as muscovite, calcium-rich alkali feldspar, and tourmaline resulted in beryl
undersaturated marginal zones. In contrast, low temperature, high fractional crys-
tallization, and low abundance of Be-compatible mineral phases resulted in beryl
saturated inner zones.
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3. The Be partition sequence among coexisting minerals at the magmatic stage is beryl >
muscovite > tourmaline > alkali feldspar > quartz, whereas at the hydrothermal stage,
the sequence is beryl > muscovite > albite > tourmaline > quartz.

4. A whole rock Be content of >10 ppm may indicate beryl mineralization in the region.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12050564/s1, Table S1: The whole-rock major and trace
element composition of pegmatites, gneisses and granites, Eastern Nepal; Table S2: The EPMA major
element composition of alkali feldspar from the Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF),
Eastern Nepal; Table S3: The LA-ICP-MS trace element composition of alkali feldspar from the
Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal; Table S4: The EPMA major element
composition of muscovite from the Yamrang Pegmatite, Ikhabu Pegmatite Field (IPF), Eastern Nepal;
Table S5: The LA-ICP-MS trace element composition of muscovite from the Yamrang Pegmatite,
Ikhabu Pegmatite Field (IPF), Eastern Nepal.
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39. Trueman, D.L.; Černý, P. Exploration for Rare-Element Granitic Pegmatites. In Proceedings of the Short Course in Granitic

Pegmatites in Science and Industry; Mineralogical Association of Canada: Quebec, QC, Canada, 1982; pp. 463–493.
40. Morteani, G.; Preinfalk, C.; Horn, A.H. Classification and Mineralization Potential of the Pegmatites of the Eastern Brazilian

Pegmatite Province. Miner. Depos. 2000, 35, 638–655. [CrossRef]
41. Tischendorf, G.; Gottesmann, B.; Förster, H.-J.; Trumbull, R.B. On Li-Bearing Micas: Estimating Li from Electron Microprobe

Analyses and an Improved Diagram for Graphical Representation. Mineral. Mag. 1997, 61, 809–834. [CrossRef]
42. Miller, C.F.; Stoddard, E.F.; Bradfish, L.J.; Dollase, W.A. Composition of Plutonic Muscovite: Genetic Implications. Can. Mineral.

1981, 19, 25–34.
43. Cerny, P.; Burt, D.M. Paragenesis, Crystallochemical Characteristics, and Geochemical Evolution of the Micas in Granite

Pegmatites. Rev. Mineral. Geochem. 1984, 13, 257–297.

http://doi.org/10.1093/petroj/40.1.3
http://doi.org/10.1144/0016-764902-126
http://doi.org/10.1130/0091-7613(2000)28&lt;403:TEOMCD&gt;2.0.CO;2
http://doi.org/10.1016/j.jseaes.2004.03.004
http://doi.org/10.1016/j.tecto.2015.12.001
http://doi.org/10.1016/j.lithos.2014.08.022
http://doi.org/10.1016/j.lithos.2019.105319
http://doi.org/10.1016/j.lithos.2012.04.012
http://doi.org/10.1144/GSL.SP.1986.019.01.08
http://doi.org/10.5741/GEMS.33.1.24
http://doi.org/10.1016/j.oregeorev.2015.02.022
http://doi.org/10.19700/j.0379-1726.2002.03.010
http://doi.org/10.1180/minmag.1986.050.356.08
http://doi.org/10.1127/ejm/2/5/0595
http://doi.org/10.1007/s11434-008-0086-y
http://doi.org/10.1111/ggr.12230
http://doi.org/10.1111/ggr.12301
http://doi.org/10.1002/9781444328509.ch9
http://doi.org/10.1016/0012-8252(94)90029-9
http://doi.org/10.1130/0016-7606(1989)101&lt;0635:TDOG&gt;2.3.CO;2
http://doi.org/10.1016/B978-0-444-42148-7.50008-3
http://doi.org/10.1144/GSL.SP.1989.042.01.19
http://doi.org/10.1007/s001260050268
http://doi.org/10.1180/minmag.1997.061.409.05


Minerals 2022, 12, 564 29 of 30

44. Cameron, E.N.; Jahns, R.H.; Mcnair, A.H.; Page, L.R. Internal Structure of Granitic Pegmatites, No. 2. Econ. Geol. Urbana. Ill. 1949,
2, 115.

45. Ginsburg, A.I.; Timofeyev, I.N.; Feldman, L.G. Principles of Geology of the Granitic Pegmatites. Nedra. Moscow 1979, 296.
46. Zagorsky, V.Y.; Makagon, V.M.; Shmakin, B.M. The Systematics of Granitic Pegmatites. Can. Mineral. 1999, 37, 800–802.
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