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Abstract: Uncertainty is intrinsic to mine design and planning and introduces risk into the pro-
cess. Nonetheless, most mine design and planning processes have historically been undertaken
as deterministic processes, often resulting in unrealistic mine designs and plans which potentially
lead to the destruction of shareholder value. This paper presents a probabilistic block economic
value (BEV) calculation approach to minimise the shortcoming of using deterministic BEVs, and
evaluates the impact of uncertainty on stope designs. The probabilistic BEV calculation approach was
applied to a synthetic geological block model of a gold mineral deposit. The uncertainty associated
with BEV input parameters was simulated using Monte Carlo simulation to create equally probable
economic orebody models which were then used to create stope designs at different levels of risk.
The probabilistic approach generated 20% to 53% higher net present values (NPVs) compared to the
deterministic approach within 30% to 70% probability range. This indicates that, for the case study
deposit, blocks with approximately 30% to 70% probability of having positive BEVs are the ones that
should be used for mine design and planning. The results demonstrate that incorporating uncertainty
early in underground mine design and planning potentially creates higher-value stopes.

Keywords: block economic value (BEV); uncertainty; risk; Monte Carlo simulation; probability stopes

1. Introduction

The mine design and planning process consists of several interrelated and interde-
pendent components which broadly start with mineral deposit evaluation. The evaluation
of a mineral deposit is a process that characterises the deposit in terms of its spatial loca-
tion, size, orientation, mineral composition, and other relevant geotechnical and technical
characteristics. The mineral deposit evaluation process uses data obtained from precursor
prospecting and exploration activities that are carried out to search for a mineral or minerals
of economic interest. Geological data obtained from prospecting and exploration activities
is used to create a three-dimensional (3D) block model to represent the mineral deposit, and
is generally referred to as a geological block model. The 3D block model is typically divided
into regular blocks along the x, y, and z directions such that the model is a depiction of the
technical context within which the deposit’s mineralisation forms a basis on which the finite
Mineral Resources contained in the mineral deposit are estimated [1]. The block model is a
primary input for subsequent mine design and planning processes which include, among
other processes, the mining method selection, mine design, production rate determination,
equipment selection, and production scheduling.

Each block within the geological block model has specific geological data, such as
grade, volume, density, and lithology [2]. The geological data together with technical
and economic factors such as commodity price, mining cost, processing cost and mineral
processing recovery rate are then used to calculate the economic value of each block called
the block economic value (BEV) [3]. Equation (1) is a typical formula used to calculate the
BEV of each block [4]:
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BEV = [(Block tonnage × grade × recovery rate × price) − (Mining cost + Processing cost)] (1)

The process of calculating BEVs converts a geological block model into an economic
block model. For each set of input parameters applied, the BEVs distinguish economic
and uneconomic blocks [5]. A block will be economic to mine if its BEV is positive, and
uneconomic if negative.

The input parameters indicated in Equation (1) for calculating BEV are inherently
uncertain at the time when mine design and planning is being undertaken. Despite this
uncertainty, deterministic BEVs are usually calculated to expedite the design and plan-
ning decisions. In the deterministic BEV calculation, it is assumed that the geological,
economic, and other technical input parameters are known with certainty [6]. This results
in a deterministic economic block model, from which practical and optimum underground
stope designs are then developed [5]. However, this assumption ignores the reality that
the economic, geological, and technical parameters are associated with considerable un-
certainties [6]. By ignoring uncertainty during mineral deposit evaluation, undesirable
consequences can occur, hence the need to shift away from deterministic to probabilistic
approaches in calculating BEVs. The application of probabilistic approaches in calculating
BEVs should improve confidence levels in the stope designs, since the mineral deposit is a
primary input to the stope design process.

There are several techniques that have been developed to optimise stope designs,
including techniques by [7–10] among many others. The realisation of incorporating
uncertainty in stope design optimisation can be seen from several stochastic optimisation
techniques that have been developed for stope design. These works include such work
as [11–13]. However, the focus of this paper is not on stope design optimisation, but on
BEV calculation and evaluating the impact of uncertainty on stope designs. Therefore, a
detailed review of stope design optimisation techniques is not the scope of this paper. A
detailed review of the stope design optimisation techniques is provided by authors such
as [5,7–14].

Given the foregoing challenges associated with deterministic approaches and the
necessity to overcome them, this paper presents a probabilistic approach that incorporates
uncertainty in key input parameters used in calculating BEVs to enable the design of more
reliable or robust stope designs. The results of the approach are economic block models
with associated probabilities that can then be used to generate probability stopes to improve
the design and planning of underground mines.

In this paper, probability stopes are stopes with an assigned confidence level. For
example, a P90 stope would mean a stope with at least a 90% probability that its constituent
blocks fall within the ultimate stope boundary. This is important during mine design
to guide and improve confidence in the location of key underground development and
access infrastructure. This is also important for creating optimum production schedules
that lead to the highest possible economic value to be generated from extracting the finite
Mineral Resources. Some of the data used in this paper were obtained and adapted from an
anonymous South African gold mine that uses the sub-level open stoping (SLOS) mining
method and the Carbon-in-Pulp (CIP) mineral processing method, producing a run of mine
of approximately 500,000 tonnes per annum. Due to proprietary reasons, the identity of the
mine could not be disclosed, though the data are representative of operating gold mines
using SLOS and CIP methods in the country. The data include mine design criteria, mineral
processing recovery rate, and processing costs.

2. Sources of Uncertainty in Mining and Associated Risk

Uncertainty is inherent in mine planning processes and the actual mining process is
also associated with uncertainty. Mine planning is associated with uncertainty because it
involves forecasting of several technical, economic, social, and environmental inputs which
are not known with certainty upfront. This is due to several reasons that include use of
data estimates to represent unobserved future events [15]. For example, during planning,
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mine planners do not know with certainty the values of future commodity prices and
exact characteristics of the mineral deposit [16]. It is only when the deposit gets extracted
that all its characteristics are known with improved confidence. The exact characteristics,
such as the total quantity of Mineral Resources for any given mineral deposit, are known
with better confidence at mine closure with the benefit of hindsight; before that stage, only
estimates are used in the mine planning process. This uncertainty introduces risk into
mining and is something which mine planners must consider and plan for [16].

Despite the intrinsic uncertainty associated with mining, most approaches to mine
planning have generally been deterministic, wherein fixed average values are used as
input values to develop mine plans. As argued by [17], the use of average values relates
to the concept of the ‘flaw of averages’ because “plans based on average assumptions are
wrong on average”. Using averages means that uncertainty is ignored in the mine planning
process, resulting in a deterministic mine plan which does not correctly model the actual
behaviour of the mining process. The main advantage of deterministic approaches using
averages is that they are simple to model and understand. However, as argued by [18],
their disadvantage is that combined errors in each fixed estimate will result in significantly
different real-life and real-time results.

Deterministic mine planning has several implications for mine design and planning
which include:

(1) Economic loss due to either foregone extra profits which could be gained during
periods of favourable market conditions or losses because of unexpected weak mar-
kets [19].

(2) Over-estimation or under-estimation of Mineral Reserves resulting in mining projects
failing to meet their objectives [20,21].

(3) Changes being made to mine designs later in the life of mine (LOM) which may
require substantial capital, negatively affecting the NPV of the project [22].

(4) Cost overruns and failure to complete projects in time because the initial estimates
would not have incorporated uncertainty which is intrinsic to mining projects.

(5) Achievement of below-target, behind-schedule or beyond-budget outcomes [23].

Therefore, uncertainty in mine design and planning should not be addressed by using
averages, but should be modelled using probabilistic or stochastic approaches. How-
ever, the concept of stochastic mine planning is not yet widely practiced since stochastic
modelling is generally more computationally complex and demanding compared to de-
terministic modelling, despite the gradual uptake of stochastic mine planning in recent
years. The uptake is underpinned by the realisation that stochastic mine planning accounts
for uncertainty in mine planning. Although there is limited literature available on the
application of probabilistic or stochastic BEV calculation [16], some growth is likely to occur
in the future, since the probabilistic or stochastic BEV calculation approach supports the
stochastic mine planning process by incorporating geological and economic uncertainty.

2.1. Geological Uncertainty

During the evaluation of a mineral deposit, the grade is estimated using geostatisti-
cal techniques by interpolating relatively limited data collected from exploration drilling
results [21]. However, the main shortcoming with geostatistical estimation is that it fails
to adequately reproduce the in situ spatial variability of geological parameters as inferred
from available sample data [24]. Since the data is not representative of the entire mineral de-
posit, the geology of the deposit is a significant source of uncertainty in mining operations.
The impacts of geological uncertainty on the success of mining operations were discussed
by several authors including [20,21,25], among many others. Several works have been
undertaken to model geological uncertainty in mine planning using conditional simulation.
Conditional simulation was defined by [25] as a type of Monte Carlo simulation for mod-
elling uncertainty in spatially distributed attributes, such as those encountered in mineral
deposits. The works of [24–29], among many others, discuss examples of such applications.
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The basic idea of conditional simulation is to reproduce the actual in situ variability
and spatial continuity of geological attributes of interest [30]. Conditional simulation
results in multiple equally probable realisations of the deposit as opposed to a single
deposit produced by traditional geostatistical estimation methods. The use of multiple
mineral deposit models to represent uncertainty of the spatial distribution of grades assists
mine planners to assess the sensitivity of mine designs and plans to grade uncertainty, and
to produce mine designs and plans with higher NPVs [24]. According to [29], stochastic
optimisation can distinguish between the maximum possible contained metal from the
minimum possible metal content. In their study of stochastic optimisation at a gold mine,
Ref. [31] found that stochastic optimisation led to a 28% improvement in NPV over the
LOM, compared to conventional (largely deterministic) approaches that were applied at
the mine.

2.2. Economic Uncertainty

Commodity price is one of the other major sources of uncertainty in mining pro-
jects [21,32,33]. This is due to most mining companies being ‘price takers’ as commodity
prices are often dictated by unpredictable global supply and demand fundamentals. There-
fore, forecasting commodity price accurately is impossible, which makes commodity price
a significant source of uncertainty in mine design and planning.

Several techniques have been developed to model uncertainty associated with com-
modity prices. These techniques are broadly classified as econometric, time series, stochastic-
gaussian and dynamic systems methods [34]. However, research found that commodity
price tends to follow two main stochastic behaviours. The first is the Brownian mo-
tion [35–39], also called a Wiener process. Equation (2) shows the Brownian motion with
drift [35]:

dx = αdt + σdz (2)

where, x is the price, α is the drift parameter, dt is an increment of time, σ is the standard
deviation and dz is the increment of the Wiener process. The second behaviour is the
mean-reverting behaviour, often observed in the prices for base metals [35,38,40] and is
represented by Equation (3) [40]:

dx
x

= K(µ − ln x)dt + σdz (3)

where x is the spot price, K is the reversion speed, µ is the logarithm of the long-term
equilibrium level of metal price, σ is the standard deviation, dt is an increment of time and
dz is an increment in a standard Weiner process.

In addition to commodity price uncertainties, the other major source of economic
uncertainty in mining projects is exchange rates [33,36] and cost, because they are difficult
to predict over the LOM due to the lack of engineering and economic information required
at the planning stage. Exchange rates are volatile, making it speculative and erroneous to
represent them using averages. Regarding cost, the actual cost of mining and processing a
specific block in a block model will only be known with certainty after the block has been
completely mined.

Most of the work discussed above considered the modelling of grade and commodity
price uncertainty separately. Research on simultaneously integrating grade and price
uncertainty during mine design and planning is growing, and includes the works of [41–44].

3. Research Methodology or Steps
3.1. Conversion of the Geological Block Model into an Economic Block Model

The probabilistic BEV calculation approach presented in this paper started by devel-
oping a 5 m × 2 m × 5 m (X, Y and Z directions, respectively) geological block model
in Surpac software. The block model with 366,792 blocks shows a steeply dipping gold
orebody at a range of 60 to 80 degrees with a strike length of about 280 m. The width of the
orebody varies between 2 m to 15 m. The orebody is a relatively small low-grade deposit
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with gold grade varying from 0 g/t to about 6 g/t. In the design, main levels were located
at 60 m vertical intervals with sub-levels located 15 m between the main levels.

The geological block model was then converted into a deterministic economic block
model by applying the following factors in calculating BEVs, where the input parameters
are average values, as per the typical practice in deterministic BEV calculation:

(1) Density of rock was based on a mean value of 3 t/m3.
(2) Mining and processing costs were assumed to be $50/t and $30/t, respectively.
(3) Average gold price was US$1520/oz.
(4) Average mineral processing recovery rate was 84%.

Using the same data set as for the deterministic scenario, uncertainty was then incorpo-
rated to selected BEV input parameters. To model uncertainty associated with gold grade,
the Sequential Gaussian Simulation (SGS) embedded in Surpac software was used to run
conditional simulations. Twenty realisations were run, resulting in twenty equally probable
realisations of the orebody. The mean and standard deviation of the gold grade for each
block was calculated from the conditional simulation results of the geological block model.
The statistical parameters were used to further run Monte Carlo simulations of gold grade
in calculating BEVs. The grade values for the geological block model were then analysed
in @Risk software, which showed that the gold grade for the deposit followed a slightly
positively skewed lognormal probability distribution. These results confirm findings by [1]
that mineral commodities, such as precious metals that are measured in parts per million or
grams per tonne, tend to be positively skewed. The lognormal distribution was therefore
used to further simulate the gold grade (simultaneously with other BEV input parameters).
The use of conditional simulation in combination with other techniques is normal practice
in evaluating orebodies. For example, [42] used conditional simulation in combination
with Monte Carlo simulation, while [26] used conditional simulation in combination with
Whittle 4D.

In addition to grade, the other input parameters used to calculate BEV are block dimen-
sions, rock density, mineral processing recovery rate, commodity price, mining cost and
processing cost. Mining and processing cost were assumed to be constant, and uncertainty
was modelled for density, mineral processing recovery rate, and gold price. Density was
assumed to follow a normal distribution with µ and σ of 3.0 t/m3 and 0.05 t/m3, respec-
tively; mineral processing recovery rate was assumed to follow a uniform distribution
with minimum and maximum values of 80% and 89%, respectively; and gold price was
assumed to follow a Geometric Brownian Motion. The different BEV input parameters
were combined into a single model given by Equation (4):

BEVij =
(
Gij × Rij × Pt − Cmij − Cpij

)
× Tij (4)

where;

BEVij is the economic value of block bij at time t,
Gij ∼ LogN

(
µ, σ2) is the gold grade of block bij,

Rij ∼ U (α, β) is the recovery rate of processing block bij,

Pt = p0e[(u−
σ2
2 )t+σdB(t)] is the gold price at time, t,

Cmij = is the cost per tonne of mining block bij,
Cpij = is the cost per tonne of processing block bij,
Tij = XINCij × YINCij × ZINCij × Dij is the tonnage of block bij,
XINCij is the dimension of block bij in the x direction,
YINCij is the dimension of block bij in the y direction,
ZINCij is the dimension of block bij in the z direction,
Dij ∼ N

(
µ, σ2) is the density of block bij.
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3.2. Simulation of Block Economic Values

The BEV calculation model indicated by Equation (4) was then used in the simulation
of BEVs in Microsoft Excel. After a series of trial and error from about 100 iterations initially,
and considering the 366,792 blocks in the model, it ended up being practical to set up and
run 5000 iterations over two weeks to generate reasonably stable BEV distributions for
each block. Using the simulated BEVs, the probability of each block being positive was
calculated based on the number of times the BEV was positive. Using the probabilities,
several economic block models with probabilities of BEV being positive were created. For
illustration and discussion purposes, this paper only presents results at 10%, 30%, 50%, 70%,
90%, and 100% probability intervals. The 10% and 100% probability economic block models
represent the economic block models with blocks with lowest and highest confidence of
being economic, respectively. The lowest confidence and highest confidence assume the
worst-case values and best-case values of the range of input parameters sampled from the
assumed underlying probability distributions of these input parameters, respectively. For
example, a 100% probability economic block model does not mean that even when the gold
price is zero, the blocks in the block model will be economic. It means that based on the
range of inputs sampled from the various probability distributions, the blocks were found
to be positive in all iterations. However, 100% confidence cannot be achieved because the
future is always uncertain. The simulated economic block models were then used to design
stopes based at varying levels of risk. The stopes which were designed in Mineable Shape
Optimizer (MSO) module available Datamine software are denoted as P10, P30, P50, P70,
P90, and P100 stopes for the different probability levels.

4. Results and Discussion
4.1. Deterministic and Probabilistic Economic Block Models

Figure 1 shows the deterministic economic block model coloured by BEV attribute.

Figure 1. The deterministic economic block model for the case study deposit [16].

The output of deterministic economic block modelling are single BEVs from which all
blocks with negative BEVs are considered as uneconomic and excluded without evaluating
the potential of the blocks to be economic under different future scenarios. After excluding
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the uneconomic blocks, the resulting total economic value, tonnage, and grade of the final
deterministic economic block model were $17.71 m, 0.71 Mt and 3.27 g/t, respectively.
After simulating BEVs, probabilistic economic block models at different probabilities were
created as described in the previous section. These are shown in Figure 2.

Figure 2. Probabilistic economic block models (Adapted from [16]).

A visual observation of Figure 2 shows that as the probability of BEV being positive
increases, then the number of blocks decreases, resulting in the orebody size, hence tonnage,
also decreasing. This means that a significant portion of the orebody is sacrificed by increas-
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ing the confidence levels in BEVs. This information is important during mine planning
to understand the likely ranges of total orebody tonnage, grade, and contained metal at
difference risk levels. The key economic and technical factors of a project were analysed
for different probabilities to establish the impact of uncertainty on project outcomes, as
summarised in Figures 3 and 4.

Figure 3. Relationship between probability of BEV being positive versus average grade and total
economic value of the deterministic and probabilistic orebodies (Adapted from [16]).

Figure 4. Relationship between probability and LOM (Adapted from [16]).

Uncertainty affects the overall economics of a mining project, as shown in Figures 3 and 4.
Figure 3 shows that the total economic value of the deterministic is constant as expected. In
contrast with probabilistic orebodies, as the probability increases, the total economic value
of the orebody increases to a peak at about 50% probability. This is because at the lowest
confidence, all blocks in the orebody are included whether they have positive or negative
BEVs, but as the confidence increases, the number of blocks with negative BEVs decreases,
hence increasing total economic value. However, as the probability continues to increase,
the total economic value of the orebody decreases, because all blocks with negative BEVs
and low positive BEVs are excluded from the orebody as confidence increases.
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Figure 3 also shows that as probability increases, the average grade of the orebody
increases. The highest average grade is obtained with the P100 economic block model.
This is the block model that would result in the most reliable stope design. However,
extracting only the P100 orebody would be akin to ‘high grading’, a mining practice that
is generally unsustainable because it may result in sterilizing a large part of the orebody,
thereby destroying economic value. Also, the high average grade may not be able to
offset the lower orebody tonnage (Figure 2). This may also result in the mine failing to
meet production targets and having a reduced and unpractical LOM, as demonstrated in
Figure 4.

4.2. Comparison of Deterministic and Probabilistic Stope Designs

Figures 5 and 6 show the deterministic stope design and probabilistic stope designs
which were generated using the probabilistic economic orebody models presented in the
previous section. The basic conceptual SLOS designs of primary and secondary develop-
ment were performed for each stope design. Each design consists of a vertical shaft (red),
main levels (green), ramp (blue), sub-levels (turquoise), and strike drives (purple). Table 1
shows the assumptions used in designing the primary and secondary development.

Figure 5. Deterministic stope design (Adapted from [16]).

Table 1. Development design parameters [16].

Excavation Type Value

Shaft dimensions (m) 3 × 2

Ramp gradient (degrees) −10

Ramp dimensions (m) 5 × 3

Main level spacing (m) 60

Main level dimensions (m) 5 × 3

Sub-level dimension (m) 4 × 3

Sub-level spacing (m) 15

Strike drive dimensions (m) 4 × 3
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Figure 6. Probabilistic stopes (Adapted from [16]).

The deterministic stopes consist of a total of 463 stopes with 937,465 t of ore and
an economic value of $714,614. However, these deterministic stopes do not quantify the
probability of the stopes being mined to the defined dimensions, thus ignoring uncertainty
encountered in actual mining practice. Probabilistic stopes denoted as P10, P30, P50,
P70, P90, and P100 stopes, respectively, in Figure 6 are equally probable under different
future scenarios.

Figures 7 and 8 show the impact of uncertainty on the total number of stopes, total
stope tonnage and total stope economic value, respectively. The figures show almost similar
trends discussed in the previous section of slightly increasing trends from 10% probability
to about 50% probability, and a significant declining trend from 50% to 100% probability.
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Figure 7. Relationship between probability of BEV being positive and the total number of stopes
(Adapted from [16]).

Figure 8. Probability of BEV being positive versus the total stope tonnage and the total stope value
(Adapted from [16]).

In addition to the impact of uncertainty on the total number of stopes, total stope
tonnages, and total economic value, the different stope designs also show that uncertainty
impacts the amount of development infrastructure required. From each stope design
(Figure 6), the total development meters for all development excavations were calculated.
Figure 9 shows the different types of development and their total lengths or depth (for the
shaft) in relation to probability.

Figure 9 shows that uncertainty has a significant effect on the amount of primary and
secondary development required. The figure shows that the shaft, ramp, and main levels
have the same total depths or lengths for all the designs. Therefore, the same amount of
development of these excavations is required regardless of the confidence in the economic
value of the stopes. This is because both the lateral and vertical extends of the orebody
remained the same as probability increased. The same is true for strike drives and sublevels
up to about 50% and 70% probability, respectively. However, as the confidence increases
from 50% for strike drives and 70% for sub-levels, the total length of development reduces
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because the size of the orebody reduces significantly. As probability increases causing
the size of the orebody to decrease, some portions of the orebody become uneconomic
such that no secondary development is required to access those portions. These results
are useful when estimating the range of capital required to develop a mine. From the total
development length or depth for each development excavation, the total development cost
was calculated based on the per meter cost assumptions provided in Table 2.

Figure 9. Relationship between probability and total meters for different development excava-
tions [16].

Table 2. Cost of development for each type of excavation [16].

Item Cost

Shaft development cost ($/m) 2000

Ramp development cost ($/m) 1800

Main level development cost ($/m) 730

Sublevels development cost ($/m) 500

Strike drives cost ($/m) 500

A conceptual DCF analysis was done for the respective designs to calculate the NPV
for each design. This was done to analyse the combined effect on NPV of the observed
results of decreasing tonnage, LOM, and development cost, and increasing average orebody
grade as confidence increased. The data used in the DCF analysis included total stope
tonnage and average grade of the simulated orebodies, total capital cost of development for
the respective designs together with the average gold price, mineral processing recovery
rate, mining cost, and processing cost. The royalty rate and tax rate formulae applicable
to South African gold mines were used. Figure 10 shows the NPV results for the different
stope designs.

Figure 10 shows that as probability increases from 10% to 50%, NPV also increases
to peak at approximately $29 m at 50% probability, then declines as probability further
increases to 100%, as also observed and explained in previous sections of the paper. P10,
P90, and P100 stope designs all have NPVs less than the NPV for the deterministic design.
The NPV for probabilistic designs is 20% to 53% higher than the NPV for the deterministic
design for a range of probability from 30% to 70%. These results confirm the results in
Figure 3, which show that economic block models at a probability range within 30% to
70% have higher economic values than the deterministic economic block model. These
results show that the deterministic BEV calculation may underestimate or overestimate



Minerals 2022, 12, 437 13 of 15

the true potential of the orebody because it does not quantify the upside or downside risk
associated with BEVs. These results also indicate that the orebodies with approximately
30% to 70% of blocks being positive for BEV are the ones that should be used for mine
design and planning.

Figure 10. NPV results for the different conceptual stope designs [16].

5. Conclusions

The paper presented a probabilistic BEV calculation approach that simultaneously
incorporates uncertainty associated with geological and economic parameters used in
calculating BEVs. This approach ensures that uncertainty which is intrinsic to a mineral
deposit is incorporated during the early stages of the mine design and planning process.
This is important, as it establishes a foundation for creating robust mine designs and plans
later in the design and planning process. This research found that as confidence in the
BEV increases, the size of the economic block model decreases concomitantly with the
LOM, whilst the average grade of the block model that is amenable for extraction increases.
The probabilistic approach generated NPVs that were 20% to 53% higher than for the
deterministic approach and this was observed within 30% to 70% probability range. This
finding suggests that orebodies with approximately 30% to 70% of their blocks having
positive BEVs, are the ones that should be considered for mine design and planning. It was
also found that the NPV peaked at approximately 50% probability, but decreased as the
probability increased beyond 50%. However, it is quite probable that the NPV may peak at
a probability which is not 50%, because this may vary from block model to block model
depending on probability distributions underlying the input parameters used to calculate
the BEVs.
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