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Abstract: A reasonable arrangement of filling pipelines can solve the problems of low line magni-
fication, a high flow rate, large pipe pressure, etc., in deep well filling slurry transportation. The
transportation pressure loss value of filling slurry is the main parameter for the layout design of
filling pipelines. At present, pressure loss data are mainly obtained through the loop pipe experiment,
which has problems such as a large amount of labor, high cost, low efficiency, and a limited amount of
experimental data. In this paper, combined with a new generation of artificial intelligence technology,
the random forest machine learning algorithm is used to analyze and model the experimental data
of a loop pipe to predict the pressure loss of slurry transportation. The degree of precision reaches
0.9747, which meets the design accuracy requirements, and it can replace the loop pipe experiment to
assist with the filling design.

Keywords: pipe transportation system test; pressure loss; random forest algorithm; filling-aided design

1. Introduction

The filling mining method is one of the most effective methods to ensure the safety
of deep mining [1,2]. In the design of a deep well filling system, designing a reasonable
arrangement of the underground filling pipeline is the main difficulty. The properties of
tailings, the transportation conditions, and the pressure loss value of slurry transportation
are different in different mines. At present, the theoretical calculation of the pressure
loss of a high-concentration filling slurry is generally based on the Bingham rheological
model, but there is a certain difference between the pressure loss value obtained when
using slurry yield stress and plastic viscosity and the experimental value of the loop [3].
The main reasons for this are that the cross-sectional flow velocity is different during the
transportation of high-concentration filling slurry, the flow velocity near the pipe wall is
close to zero, the shear stress decreases with the increase in the shear rate, It is thixotropic
and the flow curve is hysteretic [4,5]. For this reason, most designers need to master the
pressure loss data of filling slurry while using the loop pipe experiment method. However,
there are problems such as a large amount of labor and a long experimental period, and
experimental variable parameters cannot fully simulate industrial filling pipelines.

In the filling and conveying theory, it is difficult to establish a transport model that
can be used to calculate the pressure drop of the slurry by theoretical methods. With
the development of artificial intelligence technology, methods to build predictive models
based on existing data have gradually emerged. Abroad, Kumar et al. used the integral
flow model to predict the pressure drop of multi-scale solid–liquid flow [4], but there is a
problem in that the reverse analysis of the input limit parameters of numerical modeling
and the generalization ability of curve fitting are poor. In China, Qi Chongchong of Central
South University and others took the lead in proposing a “machine learning-assisted
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filling design” [6,7], And a variety of backfill system design prediction models have been
established to promote the development of the traditional backfill field towards intelligence.

In this paper, the artificial intelligence random forest algorithm is used to analyze the
experimental data of a loop pipe, establish the pressure loss prediction model of the filling
slurry, and verify the feasibility of the proposed random forest model in the pressure loss
prediction. This model can replace the traditional loop pipe experiment-aided filling piping
system design.

2. Acquisition of Experimental Data of Loop Pipe
2.1. Construction of Loop Pipe Experiment System

The backfill engineering laboratory has an indoor loop test system. The test pipeline
system is shown in Figure 1. P1–P2 is the pressure drop of the straight pipe section, P3–P4 is
the pressure drop of the vertical section plus 90◦ elbow, and P5–P6 is the pipeline pressure
drop of the inclined pipe section.
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Figure 1. Schematic of the pipe transportation system.

The displacement of the loop pipe experiment system was 76 m3/h, the outlet pressure
was 1.5 Mpa, the inner diameter of the test pipe was 80 mm, and the pressure sensor adopted
a flat model pressure transmitter with a range of 0–2 Mpa and an accuracy of ±0.25%.
Pressure data were displayed and recorded using Wincc host computer software [8,9].

2.2. Relevant Parameter Experimental Data Acquisition

This loop pipe experiment was carried out with the tailings of Sanshandao Gold Mine;
the mixing water was tap water, and the cementing material was the cementing material in
use in the mine.

The particle size distribution of tailings was measured by a Malvern laser particle
sizer, as shown in Table 1. When using XRD phase test analyzer, it was found that the
main components of tailings were quartz and mica, non-toxic minerals, insoluble in water.
The fluidity of the tailings backfill slurry and the strength of the backfill had little effect.
The content of cementitious material + 80 microns was 9.5%, the initial setting time was
45 min, the final setting time was 8 h, and the specific surface area was 750 m2/kg; thus,
the material met the GB175-2007 “General Portland Cement” standard and could be used
as a cementing material [10].

Table 1. Tailings grain composition.

Screen/Mesh +100 −100~+200 −200~+320 −320~+400 −400

Full tailings
proportion/% 30.07 14.36 12.06 1.06 42.5
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The viscosity and yield stress of the slurry were tested with a BROOKFIELD RST
rheometer in the United States. The test results are shown in Table 2. With an increase
in slurry concentration, the plastic viscosity and yield stress also increase accordingly, so
viscosity, yield stress, and slurry concentration are dependent variables and independent
variables [11,12].

Table 2. Slurry rheological parameters.

Concentration Lime–Sand Ratio Plastic Viscosity (Pa·s) Initial Yield Stress (Pa)

68% 0.25 0.159 40.549
70% 0.25 0.216 59.865
72% 0.25 0.322 95.158
74% 0.25 0.486 135.684

According to the above analysis, five independent variables, namely, tailings mass
concentration, −400 mesh ratio, lime–sand ratio, flow rate, and pipeline structure, were
selected for data modeling analysis. Under the premise of ensuring fluidity, the density test
was configured with tailing concentrations of 68%, 70%, 72%, and 74%, with a lime–sand
ratio of 1:4, 1:10, and 1:20, and the test trailer pump displacement was set to 7%, 13%, 18%,
and 25% to record the pressure data of the horizontal section, the vertical section, and the
slope section. This experiment obtained 144 sets of experimental data.

After the filling slurry was fully agitated, the loop conveying experiment was carried
out. In this experiment, the filling pump is left in its preset speed and then enters the
horizontal pipeline (P1–P2), passes through the vertical pipeline (P2–P3), passes through
the horizontal pipeline (P3–P4), flows into the mixing tank through the inclined 5◦ slope
pipeline (P5–P8), etc.

In order to eliminate the influence of the shear thinning of the slurry on the rheological
behavior [13,14], each group of experiments lasted for half an hour. The stable pressure
value was recorded when the conveying flow was stable, the pressure difference between
the pressure monitoring points was calculated, and the pressure difference was divided by
distance and converted to a pressure loss value over a distance of 1 km in Mpa/km. First,
the loop transport experiment was carried out using the minimum concentration ratio;
then, tailings and cementing materials were added to the stirring system; the ratio was
changed; the concentration was increased; and the pump delivery flow was changed so as
to change the independent variable parameters of the test slurry concentration, the ratio
of tailings to cementitious material, the −400 mesh proportion, and the flow velocity [15].
The pressure loss values under different variable conditions were recorded.

3. Establishment and Analysis of Pressure Drop Prediction Model

The random forest algorithm was used to establish the relationship between the
pressure drop in the slurry pipeline and its related variables. Random forest is an extended
variant of bagging [16]. Classification tree is the theoretical basis of random forest. Random
forest adopts the Bootstrap resampling method to build a decision tree model for each
sample set, which can be used to solve classification and regression problems. It has a
strong generalization ability and good noise immunity, and it has been successfully applied
in many fields [17,18].

The random forest algorithm is not sensitive to multicollinearity and can reduce the
impact of missing data and unbalanced data on the prediction results. The random forest
algorithm is currently considered to be one of the optimal algorithms for nonlinear model
prediction [19].

Building the Original Training Set

The random forest regression algorithm realizes the pressure loss prediction of the
filling slurry pipeline. The random forest regression process is shown in Figure 2. The main
steps are as follows:
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(1) Use the sigmoid function to normalize the original data, re-extract b training sets
from the data samples with Bootstrap, build a regression decision tree, and use the
remaining samples as the test sample set.

(2) In the branching process, the variable smaller than the number of characteristic vari-
ables is randomly selected from all feature variables as an alternative branch, and the
optimal branch is determined according to the principle of minimum node impurity.

(3) The regression decision tree uses top-down recursive branches, and the number of
decision trees is the ntree value [20–22] as the growth termination condition.

(4) The decision trees produced by sampling are combined to form a regression model of
random forest, and the mean of the predicted values of all decision trees is output as
the prediction result.
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Figure 2. Random forest pressure drop prediction flowchart.

The slurry pressure drop data were obtained through the loop pipe experiment, and
some data are shown in Table 3.

Table 3. Test sample data.

Influencing Factors Evaluation
Index

Serial Number Pipeline
Angle◦

Quality Con-
centration%

Lime–Sand
Ratio Flow Rate m/s 400 Mesh% Pressure Loss

Mpa/km

1 0 68% 0.25 1.32 42 1.177
2 0 70% 0.25 1.68 35 2.688
3 0 72% 0.25 2.2 38 4.111
4 0 74% 0.25 1.28 29 3.584
5 0 68% 0.1 1.36 37 0.987
...

...
...

...
...

...
...

For cross-validation, the main parameters of the random forest prediction model
were the number of trees ntree = 400 and the number of variables of the random forest
classification model mtry = 4. The program segment is shown in Figure 3.
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4. Results and Discussion
4.1. Importance and Relevance Calculations

Random forest can calculate the importance of a single variable [23,24]. The number
of data classifications for the classifier is M, and the results were compared with the correct
classification and the random forest classifier. The number of errors of the statistical
classifier is N, and the size of the data error can be expressed by Equation (1):

erroOB =
N
M

(1)

According to the variable, x (importance score) can be expressed as:

scorei = ∑(erroOB2 − erroOB1)/ntree (2)

where erroOB1 is the out-of-bag data error of the decision tree for each lesson; erroOB2 is
the out-of-bag data error of feature x after adding noise interference [25–27]; and ntree is
the number of decision trees. According to Formula (2), the importance of pressure drop
influencing factors is scored; the sum of all importance scores is scaled to 1; and a stacked
bar chart is drawn, which clearly reflects the importance scores of each factor as shown in
Figure 4.
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Figure 4. Test variable correlation score map. The abscissa is the weight, and the ordinate is
the variable.

Through the analysis, it can be seen that the pipeline structure is the most important
variable affecting the pressure drop, and the importance score was 0.402. The pressure drop
predicted here is the total pressure drop, which includes the pressure loss pressure drop
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and the slurry static pressure drop. The importance scores of particle size, cementitious
material-to-tailings mass ratio, flow rate, and concentration scores were 0.022, 0.075, 0.126,
and 0.375, respectively. Slurry concentration is a secondary pressure drop factor to the
pipeline structure, and relatively speaking, the proportion of −400 mesh particle size is the
smallest factor.

Through the 5060 multi-function measuring instrument and the self-patented design of
the filling pipeline pressure monitoring device, the long-term pressure data of the pipeline
pressure during the full tailings filling of the Sanshandao Gold Mine were measured and
analyzed. When calculating the pressure distribution of the filling pipeline, the pressure
loss of the slurry in the complex area of the pipeline increased by 15% due to bending and
joint wear, and the pressure loss of the vertical pipe section of the pipeline increased by 5%.

The correlation between two continuous variables was analyzed by the Pearson corre-
lation coefficient [28,29], and the value range was [−1, 1]. The closer the absolute value of
the sample correlation coefficient to 1, the higher the degree of correlation and the closer
the relationship, and the correlation of the linear relationship between variables can be
reflected by the correlation coefficient. The correlation function is presented as Formula (3):

ρ =
δXY
δXδY

(3)

where δX and δY are the standard deviation of random variables X and Y, respectively, and
δXY is the covariance of X and Y.

The correlation table is used to express the correlation between different influencing
factors and the pipeline pressure drop. The calculated correlation results are shown in
Figure 5. Blue represents a positive correlation, red represents a negative correlation, and
the area of the circle represents the strength of the correlation. It can be seen from the figure
that the correlation between the concentration and the pipeline structure and pressure drop
is the largest, and the importance score is the highest. The data come from the loop pipe
experiment, and the test tailings are taken from the mine, which has guiding significance
for the regulation of the mine filling slurry transportation. It is necessary to strengthen
the management and control of these key factors during filling. When monitoring and
regulating the abnormal state of the filling pipeline, strengthening the control weight of the
factors provides a greater correlation [30].
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4.2. Pressure Drop Prediction Results

First, the original data were de-statically processed; the measured data were subtracted
from the pressure change in the slurry due to the action of gravity; and the pressure Pi of
the new data set was obtained by Formula (4), where the density of the test slurry was
obtained by Formula (5) [31–33]:

Pi = ∆P − ρgh (4)

ρ = ρ0 × 1/(
ρ0Cw · (nγs + γc)

γc · γs(1 + n)
+ 1−Cw) (5)

where ∆P is the test pressure difference, Pa; ρ is the density of the test slurry, kg/m3; g is
the acceleration of gravity, m/s2; is the vertical height difference, m; ρ0 is the density of the
water, and the industrial value is 1.02 × 103 kg/m3; CW is the slurry mass concentration,
%; n is the lime–sand ratio; and γc is the true density of cementitious materials and the true
density of tailings, kg/m3.

A new data set was constructed, 121 sets of data were extracted from it to construct
training samples of the random forest model, and the remaining 23 sets of data were test
samples. Five eigenvalues were selected, and the Anaconda3 development environment
was used to complete the model establishment using Python language [34,35]. First, the
model was run using the samples during training, and the trained random forest model
was used to perform regression fitting on the test sample set. The prediction result of the
regression fitting on the test sample set is shown in Figure 6.

It can be seen in Figure 6 that the prediction accuracy of the pressure drop prediction
model based on the random forest algorithm is high. The goodness of fit between the
prediction and the actual value in the test set is 0.9747, and the mean square error is 0.0011;
the value goodness of fit is 0.983. The value range of goodness of fit is [0, 1]. The larger
the value, the higher the degree of fit [36,37], and the closer the mean square error MSE is
to 0, indicating that the error between the predicted data and the original data is smaller.
The predicted value of the model is very close to the measured value, which verifies the
feasibility of the random forest model to predict the slurry pressure drop in the loop
experiment [38,39].

4.3. Comprehensive Evaluation of Forecast Results

In order to further verify the accuracy of the random forest model algorithm in the
application of slurry pressure drop loss prediction [40–42], the BP artificial neural network
and the polynomial linear fitting method were used for comparison [43], and the goodness
of fit R2 and the mean square error MSE were used to determine the prediction accuracy of
the model. The obtained error comparison results are shown in Table 4.

Table 4. Prediction model error comparison table.

Model
Performance

R2 MSE

Random forest algorithm 0.9747 0.0011
BP artificial neural network 0.9538 0.0512

Linear fit 0.9326 0.1862
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Figure 6. Model prediction: (a) results of fitting between the predicted values of the test set and
the actual values; (b) results of fitting between the predicted values of the training set and the
measured values.

5. Results

The following conclusions can be drawn from the analysis of the experimental data of
the tailings loop and the established random forest prediction model at this stage:

(1) The biggest factor affecting the change in slurry pressure is the vertical pipeline
structure, followed by the slurry concentration. The proportion of the tailings −400
mesh particle size has little effect on the slurry pressure drop.

(2) The correlation analysis of the data shows that the slurry pressure loss is positively
correlated with the slurry concentration, ratio, and flow rate. The fluidity of the
slurry is negatively correlated with the pressure drop, concentration, and the ratio of
the slurry.
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(3) The random forest pressure loss model established based on the experimental data
of the loop pipe has a high prediction accuracy. The goodness of fit between the
experimental value and the predicted value on the test set and training set is 0.9747
and 0.983, The prediction accuracy is higher than BP neural network. Based on
polynomial linear fitting, it can replace the complex loop experiment to carry out the
intelligent aided design of filling systems.

(4) The algorithm model can be used to predict the pressure of the filling pipeline by
learning the pressure distribution data of the mine filling pipeline. To provide ideas
for follow-up research, the algorithm can be used in combination with the automatic
system to realize the judgment and early warning of the abnormal state of the filling
pipeline by predicting the pipeline pressure, and the development of “smart back-
filling” technology can be promoted.
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