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Abstract: To study paste backfill corrosion mechanisms in chloride and sulfate environments, we
studied the effect of chloride and sulfate on the strength of paste backfill after 7, 14, 28, and 40 days.
The chloride solutions and sulfate solutions in concentrations are 0 g/L, 0.5 g/L, 1.5 g/L, 4.5 g/L, or
15 g/L. The obtained specimens were analyzed by performing uniaxial compressive strength tests,
X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results show that chloride
and sulfate significantly increased the uniaxial compressive strength of the specimen at a very
fast speed in the early stage of the test, and the original structure of the specimen was destroyed
and its uniaxial compressive strength decreased with the gradual corrosion. The reason for this
characteristic is because the chloride reacts with the paste backfill to form calcium chloroamine
hydrate (Ca4Al2O6Cl2·10H2O), and the sulfate reacts with the paste backfill to form dihydrate
gypsum (CaSO4·2H2O), mirabilite, and ettringite. In the early stage, these substances can fill the
pores to improve the compressive strength, and then expand to damage the structure of the backfill
and reduce its compressive strength. In addition, sulfate can enhance the decomposition of C-S-H,
which results in a faster destruction of specimens than in chloride environments.

Keywords: mine backfill; chloride solution; sulfate solution; corrosion mechanism

1. Introduction

Paste backfill is a type of cementitious mine filling material mainly composed of
cement, fly ash, and coal gangue that has been widely used worldwide [1–4]. The coal
gangue is a kind of solid waste from coal mining and washing, accounting for approx-
imately 10~15% of the total coal production [5]. The continuous accumulation of coal
gangue without adequate storage and disposal facilities could lead to human health and
environmental disasters in the long run [6–9]. Backfilling with coal gangue as material
can effectively reduce the discharge of solid waste and contribute to the sustainable devel-
opment of the mine [10–13]. The stability of the backfill is an extremely important factor
in mine backfilling [14–18], and researchers have focused on the factors affecting backfill
strength [19–21].

In recent years, extensive research on the effect of Cl− and SO4
2− on the strength of

mine backfill have been conducted. Wu et al. studied the seepage characteristics of colloidal
sand backfill and concluded that the cement hydration reaction inside the backfill structure
caused a considerable quantity of hydration products to fill the internal pore structure [22].
Kitazume et al. conducted laboratory tests to determine how the long-term strength of
cement-reinforced soil changes with age, concluding that cement-reinforced soil submerged
in fresh water and seawater deteriorates sequentially from the outside to the inside with
increasing submersion time [23]. Bai et al. studied the influence of acid- and alkali-
containing groundwater environments on the strength of cementitious soil, concluding that
the acidic environment had a strong corrosive effect, reducing the compressive strength of
the soil, whereas the alkaline environment promoted the hydration of the cement in the soil,
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thereby improving its compressive strength [24]. Chew et al. found needle-like crystals,
namely ettringite, in concrete corroded by sulfate [25]. Chen et al. studied the effects of
chloride as an early strength agent on the mechanical properties and microstructure of
gangue-cemented paste backfill (GCPB) and found that chloride significantly affects the
early-age strength of GCPB [26]. These works are of great significance to understanding
the influence of chloride and sulfate on the stability of backfill. In actual implementation,
the stability of the backfill will face the threat of mine water after it is injected into the
goaf [27,28]. The strength of the backfill is inevitably affected by Cl− and SO4

2− in the
mine water [29–32]. However, the corrosion mechanism of backfill by Cl− and SO4

2− in
mine water environment needs to be further studied. It is important to study the corrosion
mechanism of backfill by Cl− and SO4

2− on the stability of the backfill. Therefore, in this
study, the uniaxial compressive strengths and external surfaces of paste backfill specimens
exposed to chloride or sulfate solutions with approximate mine water concentrations were
accordingly analyzed and tested. The microscopic phase changes and structural changes of
the specimens were then investigated to explore the corrosion mechanism of mine water
on cementitious paste backfill.

2. Experimental Materials and Methods

The paste backfill used in this study was mainly prepared by mixing cement, fly ash
and coal gangue. The cement was 42.5# Ordinary Portland Cement (OPC); the first-grade
fly ash was produced by Yuanheng Water Purification Material Factory in Gongyi City.
Fly ash is mainly composed of a small amount of unburned carbon particles, fine crystals
and glass. The addition of fly ash can significantly improve the pore structure of cement
paste. The coal gangue was from Bayangol in Inner Mongolia. Its main components are
Al2O3 and SiO2. It also contains a small amount of Fe2O3, CaO, MgO, Na2O, and K2O. The
uniaxial compressive strength of coal gangue used in this study is 21 MPa. The mass ratio
of coal gangue cementing filling material is water:fly ash:coal gangue:OPC = 0.5:0.4:9:1. The
diameter of crushed coal gangue particles is less than 25 mm and gangue gradation (content
of coal gangue with particle diameter < 5 mm) = 0.4. This recipe has been successfully
applied to some mines by us.

We selected 100 mm* 100 mm* 100 mm cube mold to make the test piece. To mimic
what occurs in real mines, the paste backfill specimens were submerged without special
curing in distilled water or a chloride (NaCl) or sulfate (Na2SO4) solution after demolding.
Affected by geological conditions and other factors in China, the dispersion of chloride and
sulfate concentrations in various regions is very large [33–35]. Table 1 shows the chloride
and sulfate concentrations in some coal mines we collected. Based on the existing work
experience [26,36], the final concentration of each are 0.5 g/L, 1.5 g/L, 4.5 g/L, and 15 g/L
(NaCl: 0.0086 mol/L, 0.0256 mol/L, 0.0769 mol/L,0.2564 mol/L. Na2SO4: 0.0035 mol/L,
0.0106 mol/L, 0.0317 mol/L, 0.1056 mol/L).

Table 1. Part of mine salt ion content data.

Name of Coal Mine Chloride (mg/L) Sulfate (mg/L)

Xinzhuangzi 39.99 327.93
Kongji 115.16 43.16
Panyi 889.72 198.03
Wusu 412.7 1026.3

Zhangji 259.4 472
Shuanggou 182 882.01

Linhuan 213 1580.6
Quangou 107.7 1094.5
Lingxin 1193.6 884.3

Haizi 146.0 1028.0
Bulianta 235.19 227.32
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After 7 d, 14 d, 28 d, and 40 d submersion time, the uniaxial compressive strength of
each backfill test block was determined using an RLJW-2000 rock servo testing machine at a
loading rate of 0.15 mm/s without lateral restraint. In addition, the changes in the appear-
ance of the test specimens were observed for each submersion time [37]. The D/Max2500PC
X-ray diffractometer produced by Rigaku Co., Ltd. was used for microstructural analysis.
The diffraction angle range used was 10–90◦, the data point interval was 0.02◦, and the
scanning step length was 4◦/min [38]. The Nova Nano SEM450 high-resolution scanning
electron microscope (SEM) produced by FEI was used to observe the microstructure of the
specimens at a resolution of 1 nm (at 15 kV) to 1.8 nm (at 3 kV, Helix detector). Each sample
was sprayed with gold prior to SEM observation [39–41].

3. Results and Analysis
3.1. Effect of Chloride and Sulfate Solutions on the External Surface of the Specimens

Understanding the outer surface changes of the backfill paste specimens when sub-
jected to different corrosive environments forms the basis for studying the corrosion mech-
anisms of Cl− and SO4

2−. The outer surfaces of the backfill paste specimens submerged for
28 days in different concentrations of chloride and sulfate solutions are accordingly shown
in Figure 1.
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It can be seen from Figure 1 that the outer surface of the specimens submerged in 

different concentrations of chloride solution exhibited basically no changes, with only a 

few cracks appearing in the specimen submerged in the highest-concentration solution. 

However, as the concentration of the sulfate solution increased, an increasing quantity of 

microcracks appeared on the outer surface of the specimen (as shown by the black lines 

in the figure). Thus, the macroscopic observation of the outer surface of the test specimens 

indicated that the corrosion of Cl− on the paste backfill specimen was much weaker than 

that of SO42− in 28 days, and that the higher the concentration of SO42−, the greater the 

degree of influence on the specimen. 

Figure 1. Appearances of specimens submerged in (a) 0.5 g/L (b) 4.5 g/L, (c) 15 g/L chloride solution,
(d) 0.5 g/L, (e) 4.5 g/L, and (f) 15 g/L sulfate solution for 28 days (the size of the test piece face facing
the photo is 100 mm*100 mm).

It can be seen from Figure 1 that the outer surface of the specimens submerged in
different concentrations of chloride solution exhibited basically no changes, with only a
few cracks appearing in the specimen submerged in the highest-concentration solution.
However, as the concentration of the sulfate solution increased, an increasing quantity of
microcracks appeared on the outer surface of the specimen (as shown by the black lines in
the figure). Thus, the macroscopic observation of the outer surface of the test specimens
indicated that the corrosion of Cl− on the paste backfill specimen was much weaker than
that of SO4

2− in 28 days, and that the higher the concentration of SO4
2−, the greater the

degree of influence on the specimen.
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3.2. Effect of Chloride and Sulfate Solutions on the Compressive Strength of the Specimens
3.2.1. Effect of Cl− Corrosion

Figure 2 shows the uniaxial compressive strengths of the backfill paste specimens after
7 d, 14 d, 28 d, and 40 d soaking in distilled water or 0.5 g/L, 1.5 g/L, 4.5 g/L, or 15 g/L
chloride solutions.
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Figure 2. Uniaxial compressive strength of paste backfill specimens when submerged in different
concentrations of chloride solution according to soaking time.

It can be seen from Figure 2 that the uniaxial compressive strengths of the specimens
were considerably enhanced in the early stage of the experiment. Furthermore, the uniaxial
compressive strengths of the specimens submerged in a chloride solution increased much
faster than that of the specimen submerged in distilled water, and the rate of increase
in compressive strength was greater for the specimens in higher-concentration chloride
solutions than for those in lower-concentration chloride solutions. In the later stage of the
experiment, the uniaxial compressive strengths of the specimens in higher-concentration
chloride solution began to gradually decrease, and the higher the solution concentration,
the faster the decrease. As the paste backfill had a loose and porous structure, the observed
increase in uniaxial compressive strength can be primarily attributed to the generation
of hydration products that fill the internal voids in the specimen during the ongoing
hydration reaction, making the specimen more compact. Thus, based on comparison with
the specimens cured in distilled water and lower-concentration chloride solutions, the
reason for the rapid increase in uniaxial compressive strength in the early stage of the
experiment may be that the Cl− participated in curing the paste. Aiding the hydration
process increased the rate of hydration and generated substances that filled the pore
structure of the test specimen, increasing its uniaxial compressive strength faster in the high-
concentration chloride solution than in the low-concentration chloride solution or distilled
water. The uniaxial compressive strengths of the specimens submerged in the chloride
solution decreased over time because as their ages increased, more and more hydration
products were formed, continually filling the pore structure; however, such products often
swell, expanding the pores and applying pressure on the pore walls, resulting in the
generation of tensile stress. When this tensile stress exceeded the material limit, fractures
were induced causing microcracks to appear, reducing the strength of the paste backfill.

3.2.2. Effect of SO4
2− Corrosion

The uniaxial compressive strength of the paste backfill specimen after submersion
in distilled water or sulfate solutions with concentrations of 0.5 g/L, 1.5 g/L, 4.5 g/L, or
15 g/L for 7 d, 14 d, 28 d, and 40 d is shown in Figure 3.
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It can be seen from Figure 3 that the uniaxial compressive strengths of the specimens
submerged in the sulfate solution increased rapidly, but then slowly decreased, and the
uniaxial compressive strengths of the specimens submerged in the low-concentration
solution were greater than those submerged in the high-concentration solution. The uniaxial
compressive strength of the specimen submerged in distilled water for 40 days is far greater
than the uniaxial compressive strength of the specimen submerged in the sulfate solution
for the same period of time. Combined with the observed changes in the appearances of
the specimens, the reason for the rapid increase in the uniaxial compressive strength of
the specimens in the early stage may be that the SO4

2− ions in the solutions infiltrated
the specimens to participate in the hydration process. The formation of certain substances
that fill in the pore structure of the specimens submerged in the sulfate solution caused
their uniaxial compressive strengths to increase faster than that of the specimen submerged
in distilled water. The uniaxial compressive strengths of the specimens submerged in
the sulfate solution then began to decrease, likely for the same reason as the specimens
submerged in the chloride solution: more and more hydration products were formed,
gradually filling the pore structure and expanding to press against the walls, inducing
tensile stress and causing internal damage that decreased strength.

Combined with Figures 2 and 3, the effect of chloride and sulfate on the compressive
strength of the specimens is analyzed as follows. On 7 d, compared with the specimen in
distilled water, the uniaxial compressive strength of the specimens in chloride and sulfate
solution were greatly improved. This is also the reason why chloride and sulfate can be
used as early strength agents of paste backfill. On 14 d, the uniaxial compressive strength of
specimens in chloride solution was still increasing, while the uniaxial compressive strength
of specimens in sulfate solution had begun to decrease. On 28 d, the uniaxial compressive
strength of all specimens in sulfate solution was less than that in distilled water. However,
the uniaxial compressive strength of specimens in 0.5 g/L, 1.5 g/L, and 4.5 g/L chloride
solutions was still higher than that in distilled water, and only the uniaxial compressive
strength of specimen in 15 g/L chloride solution is lower than that in distilled water. This
result corresponds very well to the surface damage degree of the pattern in Figure 1. On
40 d, the uniaxial compressive strength of specimens in sulfate solution tended to be stable,
and the strength difference between specimens in sulfate solution and distilled water
further increased. This phenomenon indicates that the original structure of the specimen
in sulfate solution has been destroyed. The uniaxial compressive strength of specimens
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in 1.5 g/L, 4.5 g/L, and 15 g/L chloride solution have also begun to decline to a level
lower than that of specimens in distilled water. On 40 d, although the uniaxial compressive
strength of the specimen in chloride solution has not stabilized, we can still infer that its
change trend is consistent with that in sulfate solution. That is, in the early stage of the
test, chloride and sulfate significantly increased the uniaxial compressive strength of the
specimen at a very fast speed. Then, with the gradual corrosion, the original structure of the
specimen was destroyed and its uniaxial compressive strength decreased. Compared with
sulfate, chloride has a longer strengthening time and higher strengthening effectiveness.
This may be because the hydrophilicity of the material produced by the reaction of SO4

2−

with the paste backfill was greater than that of the material produced by the combination
of Cl− with the hydration products of the paste backfill, thus the expansion capacity of the
former after being bound to water was much greater than that of the latter.

3.3. Microstructural Analysis

The macroscopic mechanical properties of a paste backfill specimen are actually deter-
mined by the material properties of the backfill and any change in its internal microstructure.
The change in the compressive strength of the paste backfill when subjected to a corrosive
environment is caused by changes in its internal material composition and microstructure
under the action of Cl− and SO4

2−. In order to fully understand the influence of the chlo-
ride and sulfate solutions on the mineral composition and microstructure of the backfill,
X-ray diffraction (XRD) was used to conduct phase analyses of selected specimens. Figure 4
shows the results of an XRD analysis of the paste backfill specimen submerged in distilled
water for 40 days.
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Figure 4. Diffraction pattern and main phases of paste backfill specimen submerged in distilled water
for 40 days.

SiO2 was the main component of fly ash and cement clinker in the paste backfill
considered in this study. Both C-H and C-S-H are hydration products of the cement present
in the paste, and are produced by the hydration reaction of clinker minerals as follows [42]:

2C3S + H2O = 3C-S-H + 3CH, (1)
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2C2S + 4H2O = 3C-S-H + CH. (2)

Among these hydration products, there was a notably large concentration of C-S-
H, which has a large specific surface area and rigid gel characteristics. It is difficult to
dissolve C-S-H in water, where it forms amorphous colloidal particles owing to the van der
Waals forces and chemical bonds between the gel particles. Furthermore, C-S-H has a high
strength and is the primary source of the compressive strength of the paste backfill specimen.
Under the SEM, it exhibits spherical, floc-like protrusions, smooth edges, compact structure,
and no obvious sharp edges or corners, as shown in Figure 5. The CH content was also
high, but as it has a layered structure with weak interlayer bonding and low strength, it
was considered to contribute less to the observed specimen characteristics. Additionally,
3CaO·Al2O3·6H2O, a stable hydration product of 3CaO·Al2O3, was present, but its crystals
have poor mutual adhesion and low strength as well. Finally, 4CaO (Al2O3·Fe2O3·6H2O)
was present as the hydration product of 4CaO·Al2O3·Fe2O3, but it is extremely unstable
and is considerably affected by temperature and the concentration of calcium hydroxide in
the solution, as well as its ratio to Al2O3/Fe2O3.
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Figure 5. SEM image showing typical microstructure of backfill.

Figure 6 shows the results of an XRD analysis of the paste backfill specimen submerged
for 40 days in a 15 g/L chloride solution. Compared with the results of the XRD analysis of
the specimen submerged in a distilled water environment, the specimens submerged in the
chloride environment lack hydrated calcium aluminate ferrite (4CaO(Al2O3·Fe2O3·6H2O),
which has more hydration reactivity than calcium chloroaluminate (Ca4Al2O6Cl2·10H2O).

As calcium ferroaluminate hydrate is unstable, when it is constantly diluted by water it
will be completely decomposed into Ca(OH)2, Al2O3 aq, and Fe2O3 aq (where aq represents
multiple water molecules), so when the specimen is moved from its natural hydration
environment to be submerged in the chloride solution, it is continuously decomposed under
the action of the large amount of water, causing the phase-hydrated calcium ferroaluminate
to be missing. However, owing to the unstable nature of hydrated calcium ferroaluminate,
its impact on the compressive strength of the backfill specimen is very small and can
be ignored. Therefore, the changes in the strengths of the paste backfill specimens were
determined by the presence of hydrated calcium chloroaluminate, produced by the reaction
of Cl− with the components in the paste backfill, expressed as:

2Cl− + Ca(OH)2 = CaCl2 + 2OH−, (3)

CaCl2 + 3CaO·Al2O3·6H2O + 4H2O = 3CaO·Al2O3·CaCl2·10H2O. (4)
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Figure 6. Diffraction pattern and main phases of paste backfill specimen submerged in an 15 g/L
chloride solution for 40 days.

That is, the Cl− that penetrated into the backfill first reacted with Ca(OH)2 to form
CaCl2, then this CaCl2 reacted with a cement hydration product, tricalcium aluminate hy-
drate (3CaO·Al2O3·6H2O), to form hydrated aluminum chloride calcium acid (3CaO·Al2O3·
CaCl2·10H2O). Calcium chloroaluminate hydrate is an expansive material that filled pores
and increased the compactness of the backfill in the initial stage of Cl− corrosion, caus-
ing the early strength of the backfill to develop faster, but in the later stage of corrosion,
3CaO·Al2O3·CaCl2·10H2O was produced, inducing tensile stress owing to expansion fol-
lowed by tensile failure, internal damage, and microcracks that reduced the macroscopic
compressive strength, as shown in Figure 7. The width of microcracks is generally about
10 µm.
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Figure 8 shows the results of an XRD analysis of the paste backfill specimen submerged
for 40 days in a 15 g/L sulfate solution. Compared with the XRD analysis of the specimen
submerged in a distilled water environment, more gypsum (Ca(SO4)·2H2O) and ettringite
(Ca6(Al(OH)6)2(SO4)3·26H2O) were observed in the sulfate-exposed specimen, and the
presence of Glauber’s salt (Na2SO4·10H2O) was indicated.
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Figure 8. Diffraction pattern and main phase of paste backfill specimen submerged in a 15 g/L sulfate
solution for 40 days.

The interaction of sodium sulfate and free calcium hydroxide produces gypsum with
very little solubility. Because the volume of gypsum is much larger than that of the original
compound, its formation may cause expansion and destruction of the paste backfill. The
reaction process of sodium sulfate and calcium hydroxide to produce gypsum is

Na2SO4 + Ca(OH)2 + 2H2O = CaSO4·2H2O + 2NaOH. (5)

This gypsum-generating reaction can have two negative effects. The first is that
gypsum precipitates and crystallizes in the pores of the backfill to form dihydrate gypsum.
Owing to the expansive property of dihydrate gypsum, it will produce a great deal of
tensile stress inside the backfill. When this stress is higher than the tensile strength of the
paste, it will cause the backfill to expand and crack. The residual stress in the specimen
also causes the slight deviation of the diffraction peak of gypsum (Figure 8) [43,44]. The
second negative effect is that the C-S-H generated in the process of cement hydration is the
formation of silicate crystal existing in the hardened backfill. The formation of silicate stone
is a reversible process, so it serves as the basis for the stable existence of hydration products
such as C-S-H. When sulfate reacts with cement hydration products to form gypsum, a
large amount of Ca(OH)2 will be consumed, causing the hydrolysis of hydrated C-S-H,
which will lead to the loss of backfill material strength and durability.

There are two processes for the formation of ettringite, which was observed in notable
quantities in the specimens submerged in the sulfate solutions. One is the direct reaction
between gypsum and tricalcium aluminate or between gypsum and calcium aluminate
hydrate to produce ettringite; the other is the reaction of tricalcium aluminate (C3A)
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with calcium to form aluminite (C6AS3H32), which reacts to form monosulfur calcium
sulfoaluminate (C4ASH12), which reacts with gypsum to produce ettringite. These ettringite
formation methods are respectively called the direct reaction formation and indirect reaction
formation, and are given as follows [45]:

Direct reaction formation :
{

C3A + 3CSH2 + 26H = C6AS3H32
C4AH13 + 3CSH2 + 14H = C6AS3H32+CH

(6)

Indirect reaction formation :
{

C6AS3H32 + 2C3A + 4H = 3C4ASH12
C4ASH12 + 2CSH2 + 16H = C6AS3H32

(7)

The fine needle-like or flaky ettringite crystals (hedgehog crystal, shown in Figure 9a)
formed on the surface of the original aluminum-containing solid phase in the pores of the
backfill absorbed water and expanded. The expanding ettringite crystals induced internal
stress in the backfill, leading to cracking and destruction. This cracking made it easier for
sulfate ions to penetrate into the interior of the backfill material, generating a vicious cycle
that resulted in numerous cracks on the surface of the backfill specimen and the reduction
of compressive strength. Thus, it was determined that the C3A in the specimen body served
as the primary condition for the formation of ettringite: if the content of C3A is limited, the
formation of ettringite will be inhibited. Therefore, controlling the relative content of C3A
minerals in the paste backfill mix can improve its sulfate resistance.
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Figure 9. SEM images showing ettringite and mirabilite. (a) Ettringite crystals marked by red box.
(b) Glauber’s salt crystals marked by red box.

Glauber’s salt crystals are short columnar or needle-shaped crystals, shown in Figure 9b.
Salt crystal corrosion was observed in this study to be the most severe when the paste
backfill specimens were submerged in sulfate solutions. Notably, Na2SO4 precipitates
crystals above 32.3 ◦C as anhydrous sodium sulfate and below 32.3 ◦C as Glauber’s salt
Na2SO4·10H2O, for which the expansion coefficient is as high as 311. Thus, the formation
of Glauber’s salt will induce considerable expansion stress in the backfill, effectively
destroying it.

Carbon particles were also observed in SEM. They have a porous structure as shown in
Figure 10a. These carbon particles were introduced into the backfill material by the fly ash.
They can only provide less support strength to the backfill [46], but their presence provides
growth space for expansive substances, such as ettringite, mirabilite, etc., as shown in
Figure 10b. Thus, when an expansive material is able to fill in the space among the carbon
particles, the strength of the backfill will gradually increase; after filling these spaces, the
expansive material will continue to expand and cause the backfill to undergo tensile failure,
decreasing its compressive strength. Due to the low carbon content of coal gangue, whether
there is a similar phenomenon needs to be further studied.



Minerals 2022, 12, 551 11 of 13Minerals 2022, 12, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 10. SEM images showing ettringite crystal formation among carbon particles. (a) porous 

structure of carbon particle marked by red box. (b) ettringite crystal marked by red box. 

4. Conclusions 

1. The presence of a chloride solution was found to improve the early strength of paste 

backfill because Cl− participates in the hydration reaction to form calcium chloroalu-

minate hydrate, which fills the internal pores of the backfill and improves its com-

pactness. After a certain period of time, all internal pores are filled. Because the gen-

erated calcium chloroaluminate hydrate is expansive, damage is induced in the back-

fill material, causing it to gradually crack and ultimately resulting in a reduction in 

its compressive strength. 

2. The presence of a sulfate solution was found to, on the one hand, corrode the backfill 

to produce dihydrate gypsum, ettringite, Glauber's salt, and other expansive sub-

stances, resulting in expansive stress inside the backfill. When this expansive stress 

exceeds the tensile strength of the backfill, internal damage occurs that gradually de-

stroys the backfill material. This is referred to as crystalline expansion damage. On 

the other hand, the formation of gypsum, ettringite, etc. was found to consume 

Ca(OH)2 during the process of filling the pores in the backfill, but Ca(OH)2 serves as 

the basis for the stable existence of hydration products such as C-S-H. The reduction 

of Ca(OH)2 will therefore inevitably enhance the decomposition of C-S-H, thereby 

reducing the internal bond strength of the backfill. This is referred to as reversible 

reaction damage. The strength and durability of paste backfill subjected to a sulfate 

solution will decrease under the action of these two types of damage. 

3. Scanning the backfill specimens using SEM revealed that there were fine carbon par-

ticles in the backfill, introduced by the fly ash. Though the porous structure of carbon 

particles provides space for hydration products, helping to densify the backfill as it 

cures, it also provides space for the growth of expansive substances, reducing the 

strength of the backfill. 

Author Contributions: Conceptualization, G.X.; Project administration, K.W.; Supervision, J.N.; 

Writing – original draft, G.X.; Writing – review & editing, K.F., K.W. and J.N. All authors have read 

and agreed to the published version of the manuscript. 

Funding: This research was funded by Shandong Provincial Natural Science Foundation of China, 

grant number ZR2020QE136. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: Thanks to the anonymous reviewers for constructive and enlightening com-

ments and suggestions in the revision process. 

Figure 10. SEM images showing ettringite crystal formation among carbon particles. (a) porous
structure of carbon particle marked by red box. (b) ettringite crystal marked by red box.

4. Conclusions

1. The presence of a chloride solution was found to improve the early strength of
paste backfill because Cl− participates in the hydration reaction to form calcium
chloroaluminate hydrate, which fills the internal pores of the backfill and improves its
compactness. After a certain period of time, all internal pores are filled. Because the
generated calcium chloroaluminate hydrate is expansive, damage is induced in the
backfill material, causing it to gradually crack and ultimately resulting in a reduction
in its compressive strength.

2. The presence of a sulfate solution was found to, on the one hand, corrode the backfill to
produce dihydrate gypsum, ettringite, Glauber’s salt, and other expansive substances,
resulting in expansive stress inside the backfill. When this expansive stress exceeds
the tensile strength of the backfill, internal damage occurs that gradually destroys
the backfill material. This is referred to as crystalline expansion damage. On the
other hand, the formation of gypsum, ettringite, etc. was found to consume Ca(OH)2
during the process of filling the pores in the backfill, but Ca(OH)2 serves as the
basis for the stable existence of hydration products such as C-S-H. The reduction
of Ca(OH)2 will therefore inevitably enhance the decomposition of C-S-H, thereby
reducing the internal bond strength of the backfill. This is referred to as reversible
reaction damage. The strength and durability of paste backfill subjected to a sulfate
solution will decrease under the action of these two types of damage.

3. Scanning the backfill specimens using SEM revealed that there were fine carbon
particles in the backfill, introduced by the fly ash. Though the porous structure of
carbon particles provides space for hydration products, helping to densify the backfill
as it cures, it also provides space for the growth of expansive substances, reducing the
strength of the backfill.
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