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Abstract: Image segmentation approaches have been utilized to determine the particle size distri-
bution of crushed ores in the past decades. It is not possible to deploy large and high-powered
computing equipment due to the complex working environment, so existing algorithms are difficult
to apply in practical engineering. This article presents a novel efficient and lightweight framework
for ore image segmentation to discern full and independent ores. First, a lightweight backbone
is introduced for feature extraction while reducing computational complexity. Then, we propose
a compact pyramid network to process the data obtained from the backbone to reduce unneces-
sary semantic information and computation. Finally, an optimized detection head is proposed to
obtain the feature to maintain accuracy. Extensive experimental results demonstrate the effectiveness
of our method, which achieves 40 frames per second on our new ore image dataset with a very small
model size . Meanwhile, our method maintains a high level of accuracy—67.68% in APbox

50 and 46.73%
in APmask

50 —compared with state-of-the-art approaches.

Keywords: real-time; deep learning; ore images; instance segmentation

1. Introduction

Ore particle size distribution is a significant parameter for analyzing the effectiveness
of operation and status of crushing equipment in the mining process. In the past, ore
particle size detection was mainly completed manually. For long-term detection, it requires
a large amount of manpower and material resources, and accuracy and efficiency are very
low [1]. An increasing number of image processing technologies have been applied to
ore particle size detection in recent years. The acquisition of ore images is often done
during the ore delivery process. As a result, external physical conditions such as dust and
uneven illumination can have a significant impact on ore particle size detection as shown
in Figure 1. These external physical conditions present significant challenges to any image
segmentation technique.

Many image processing methods have been proposed in response to these issues.
For example, watershed [2–4] and FogBank [5] algorithms are often used in region-based
segmentation techniques. An effective particle segmentation method [6] was proposed to
eliminate the droplets in crystals and particle shadow, but this method is not suitable for ore
segmentation with overlapping. The dual-window Otsu threshold [7] is used to determine
the threshold value, which reduces the influence of noise, but this method still cannot
accurately segment ore images with overlapping and fuzzy boundaries. A watershed
transformation approach [8] was permuted to generate superpixels efficiently, but this
method is not robust enough and is time-consuming. A regression-based classifier [9]
is able to improve the segmentation accuracy of ore particle boundaries by learning ore
shape features, but the disadvantage of this method is that the parameters need to be
adjusted manually. These technologies have the common disadvantages of slow speed and
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complicated operation, as well as the inability to deal with ores in complex environments,
such as stickiness, dust, and uneven illumination. When traditional methods failed to
outperform deep learning approaches in ore segmentation, researchers began to consider
deep learning approaches. Ma et al. [1] and Wang et al. [10] proposed two ore image
segmentation approaches based on deep learning methods. However, the computing
cost of these complicated deep learning methods is prohibitively expensive. In this case,
we need approach the problem of ore image segmentation from a different angle.

 

(a)
 

(b)

Figure 1. Image of ore in a real-world working situation. (a) Example 1. (b) Example 2.

In recent years, many scholars have been considering the use of deep learning-based
approaches to solve real challenges. Deep learning-based methods have higher accuracy
and are easier to deploy than the standard approaches mentioned above. A large num-
ber of researchers are devoting themselves to applying deep learning-based methods to
practical engineering [11]. In comparison to other deep learning-based methods, instance
segmentation currently offers the most application potential. More and more instance seg-
mentation algorithms are being used in a variety of scenarios, including medical treatment,
road construction, and so on. The two-stage methods (e.g., Mask R-CNN [12]) in instance
segmentation have high precision, but slow speed, while the one-stage methods (e.g.,
YOLACT [13]) have fast speed, but low precision. This demonstrates how the instance
segmentation algorithm has significant practical ramifications. However, these methods fail
to achieve a balance between speed and precision. In a resource-constrained environment,
a lightweight and high accuracy framework is required to meet actual needs, such as
real-time speed and small model size. It is well known that the computational costs of deep
learning-based algorithms are primarily concentrated in the backbone, neck, and detec-
tion head. Therefore, we improve these three components to obtain higher accuracy and
real-time instance segmentation at a low computational cost.

In this paper, we propose a light ore segmentation network (LosNet) for real-time
ore image analysis. For feature extraction, we first employ a lightweight backbone to
dramatically reduce model size and inference time. Then, we propose a lightweight feature
pyramid network (FPN) to reduce unnecessary semantic information and computational
costs while improving the accuracy and speed. Finally, we suggest an improved detection
head to further maintain accuracy. Experiments on our released ore image datasets reveal
that our LosNet outperforms the state-of-the-art methods with small model size and real-
time speed. In general, our main contributions are as follows.

• We propose an efficient and lightweight network—LosNet—for instance segmentation
of ore images;

• We propose a lightweight FPN and an optimized detection head to reduce the compu-
tational complexity of the model while increasing the speed;
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• We release a new dataset for ore instance segmentation that contains 5120 images
manually annotated with bounding boxes and instance masks;

• Extensive quantitative and qualitative experiments on the new ore images dataset
show that our LosNet achieves superior performance in comparison with the state-of-
the-arts.

The rest of this article is organized as follows. Section 2 introduces related works
about general instance segmentation methods and ore segmentation methods. Section 3
presents our overall framework and three individual modules. To verify the effectiveness
of our method, we conducted comprehensive experiments, shown in Section 4. Finally,
the full text is summarized in Section 5.

2. Related Work
2.1. Ore Image Segmentation

In the past decades, limited by hardware technology, it was difficult to obtain sharp
images, and many algorithms that required too much computer performance could not
be adopted. Scholars mainly researched image-based system software and hardware
framework, contour detection, reasonable measurement parameters, and size transforma-
tion functions.

Recently, with the rapid development of computer hardware and new technolo-
gies, image-based, online, and real-time particle size measurement development has made
much progress. For example, watershed [2–4] and FogBank [5] algorithms are often used
in region-based segmentation techniques. However, it is difficult to accurately segment
the ore particles with fuzzy edges, uneven illumination, and adhesion degree. Threshold-
based methods are the most common parallel region technique, and certain requirements
were followed to determine the grayscale threshold. For instance, Lu et al. [6] proposed
a particle segmentation method to eliminate droplets in crystals and particle shadow by
using the background difference and local threshold method, respectively. However, this
method is not suitable for ore segmentation with overlapping. Zhang et al. [7] adopted
the dual-window Otsu threshold method to determine the threshold value, which reduces
the influence of noise and improves the thresholding performance of uneven lighting
images efficiently. However, their method still cannot accurately segment ore images with
overlapping and fuzzy boundaries . Malladi et al. [8] permuted a watershed transformation
approach to generate superpixels efficiently, but this method is not robust enough and is
time-consuming. Based on a multi-level strategy, Yang et al. [14] adopted the marker-based
region growing method to carry out image segmentation. Mukherjee et al. [9] utilized
a regression-based classifier to learn ore shape features, which improved the segmen-
tation accuracy of ore particle boundary, but the parameters were manually adjusted.
Zhang et al. [15] reduced noise and separated touching objects by combining wavelet trans-
form and fuzzy c-means clustering for particle image segmentation. Ma et al. [1] devised
a method for accurately segmenting belt ore images based on the deep learning method and
image processing technologies. However, because this method requires the employment
of several algorithms to analyze different types of ore pictures, the algorithm processing
procedure is complex and slow. Wang et al. [10] proposed an improved encoder of U-Net
based on Resnet18 to improve ore image segmentation accuracy.

2.2. Two-Stage Instance Segmentation

Two-stage instance segmentation splits the task into two subtasks, object detection
and segmentation. He et al. [12] presented a conceptually simple, flexible, and general
framework Mask R-CNN for object instance segmentation, which extended Faster R-
CNN [16] by adding a branch for predicting an object mask in parallel with the existing
branch for bounding box recognition. This approach efficiently detected objects in an image
while simultaneously generating a high-quality segmentation mask for each instance.
Huang et al. [17] researched how to score instance segmentation masks and proposed
the mask scoring R-CNN. The network evaluates the IoU of the projected mask and utilizes



Minerals 2022, 12, 526 4 of 18

it to enhance the prediction scores in mask scoring R-CNN. Chen et al. [18] presented
a new cascade architecture for instance segmentation called hybrid task cascade (HTC).
It uses a semantic segmentation branch to offer spatial context and intertwines box and
mask branches for combined multi-stage processing. Kuo et al. [19] introduced class-
dependent shape priors and used them as preliminary estimates to obtain the final detection.
Liang et al. [20] introduced a novel instance segmentation algorithm that required a mask
for the first stage and used polygon representation. The final prediction was obtained
by refining the initial mask with a deforming network. Content-aware reassembly of
features (CARAFE) is a ubiquitous, lightweight, and highly effective upsampling operator
proposed by Wang et al. [21]. Vu et al. [22] proposed an architecture referred to as the
sample consistency network (SCNet) to ensure that the IoU distribution of the samples
at training time was close to that at inference time. Rossi et al. [23] proposed a novel RoI
extraction layer for two-step architectures. The suggested layer built upon intuition by first
pre-processing every single layer, aggregating them together, and then applying attentive
techniques as post-processing to eliminate unnecessary (global) data.

2.3. One-Stage Instance Segmentation

These above methods accomplish state-of-the-art accuracy, but they are generally
slower than one-stage methods. One-stage methods can be roughly divided into two cate-
gories: global area-based and local area-based approaches. Global-area-based methods first
generate intermediate and shared feature maps based on the whole image, then assemble
the extracted features to form the final masks for each instance. YOLACT is a basic, fully-
convolutional model for real-time instance segmentation proposed by Zhou et al. [13], and it
is one of the first approaches to attempt real-time instance segmentation. YOLACT splits
the instance into two parallel jobs, generates a set of prototype masks, and predicts the mask
coefficient of each instance. By efficiently merging instance level information with semantic
information with lower-level fine granularity, Chen et al. [24] enhanced mask prediction.
Instead of predicting a scalar coefficient for each prototype mask, BlendMask predicts a low-
resolution (7 × 7) attention map to blend the bounding box of the mask. A single shot and
anchor-free instance segmentation approach was presented by Wang et al. [25]. The mask
prediction was separated into two important modules: the local form branch, which effec-
tively separates various instances, and the global saliency branch, which achieves pixel-by-
pixel segmentation. Tian et al. [26] proposed a simple, yet effective instance segmentation
framework, termed CondInst, which went one step further and completely eliminated
any dependence on bounding boxes. It does not assemble the cropped prototype mask,
but borrows the idea of dynamic filters and predicts the parameters of the lightweight
fully convolution network (FCN) header. Wang et al. [27] introduced SOLOv2, which
improved the mask detection effect and operation efficiency by adding mask learning and
mask non-maximum suppression (NMS) to the elegant and concise design of SOLO [28].
Tian et al. [29] proposed a high-performance method that can achieve mask-level instance
segmentation, using only bounding box annotations for training.

3. Approach

In this section, we first introduce the overall framework. Then, we show our proposed
lightweight FPN and optimized detection head. Finally, we describe the loss function used
in the framework.

3.1. Overall Framework

As discussed before, hardware resources are restricted in the wild. As a result, the in-
stance segmentation model requires a low computational cost. A significant quantity of the
computation frequently occurs in the backbone, neck, and detection head. For ore images,
the complicated network obtains a large amount of meaningless data, causing the model to
grow larger and operate slower. We present real-time instance segmentation for ore images,
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which consists primarily of a lightweight backbone, a lightweight FPN, and an optimized
detection head.

We employ the lightweight backbone MobileNetV3-small [30] to reduce computational
costs. In Figure 2, the backbone can generate feature maps across different scales. High-
level feature maps provide more semantic information, whereas low-level feature maps
have more resolution. The features of different scales are input into the FPN [31]. The rich
semantic information of the upper-layer feature maps is conveyed to the lower-layer high-
resolution feature maps for fusion. After that, the fusion feature maps are input into
the detection head. The detection head has the following output heads. The classification
head predicts the class of the instance associated with the location. The regression head can
regress the four distances of the prediction bounding boxes. The centerness head is used to
suppress the low-quality detected bounding boxes. The controller head, which has the same
architecture as the abovementioned classification head, is used to predict the parameters of
the mask head for the instance at the location. The P3, P4, and P5 layers are translated to
mask branches to obtain the results, which are convoluted and passed to the mask FCN
head. The mask FCN head outputs the final results after obtaining the parameters predicted
by the controller head and the information input by the mask branch.

Figure 2. Architecture of the proposed LosNet. In the feature pyramid networks (FPN), 1 × 1
convolutions are retained for feature channel dimension alignment extracted from the backbone.
The detection head consists of four branches. The centerness branch is used to suppress the low-
quality detected bounding boxes. The controller branch is used to generate the parameters of the mask
full convolution network (FCN) head. In the mask branch, the feature maps P4 and P5 are added to
P3 after the linear calculation. Then, these feature maps are input into the mask FCN head to obtain
the final result.

3.2. Lightweight FPN

We propose the lightweight FPN to improve the inference speed and reduce the model
size. It can be seen from Figure 3a that the feature maps of different scales complete
channel alignment by a 1 × 1 convolution. After up-sampling, the feature maps with
high semantic information are added to the corresponding feature maps. These feature
maps are processed by a 3 × 3 convolution to obtain the P3, P4, and P5 layers. Then, two
downsamples are taken from P5 to P6 and P7, respectively. It is well known that features of
different scales have a superior influence on detecting objects of different sizes. However,
the ores have been processed by an ore crusher. This demonstrates that the size of these ores
is manageable. We no longer require small-scale feature maps in this scenario. Therefore,
we choose to remove layers P6 and P7 from FPN.
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(a)

(b)

Figure 3. Architecture of (a) original FPN and (b) our proposed lightweight FPN. In the original FPN
network, the output has five layers: P3 to P7. In our proposed lightweight FPN, C3, C4, and C5 are
processed to obtain P3, P4, and P5, with a 1 × 1 convolution and an up-sampling block.

For ore images, rich semantic information not only has little effect, but also increases
the amount of computation. Reducing the number of channels and convolutions can
achieve our needs for reducing extra semantic information. As a result, we propose
a lightweight FPN, as shown in Figure 3b. First of all, we delete the 3 × 3 convolutions
in FPN, which makes a significant contribution to our lightweight model. Then, we adjust
the number of channels in the FPN. Since the number of channels needs to be kept at
multiples of 8 or 16, the parallel acceleration of most inference frameworks can be enjoyed.
The number of channels of 96 is a compromise between accuracy and model size. The
number of parameters P can be calculated as P = Ci × K2 × Co. The parameter P of our
method is 82,944, which is only 1/37 of the traditional FPN. We compare the feature
maps of P3 of our proposed lightweight FPN and the original FPN to better highlight
the performance of our suggested lightweight FPN. In Figure 4, the original FPN obtains
more semantic information, resulting in more complex feature maps and more incorrect
features. The feature maps produced by our proposed lightweight FPN are more concise,
with no major loss of contour information.
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(a) (b) (c)

Figure 4. (a) Input images; (b) rhe feature maps from the original FPN; (c) the feature maps from the
lightweight FPN.

3.3. Optimized Detection Head

In the detection head, we use the centerness branch in parallel with the regression
branch and controller branch to predict the centerness of a location, which can reduce
the low-quality bounding boxes. The centerness depicts normalized distance from the lo-
cation to the center of the object corresponding to that location. The centerness target is
defined as,

centerness =

√
min(x− x0, x1 − x)
max(x− x0, x1 − x)

× min(y− y0, y1 − y)
max(y− y0, y1 − y)

, (1)

where (x0, y0) and (x1, y1) represent the coordinates of the upper-left corner and the lower-
right corner of the ground truth box, respectively, and (x, y) is the coordinate of each pixel.

In Equation (1), we employ sqrt to slow down the decay of the centerness. The center-
ness is trained with binary cross entropy (BCE) loss since it is between 0 and 1, which is
added to the total loss function [32]. The final score is used to rank the detection targets
in non-maximum suppression (NMS), which is defined as,

sx,y =
√

px,y × ox,y, (2)

where the ox,y is the predicted centerness and the px,y is the corresponding classification
score. Centerness reduces the weight of the bounding box score away from the center of
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the object, which can increase the probability that these low-quality bounding boxes are
filtered out by the final NMS process. The accuracy of LosNet can remain competitive with
the help of centerness. To further decrease the computational cost, we simplify the network
structure of the detection head. Since the input and output channels of the FPN are set to
96, the number of input channels is naturally consistent with the detection head.

In general, the most straightforward and effective technique to decrease model and
computation is to reduce the number of convolutions. We can see from Figure 5a that
the original detection head has a total of eight convolution layers, which is not accept-
able for our lightweight model. We consider decreasing the four convolution groups
in the detection head to two, as shown in Figure 5b. As a result, the detection head requires
half the calculation that it does previously. Furthermore, we discovered that the original
detection head uses group normalization as its method of normalization.

(a) (b)

Figure 5. (a) Original detection head and (b) our optimized detection head. The convolution layers
in the original detector head and the optimized detector head are 4 and 2, respectively, and the
number of input channels are 256 and 96, respectively. The original detection head consists of a 3 × 3
convolution layer, a GN layer, and ReLU, while our optimized detection head consists of a 3 × 3
convolution layer, three BN layers, and ReLU.

When comparing group normalization (GN) [33] to batch normalization (BN) [34],
there is one disadvantage: BN can immediately integrate its normalized parameters into
convolution during reasoning, allowing it to skip this part of the calculation, whereas
GN cannot. We replaced GN with BN to reduce the time required for the normalization
operation. In Figure 6, we compare the feature maps of the bounding box branches of
our proposed optimized detection head and the original detection head to demonstrate
the performance of our optimized detection head. The feature maps in Figure 6c are more
accurate than those in Figure 6b.

3.4. Loss Function

Formally, the total loss function can be expressed as,

Loverall = Ldet + λLmask, (3)

where Ldet and Lmask denote the loss for object detection and the loss for instance masks,
respectively. To balance the two losses, λ is 1 in this work [26]. Ldet defined as,

Ldet = L({px,y}, {tx,y}) =
1

Npos
∑
x,y

Lcls(px,y, c∗x,y) +
1

Npos
∑
x,y

I{c∗x,y>0}Lreg(tx,y, t∗x,y), (4)

where Lcls is focal loss [35] and Lreg is the generalized intersection over union (GIoU)
loss [36]. Npos is the number of locations where c∗x,y > 0 on the feature maps Fi. I{c∗x,y>0} is
the indicator function, which is 1 if c∗x,y > 0 and 0 otherwise. px,y and tx,y represent the clas-
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sification scores and the regression prediction, respectively, for each location on the feature
maps Fi. Lmask defined as,

Lmask(θx,y) =
1

Npos
∑
x,y

I{c∗x,y>0}Ldice(MaskHead(F̃x,y; θx,y), M∗x,y), (5)

where c∗x,y is the classification label of location (x, y). c∗x,y is the class of the instance associated
with the location; it is 0 if the location is not associated with any instance. θx,y is the parameter
of the generated filter at location (x, y). F̃x,y ∈ RHmask×Wmask×(Cmask+2) is the combination
of Fmask and a map of coordinates Ox,y ∈ RHmask×Wmask×2. Ox,y is the relative coordinates
from all the locations on Fmask to (x, y) (i.e., the location of generated filters). MaskHead
denotes the mask head, which consists of a stack of convolutions with dynamic parameters
θx,y. M∗x,y ∈ {0, 1}H×W×C is the mask of the instance associated with location (x,y). Ldice
is the dice loss as in [37], which is used to overcome the foreground–background sample
imbalance. In Equation (5), we do not use focal loss because it requires special initialization.
If the parameters are generated dynamically, it cannot be implemented. The predicted mask
and the ground-truth mask M∗x,y are required to be the same size to compute the loss between
them. The upsampling rate of the prediction is 4, so the resolution of the final prediction is half
that of the ground truth mask M∗x,y. Accordingly, to make the sizes equal, we downsample
M∗x,y by 2. These operations are omitted in Equation (5) for clarification.

(a) (b) (c)

Figure 6. (a) Input images. (b) The feature maps output from the original detection head. (c) The
feature maps output from our optimized detection head.
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4. Experiments

In this section, we first introduce the ore datasets and evaluation metrics. Then,
we perform ablation studies to dissect our various design choices. Finally, we compare our
LosNet with the state-of-the-art methods for instance segmentation.

4.1. Experiments Setup
4.1.1. Implementation Details

Unless otherwise specified, we use the following implementation details. All models
were trained on a single GTX2080Ti GPU for 18K iterations with an initial learning rate of
0.01 and a mini-batch of 20 images. During training, the input photographs were altered to
have shorter sides in the range [300, 480] and longer sides less than or equal to 640 pixels.
During testing, we did not use any data augmentation and the scale of shorter and longer
sides used was 640 and 800, respectively. We utilized a batch size of 4 in the experiments
in Sections 4.2 and 4.3. The inference time and inference memory usage were measured on
a single GTX2080Ti GPU.

4.1.2. Datasets

We supplemented ore datasets in the following ways. First, we gathered ore pictures
at various scales. Then, on various scales, we altered the positioning of ores, such as
sparse, thick, etc. Furthermore, we partitioned large photos into small images that can be
used in network training. To boost the number of datasets even further, we split images
with a sliding window in Figure 7. We used 4060 images for training and 1060 images
for validating. Stacking, sticky, and occulting between ores are all serious issues that
complicated our task. The ores in the second row of images are denser and brighter than
those in the first row.

(a) (b) (c)

(d) (e) (f)

Figure 7. (a–d) depict ore images with varying densities under the same light. (e) is a different type
of ore image with a smaller ore volume. (f) depicts the ore image in low light.

4.1.3. Evaluation Metrics

There are 11 indexes [12,13] that were used to verify the effectiveness of the pro-
posed LosNet, i.e., APbox, APbox

50 , APbox
75 , APmask, APmask

50 , APmask
75 , training speed, training

memory usage, inference memory usage, inference speed, and model size. Accuracy was
measured using the top six indexes. The computational expenses of the model are reflected
in the inferred speed. When computing power is limited, we prefer models with minimal
computational costs and fast detection speeds. The memory usage of a model during
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training demonstrates the reliance on the hardware system. The last three indexes are
critical in determining if a model may be deployed on modest equipment.

4.2. Backbone

To test the effectiveness of our LosNet, we first analyzed the network’s overall structure.
For experimentation, we replaced the baseline network with other backbones, using our ore
dataset as an example. The goal of our framework is to achieve lightweight and real-time
performance while maintaining competitive accuracy. As shown in Table 1, ResNet50 has
the highest accuracy, but its model size and inference time are 259 MB and 56.7 ms, respectively.
Despite having the smallest model size, its inference time reaches 49.9 ms. MobileNetV3-Small
has an accuracy of 61.49 in APbox

50 and 47.85 in APmask
50 , while its model size and inference

time are only 89 MB and 35.9 ms, respectively. Furthermore, the inference memory usage of
MobileNetV3-Small is the smallest in all backbones. Therefore, we chose MobileNetV3-Small
as the backbone of our LosNet.

Table 1. Comparison of different backbones.

Backbones APbox
50 APmask

50
Time (ms) Memory (MB) Model

Size (MB)Train Infer Train Infer

DLA34 [38] 51.84 47.241 775.7 50.8 9464 1715 193
EfficientNet-B0 [39] 53.17 47.20 316.2 56.0 6114 2243 112

MnasNet-0.5 [40] 54.75 41.43 270.6 45.2 3362 1611 93
MobileNetV2 [41] 52.55 47.04 483.1 42.1 9535 2029 90

MobileNetV3-Small [30] 61.49 47.85 606.3 35.9 4045 1389 89
ResNet50 [42] 52.21 48.72 312.8 56.7 5385 1713 259
ResNet101 [42] 51.66 48.65 390.6 59.2 6985 2101 404
VoVNetV2 [43] 55.13 47.92 359.1 55.9 4753 1811 267
PeleeNet [44] 54.03 47.24 297.2 62.5 3821 1827 99

RegNet-200M [45] 55.31 47.51 277.5 49.9 3044 1787 98
ShuffleNetV2 [46] 53.47 47.09 454.8 49.9 5279 1719 87

4.3. Ablation Study

The following ablation experiments were performed on the MobileNetV3-small [30].
In addition, we reserve two significant figures in the accuracy results to clearly indicate
the results of the ablation experiment.

4.3.1. FPN Structure Design

To compress the model size, we reduced the number of input channels in the FPN
and deleted the internal 3 × 3 convolution. In Table 2, we performed ablation experiments
on the number of FPN input channels. Similarly, we also conducted the same experiment
on the FPN after deleting the 3× 3 convolution. This allows us to demonstrate our impact on
FPN improvement in a more intuitive manner. The first two requirements for this task are small
models and high speeds; thus, we reduce the number of channels from 128 to 64 at 32 channel
intervals.

Table 2. Comparisons of different channels. Channels represents the number of input channels
in FPN and convs. represents 3 × 3 convolutions in the FPN.

Channels Convs. APbox
50 APMask

50 Inf. Time (ms) Model Size (MB)

64 X 64.06 47.75 32.8 25
× 63.33 47.86 33.2 24

96 X 62.59 47.97 33.8 31
× 62.68 47.93 33.4 30

128 X 62.21 48.05 34.6 39
× 62.34 47.97 33.7 37

256 X 61.49 47.85 35.9 89
× 62.41 48.11 34.3 82
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In Table 2, with 3 × 3 convolution preserved, 128 channels achieves 48.05% in APmask
50 .

When the number of channels decreases from 128 to 96, the performance is improved by 0.8 ms
in inference time, and the model size is reduced by 8 MB. When the number of channels
decreases from 96 to 64, the performance is improved by 1 ms, and model size is reduced by
6 MB. However, the APmask

50 loss of the latter is 2.75× higher than that of the former (0.22% vs.
0.08% in APmask

50 ). The reason for this is that too much useful information is lost in 64 channels
and too much redundant information is obtained in 256 channels. Therefore, deleting the
3× 3 convolution with fewer channels has little effect on accuracy and speed. Therefore, when
the number of channels is 96, we achieve the benefit of model downsizing by 1 MB without
any loss.

Due to the characteristics of mineral images, most of the small-scale information in
the FPN is redundant. From Table 3, we can see that all metrics are improved after deleting
P6 and P7. It is reasonable and feasible to delete the P6 and P7 layers. Without the P6 and
P7 layers, the amount of calculation of the model is reduced, so the model size is reduced
from 89 MB to 80 MB. Meanwhile, discarding redundant and incorrect semantics leads to
improved accuracy (APbox

50 increases from 61.49% to 61.90%, and APmask
50 increases from

47.85% to 47.95%). Most importantly, the inference time reaches 31.0 ms after deleting P6
and P7, which makes a large contribution to the real-time implementation of our method.

Table 3. Ablation study of P6 and P7 layer in the FPN.

P6 and P7 APbox
50 APMask

50 Inf. Time (ms) Model Size (MB)

X 61.49 47.85 35.9 89
× 61.90 47.95 31.0 80

4.3.2. Design of Detection Head

As discussed above, there is only one category in the ore images. In this case, too
many convolutions can easily lead to an excessive interpretation of image information
by the network. Therefore, it is necessary to discuss the number of convolution layers
in the bounding box regression branch and classification branch in the detection head.

As shown in Table 4, when the number of convolution layers is 2, APmask
50 is only reduced by

0.63%. At the same time, the inference time is reduced by 4.3 ms and the model size is reduced
by 18 MB. When the number of convolutional layers is reduced from 4 to 1, the improvement
amplitude of inference time and model size begins to decrease. However, the APmask

50 decreases
significantly by 3.07%. It is worth noting that the APbox

50 is improved when the number of convo-
lutions is reduced. Similarly, when the number of convolutional layers is 2, the APbox

50 increases
the most. Therefore, the most appropriate number of convolution layers in the bounding box
regression branch and classification is 2. We obtain the maximum return with minimum loss
of APmask

50 . The APbox
50 is increased from 61.49% to 66.20%, the inference time is reduced from

35.9 ms to 31.6 ms, and the model size is reduced from 89 MB to 71 MB.

Table 4. Design of convolution number in bounding box regression and classification branches.

Conv. APbox
50 APmask

50 Inf. Time (ms) Model Size (MB)

1 67.86 44.78 30.1 62
2 66.20 47.02 31.6 71
3 63.08 47.55 34.0 80
4 61.49 47.85 35.9 89

In Table 5, we compare the two mainstream normalization methods (GN and BN).
Inference time reduces from 35.9 ms to 33.4 ms, but the APbox

50 and APmask
50 decrease from

61.49% and 47.85% to 60.65% and 47.63%, respectively. It is difficult to avoid the loss
of accuracy in exchange for the improvement of speed, and a small loss of accuracy is
acceptable. It is reasonable to replace GN with BN to increase inference speed.
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Table 5. Comparison of group normalization (GN) and batch normalization (BN). Norm. represents
the normalization method.

Norm. APbox
50 APmask

50 Inf. Time (ms) Model Size (MB)

GN 61.49 47.85 35.9 89
BN 60.65 47.63 33.4 89

4.3.3. Lightweight FPN vs. Original FPN

We compare the two FPNs on our LosNet framework to demonstrate the difference
between the original FPN and our lightweight FPN. Table 6 shows that the accuracy of
LosNet is increased by 0.41 in APbox

50 with the help of the lightweight FPN and the inference
time and model size are lowered by 4.5 ms and 45 MB, respectively. Simultaneously,
the accuracy is only reduced by 0.1 in APmask

50 . This demonstrates the significance and
effectiveness of our lightweight FPN.

Table 6. Ablation study of lightweight FPN and original FPN.

FPN Type APbox
50 APMask

50 Inf. Time (ms) Model Size (MB)

Originl FPN 67.47 46.83 29.7 71
Lightweight FPN 67.68 46.73 25.2 26

4.4. Comparison with State-of-the-Art Methods

To further illustrate the superiority of our LosNet, we compare our framework with
the state-of-the-art methods, e.g., Mask R-CNN [12], mask scoring R-CNN (MS R-CNN) [17],
CARAFE [21], cascade mask R-CNN (CM R-CNN) [47], HTC [18], GRoIE [23], SCNet [22],
YOLACT [13], BlendMask [24], CondInst [26], SOLOv2 [27], and BoxInst [29]. As shown
in Table 8, the inference time of all methods was calculated on a NVIDIA 2080ti and
the parameters in each method were tuned to achieve the best performance on our datasets.
In Tables 7 and 8, “RX-101”, “R2-101”, “S-50”, and “M-V3s” refer to ResNeXt-101 [48],
Res2Net-101 [49], ResNeSt [50], and MobileNetV3-small [30], respectively.

Table 7. Comparison of accuracy with the state-of-the-art methods on ore image datasets.

Methods Backbones APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

Mask R-CNN [12] R-101 43.0 51.7 48.7 12.4 22.1 13.3
Mask R-CNN [12] RX-101 42.8 51.7 48.8 9.6 17.5 9.9
Mask R-CNN [12] R2-101 24.9 51.7 48.8 10.4 18.6 10.8
Mask R-CNN [12] S-50 27.0 51.6 48.6 12.5 23.8 12.4
Mask R-CNN [12] RegNet 43.1 51.8 48.9 10.2 19.0 10.5
Mask R-CNN [12] R-50 42.8 51.7 48.7 12.4 22.6 12.7
MS R-CNN [17] R-50 42.7 51.7 48.7 14.7 23.4 16.6
CARAFE [21] R-50 42.9 51.8 48.8 13.7 24.9 14.4

Cascade M-R-CNN [47] R-50 43.6 51.1 49.5 40.0 49.6 47.3
HTC [18] R-50 43.7 52.6 49.4 40.1 49.5 47.1

GRoIE [23] R-50 42.2 51.7 48.6 7.6 12.0 8.3
SCNet [22] R-50 43.9 53.1 49.5 40.1 49.5 47.1

YOLACT [13] R-50 39.6 50.5 46.4 6.7 11.5 6.9
YOLACT [13] R-101 40.3 50.6 47.3 7.1 11.9 7.7

BlendMask [24] R-50 44.1 58.1 49.2 38.9 48.7 46.2
CondInst [26] R-50 43.1 52.2 48.8 39.0 48.7 46.2
SOLOV2 [27] R-50 - - - 31.6 45.8 36.8
BoxInst [29] R-50 44.3 56.9 49.5 34.8 48.8 45.9

LosNet R-101 44.0 53.0 49.2 40.1 49.0 46.7
LosNet R-50 44.2 53.6 49.3 40.2 49.2 46.9
LosNet M-V3 38.5 67.7 39.7 35.7 46.7 41.8
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Table 8. Comparison of the speed, memory, and model size with the state-of-the-art methods on ore
image datasets.

Methods Backbones
Times (ms) Memory (MB) Model

Size (MB)
Batch
SizeTrain Infer Train Infer

Mask R-CNN [12] R-101 251.2 74.7 5407 1876 480 2
Mask R-CNN [12] RX-101 316.5 87.5 6398 1872 477 2
Mask R-CNN [12] R2-101 359.4 83.1 6648 1923 485 2
Mask R-CNN [12] S-50 214.1 79.5 7414 1657 260 4
Mask R-CNN [12] RegNet 203.7 59.6 7414 1657 260 4
Mask R-CNN [12] R-50 361.7 60.1 6499 1769 334 4
MS R-CNN [17] R-50 246.6 62.7 7249 1794 428 4
CARAFE [21] R-50 515.7 65.2 7373 1873 376 4

Cascade M-R-CNN [47] R-50 820.9 77.6 5280 2005 587 2
HTC [18] R-50 893.4 78.9 6165 2314 588 2

GRoIE [23] R-50 414.3 110.7 5407 2030 363 2
SCNet [22] R-50 311.8 82.4 8273 2406 699 4

YOLACT [13] R-50 64.0 32.8 10,513 7610 265 8
YOLACT [13] R-101 82.7 40.9 10,001 7758 410 8

BlendMask [24] R-50 276.9 58.9 4669 1641 274 4
CondInst [26] R-50 312.8 56.7 5385 1713 259 4
SOLOV2 [27] R-50 392.7 62.4 5025 3123 354 4
BoxInst [29] R-50 454.6 55.0 9276 1681 261 4

LosNet R-101 704.2 35.4 5397 1525 338 12
LosNet R-50 539.9 32.3 3759 1467 193 12
LosNet M-V3 448.7 25.2 2838 1359 26 12

In Table 7, LosNet performs well in APbox
50 and APmask

50 . When LosNet takes MobileNetV3-
small as the backbone, the APbox

50 is higher than all other algorithms. Although LosNet with
MobileNetV3-small is 2.87% lower than Cascade Mask R-CNN in APmask

50 , the model size
of Cascade Mask R-CNN is 22× larger than LosNet. The inference time of LosNet is only
1/3 of that of Cascade R-CNN. The inference time of LosNet is only about 25 ms (40 FPS,
while even YOLACT needs 33 ms (30 FPS) of inference time with the help of ResNet-50.
Furthermore, the model size of LosNet is only 26 MB, which shows that our method has
the ability to be deployed on edge devices. The model size of other methods is at least 10×
that of ours. Furthermore, we can also see that our LosNet performs best in training time
and memory usage in Table 8.

LosNet performs best in model size and inference time with the same backbone, ResNet-50.
With such excellent performance, our method is only 0.41% lower than Cascade Mask R-CNN
in APmask

50 . LosNet performs better than YOLACT in all indexes (e.g., 56.6% vs. 50.5% in APbox
50 ,

49.2% vs. 11.5% in APmask
50 , 32 ms vs. 33 ms in inference time, 193 MB vs. 256 MB in model

size). The accuracy of our method is higher than CondInst and the inference time and model
size are also much smaller than CondInst. As shown in Figure 8, we analyzed the ore images
in different situations. LosNet can still obtain high-quality instance segmentation results even
when there is stacking and stickiness.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. The visual results of ore images processed by different methods. (a) Original picture;
(b) ground truth; (c) YOLACT; (d) SOLOv2; (e) CondInst; (f) Mask R-CNN; (g) MS R-CNN;
(h) CARAFE; (i) LosNet(R-50); (j) LosNet(M-V3).

5. Conclusions

We developed a real-time system for ore image analysis. More specially, we put for-
ward the LosNet framework for instance segmentation of ore images to discern full and
independent ores. This framework includes a lightweight backbone and a lightweight FPN
to simultaneously reduce unnecessary semantic information and computation. Moreover,
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we suggest an improved detection head to maintain the accuracy of our framework. Exper-
iments on ore image datasets demonstrate that our proposed LosNet can achieve real-time
speed of 40 FPS with a small model size of 26 MB. Meanwhile, our LosNet retains competi-
tive accuracy performance, i.e., 67.68% in APbox

50 and 46.73% in APmask
50 , in comparison with

the state-of-the-art methods.
In the future, we plan to apply our model to edge computing devices to address

the needs of practical engineering. We will keep improving accuracy and speed while
reducing model size.
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