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Abstract: The Lala copper area in Huili County, Sichuan Province, China, is favored by superior
regional metallogenic geological conditions due to its location in an extremely important copper–
iron metallogenic belt in southwest China, and it has witnessed the formation of a series of unique
iron–copper deposits following the superposition of multiple tectonic events. In recent years, major
mineral exploration breakthroughs have been achieved in the deep and peripheral zones of this
area. Using the Lala copper mining area in Sichuan as an example, this paper describes metallogenic
prediction research carried out based on multivariate geoscience information (geological information,
geophysics, geochemistry, and remote sensing data) and the application of geographic information
system (GIS) technology and the radial basis function neural network (RBFLN) model. The five spe-
cific aspects covered in this paper are as follows: (1) we collected geology–geophysics–geochemistry
remote sensing data and other information, adopted GIS technology to extract multivariate geo-
science ore-forming anomaly information, and established a geoscience prospecting information
database; (2) we applied the RBFLN algorithm for information on integrated analysis of ore-forming
anomalies in the study area; (3) we applied a statistical method to divide the threshold value to
delineate favorable ore-prospecting target areas; (4) we applied three-dimensional (3D) visualization
technology, through which sample assistance was verified, to evaluate the performance of the RBFLN
model; and (5) the results revealed that the RBFLN model can integrate multivariate and multi-type
geoscience information and effectively predict metallogenic prospective areas and delineate favorable
target areas. The metallogenic prediction method based on RBFLN technology provides a scientific
basis for the exploration and deployment of minerals in the study area. It is obvious that the methods
to predict and evaluate mineral resources are developing towards model integration and information
intelligent analysis.

Keywords: GIS; multivariate geoscience datasets; RBFLN; metallogenic prospective area

1. Introduction

Mineral resources play a significant role in China’s economic development. At present,
China is relatively limited in terms of mineral resource storage, and will especially be
reliant on the importation for copper for a period in the future. This has affected China’s
industrial development to a large extent. Therefore, scientific predictions and evaluations
of potential mineral resources are essential and serve as a key guarantee for the sustainable
development of China’s national economy. Currently, resource prediction and evaluation
has become a research focus in the field of mineral exploration [1].

Geostatistics is a branch of statistics established by French statistician G. Matheorn.
Based on the theory of regionalized variables and with variation functions as a tool, it is a
science that explores natural phenomena which occur both at random and with a certain
structure in spatial distribution [2]. It initially targeted the single spatial parameter statisti-
cal model as a focus, which gave rise to linear geostatistics [2–4]. With the development of
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spatial parameters that tend to be more complex and diverse, nonlinear geostatistics [5,6]
have emerged when linear geostatistics failed to provide solutions.

Since the 1970s, the development of methodological systems of regional metallogenic
prediction has accelerated. It mainly covers three directions, two of which are regional
metallogenic predictions based on the research of geological metallogenic theory and
one which is based on the research of metallogenic dynamics theory [7]. The regional
metallogenic prediction method adopted in this study relies on comprehensive geological
research as the foundation, deposit models or geological anomalies as the bases, the
computer as a means of research, and comprehensive quantitative analysis of multivariate
information, such as geology, geophysics, geochemistry, and remote sensing data, as key
approaches [8–10].

GIS technology, a computer system which integrates collection, storage, management,
analysis, display, and application, is a general technology for analyzing and processing mul-
tivariate geographic data [11]. In metallogenic prediction, its application has advantages
such as the integrated management of multivariate geoscience data, data space simulation
analysis, and data quantification [12]. In recent years, the methodology system of metallo-
genic predictions based on GIS technology has been continuously deepened and developed.
In the late 1980s, the Geological Survey of Canada used GIS technology for the potential
mapping of mineral resources, mineral exploration, and mineral resource evaluation [13].
In 1988, Wyborn et al., from Australia, adopted GIS technology to evaluate mineral resource
potentials [14]. In 2012, Silva et al. applied the ArcGIS-SDM fuzzy logic method to generate
mineral exploration maps and evaluate potential exploration areas [15,16]. Additionally, Li
et al. successfully developed the GeoCube software by integrating mathematical modeling
methods [17] and quantitatively extracted and integrated 3D geoscience prospecting infor-
mation of the Luanchuan mining area in Henan Province with the help of the software in
question [18]. Combining GIS resource evaluation technology and 3D modeling technology,
Wang et al. extracted and integrated comprehensive metallogenic information from the
zones at different depths in the mining area [19].

Artificial neural networks (ANNs) have been widely applied in regional metallogenic
prediction as a nonlinear classification method [20]. It classifies and recognizes data by
imitating human biological neurons with the capacity to process complex nonlinear spatial
datasets. To date, a wide range of ANNs has been developed, such as RBFLN, generalized
regression neural networks (GRNNs), and probabilistic neural networks (PNNs) [21–23].
Previous studies have revealed that RBFLN is superior in metallogenic prediction.

Based on the metallogenic geological conditions and the metallogenic model of the
Lala copper concentration area in Sichuan (Figure 1), this paper describes how multivariate
geoscience ore-forming information was integrated with the help of GIS technology and the
use of the RBFLN model. Predictive prospective outcomes and superimposed verification
results of ore body models indicated that this method is capable of rendering theoretical
bases and practical suggestions for mineral prospecting effort at deep zones in this area.
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Figure 1. Geological model for prospecting predictions of the Lala copper deposit (modified from 
[24]). 
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The Lala region is located on the eastern edge of the midsection of the Kangding–
Yunnan Axis of the Yangtze Platform which extends from north to south, and north of the 
Huili–Eastern Sichuan Aulacogen, which stretches from east to west (Figure 2). Spreading 
across the border between China and Vietnam, the Kangding–Yunnan copper belt lies on 
the western fringe of the Yangtze Plate, with a length of about 300 km. A famous iron-
oxide copper gold (IOCG) metallogenic area [25,26], the province has more than 50 IOCG 
deposits, the most representative of which are the Luodang Copper Mine and Hongnipo 
Copper Mine (Figure 3). 

The strata in this region developed from the Early Proterozoic Erathem to the Ceno-
zoic Erathem. Except for the Ordovician–Carboniferous strata, all other strata can be 
found here, with those of the Proterozoic Erathem and the Mesozoic Erathem most devel-
oped. Stratigraphic combinations in this region mainly cover the Pre-Sinian System, the 
Sinian to Silurian Systems, the Permian System, the Triassic to Cretaceous Systems, and 
the Cenozoic Erathem [24]. The Hekou Group and the Huili Group are the major ore-
bearing strata, whereas the industrial ore bodies are mainly hosted in the middle and 
lower parts of the Luodang Subgroup of the Hekou Group. 

This region is typical of frequent and intense magmatic activities, which feature mul-
tiple cycles and multiple stages—the major stages are Jinning, Chengjiang, Variscan, and 
Indosinian Periods. Due to its unique tectonic–magmatic conditions and relatively devel-
oped fluid activities, this region is abundant in metal minerals [24]. 

Figure 1. Geological model for prospecting predictions of the Lala copper deposit (modified
from [24]).

2. Geological Setting
2.1. Regional Geology

The Lala region is located on the eastern edge of the midsection of the Kangding–
Yunnan Axis of the Yangtze Platform which extends from north to south, and north of the
Huili–Eastern Sichuan Aulacogen, which stretches from east to west (Figure 2). Spreading
across the border between China and Vietnam, the Kangding–Yunnan copper belt lies on
the western fringe of the Yangtze Plate, with a length of about 300 km. A famous iron-
oxide copper gold (IOCG) metallogenic area [25,26], the province has more than 50 IOCG
deposits, the most representative of which are the Luodang Copper Mine and Hongnipo
Copper Mine (Figure 3).

The strata in this region developed from the Early Proterozoic Erathem to the Cenozoic
Erathem. Except for the Ordovician–Carboniferous strata, all other strata can be found
here, with those of the Proterozoic Erathem and the Mesozoic Erathem most developed.
Stratigraphic combinations in this region mainly cover the Pre-Sinian System, the Sinian to
Silurian Systems, the Permian System, the Triassic to Cretaceous Systems, and the Cenozoic
Erathem [24]. The Hekou Group and the Huili Group are the major ore-bearing strata,
whereas the industrial ore bodies are mainly hosted in the middle and lower parts of the
Luodang Subgroup of the Hekou Group.

This region is typical of frequent and intense magmatic activities, which feature
multiple cycles and multiple stages—the major stages are Jinning, Chengjiang, Variscan,
and Indosinian Periods. Due to its unique tectonic–magmatic conditions and relatively
developed fluid activities, this region is abundant in metal minerals [24].
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2.2. Deposit Geology
2.2.1. Luodang Copper Deposit

Comprising 32 ore bodies, the Luodang copper deposit is 1960 miles long from east
to west and 900 miles wide from north to south, covering an area of 1.76 km2. The upper
section of the volcanic sedimentary cycle—Luodang formation complex, in the middle of
the Hekou Group—is the major ore-bearing stratum. The ore body is stratiform, stratiform-
like, and lentoid, and is generated in an overlapping-imbricate shape [28]. The attitude of
the ore body, basically resembling that of the surrounding rocks, is controlled by lithology
and stratum position and fluctuates with the folds of the surrounding rocks. The ore
body presents an overall trend from east to west and tilts southward with an angle of
15◦–40◦ [29].

2.2.2. Hongnipo Copper Deposit

The Hongnipo deposit sits about 5 km south of the Luodang deposit, with the ore
body hosted in the Hekou Group strata in the Early Proterozoic metamorphic–volcanic
sedimentary sequence and controlled by stratum position and lithology to a large extent [30].
The Tianshengba Group is the primary ore-bearing stratum, followed by the Luodang
Group. The ore body is stratiform, stratiform-like, and podiform, and is generated in a
bedding mode. The ore-bearing surrounding rocks mainly comprise carbonaceous quartz
albitite, dolomitic quartz albitite, and quartz albitite at the bottom of the lower section of
the Tianshengba Group.

3. Radial Basis Functional Link Networks

RBFLN, proposed by Broomhead in 1988 [31], is a kind of ANN that can process
complex nonlinear spatial datasets. RBFLN is of great importance in dealing with the
nonlinear relationship between known deposits and evidence factor layers. Taking the
known deposits and non-deposits as training samples [32–34], RBFLN identifies the RBF
network relationship between these samples and evidence factors as a nonlinear neural
network algorithm (NNA), comprising a three-layer feedforward structure: input layer,
hidden layer, and output layer [35,36] (Figure 4). The RBFLN structure includes an input
layer composed of N nodes which receive the input feature vector x and a hidden layer
comprising M neurons, each of which is represented by a Gaussian RBF. Each neuron in the
hidden layer receives the input feature vector x and outputs the value y. If xq is inputted
into the mth neuron, the output value yq

m can be expressed as [37]:

yq
m = e[−‖x

q−vm‖2/2σm
2], 0 < y ≤ 1 (1)

where the value q ranges from 1 to N (N is the number of training samples), and the value
M ranges from 1 to M (M is the number of neurons in the hidden layer). xq represents the
nth input feature vector, vm refers to the center of the mth RBF in the hidden layer, which
corresponds to the maximum likelihood point of the RBF, and σm represents the width or
spread function of the mth neuron [34,38].

The overall output feature vector z contributes to the linear combination of output
weights. If the abovementioned yq

m is output to the jth output neuron, the formula can be
expressed as [37]:

zq
j =

[
1

M + N

]{[
∑ umj × yq

m

]
+ ∑[wnj × x + bj]← t

}
(2)

where umj represents the synaptic weight between the hidden layer and the input layer,
whereas wnj represents the synaptic weight between the input layer and the output layer.
Additionally, the constant bj is added to the formula. The two synaptic weights were
repeatedly modified through iteration processes until the output layer Z approached the
target T.
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4. Extraction and Integration of Geoscience Datasets

GIS technology was used to extract and process information on ore-forming anomalies
based on the collected data of mineral geology (1:50,000), aeromagnetic anomalies (1:50,000),
copper geochemistry in the Huili–Huidong area, comprehensive anomalies of chemical
elements, and the remote sensing images presented in this paper.

The Beijing 54 projection coordinate system (PCS) was adopted in datasets, and the
storage format was a grid (unit: m).

The information extraction of multivariate geoscience datasets in the study area is
shown below:

(1) Geological Information Extraction and Interpretation

Using the mineral geological map (1:50,000) as a reference, we used MorPAS and
ArcGIS software to extract four kinds of information on ore-forming anomalies: strata
configuration entropy (Figure 5a), tectonic fracture isodensity (Figure 5b), tectonic fractal
dimension (Figure 5c), and rock buffering (Figure 5d). Specifically, entropy can reflect
the complexity of the structure. For instance, strata configuration entropy reveals the
complexity of strata. There is a positive correlation between strata complexity and strata
configuration entropy, and the latter changes with changes in the former [39]. From the
perspective of space, tectonic fracture isodensity can be used to construct the development
degree of information on anomalies in certain areas, which represents the cumulative sum
of the tectonic length in a specific unit grid. Tectonic fractal dimension, an indicator to
evaluate the complexity of fault structure, is positively correlated with the metallogenetic
probability and has advantages over tectonic fracture isodensity. Magma intrusion is
intense in this study area, and some magmatic rocks are occurrence ores. In addition, ores
can be produced through magmatic rocks’ contact metasomatism with the surrounding
rocks; thus, the peripheral parts of magmatic rocks are also favorable metallogenic sites.
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(2) Geophysical Information Extraction and Interpretation

According to the aeromagnetic anomaly data (1:50,000), information on the aeromag-
netic ore-forming anomalies of the study (Figure 6) area was extracted. In our research, we
collected physical property data measured by our predecessors in this study [26], providing
an important reference for interpreting magnetic anomalies. From the aeromagnetic isoline
map, most deposits were located in the zero-line area at the junction of positive and negative
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anomalies. In terms of the magnetic field characteristics, we found that the gentle negative
magnetic fields in the study area were a comprehensive reflection of a weak magnetic
basement and sedimentary cover; the strong magnetic arched, beaded, and disordered
magnetic anomalies were a reflection of basic volcanic rocks; and some relatively regular
strong magnetic anomalies were a reflection of basic and intermediate-basic intrusive rocks.
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(3) Geochemical Information Extraction and Interpretation

The Cu element anomaly map (Figure 7a) and the comprehensive anomaly map
(Figure 7b) of Cu–Co–Mo elements in this study area were provided by the Development
and Research Center of the National Geological Archives of China. The Cu anomaly
directly indicated the existence of Cu deposits or mineralization, and the comprehensive
Cu–Co–Mo anomaly indirectly indicated the existence of Cu deposits or mineralized zones.

(4) Remote Sensing Information Extraction and Interpretation

Different surface features of the earth display various spectral characteristics, and the
altered surrounding rocks characterizing the existence of deposits and mineralized zones
are no exception. Remote sensing technology can detect the altered surrounding rocks
(if any) exposed on the earth’s surface. The abnormal data of remote sensing alteration
information are also an important basis for indicating mineralization. The distribution map
of iron-stained alterations (Figure 8a) and remote sensing tectonic information in this study
area were provided by the Development and Research Center of the National Geological
Archives of China. In ArcGIS, we first divided the study area into grids, in accordance with
a certain grid size. After that, we counted the total degree of linear fracture in each grid,
and we assigned this value to the center point of the grid. Finally, we spatially interpolated
the point data, and we obtained the isodensity map of the line–ring structure (Figure 8b).
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5. Application of RBFLN in the Lala Copper Deposit
5.1. Training and Classification

According to the aforementioned geology–geophysics–geochemistry–remote sensing
ore-forming information, we used GeoXplore 5.1 software, the SDM module of ArcGIS 10.5
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software, which were both developed by Environmental Systems Research Institute (ESRI),
and the RBFLN model to perform metallogenic prospect predictions in the study area.

Twenty-five deposit sites and twenty-four non-deposit sites were involved in this re-
search. A common way to evaluate the trained RBFLN was to use one-third of the training
sites for verification and use the rest of the training sites to evaluate the network perfor-
mance. Therefore, seven deposits and eight non-deposits were selected for verification, and
eighteen deposits and sixteen non-deposits were chosen for training (Figure 9).

The nine abovementioned geoscience layers were combined by rasterization and
reclassification, thus forming a unique grid. We divided the study area into a 100 m× 100 m
grid scale, and the cumulative number of grids was 33,864. Each pixel in the grid data
comprised feature vectors X (X1, X2, X3, X4, X5, X6, X7, X8, and X9) in the nine-dimensional
space, which served as the input layer of the RBFLN model.

In the training stage, the number of RBFs and the number of iterations were changed
to obtain the minimum sum of squared error (SSE) between the output result and the target
vector [34]. SSE represented the mismatch degree between the output result and the target
vector, and a smaller value contributed to a higher matching degree. With the gradual
increase in the number of iterations, SSE showed a downward trend and tended to be
stable (Figure 10). When the number of iterations increased by more than 160, the network
seemed to be affected by over-learning, which led to overfitting [32,34].
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5.2. Validation

Accordingly, the results obtained through the RBFLN model with 40 RBFs and 120 it-
erations were selected to generate a probability output table with a value range of 0–1.577,
which was normalized between 0 and 1. A relation graph of probability values and cu-
mulative percentages of the study area was drawn (Figure 11), and the inflection points
on the graph were calibrated to define the category intervals. Specifically, the posterior
probability interval of the higher metallogenic target area was p ≥ 0.65, whereas that of
the medium metallogenic target area was 0.49 < p < 0.65. Based on the features of the
abovementioned intervals and the geological characteristics of the Lala concentration area,
eight ore-prospecting prospective areas were delineated in this paper (Figure 12).

The validation data in the previous section were used to evaluate the performance
of the RBFLN. The results demonstrated that five of the seven verification deposits were
delineated in high prospective areas, indicating that the classification accuracy of unknown
features was 71%. Additionally, one verification deposit and all non-verification deposits
were delineated in low prospective areas, and one verification deposit was delineated in
a medium prospective area. The comprehensive verification manifested that 86% of the
verification deposits were in high and medium prospective areas (Figure 12).

Moreover, 3D visualization technology can be used to verify the prediction results and
the existing ore bodies in the Luodang mining area, further proving the performance of
the RBFLN model (Figure 13). The results showed that the distribution range of ore bodies
was consistent with the prediction results of the RBFLN model.
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6. Conclusions

(1) We established a multivariate comprehensive ore-prospecting information model of
geology–geophysics–geochemistry–remote sensing in the study area based on GIS
technology, and we determined the existence of several ore-prospecting indicators
(strata configuration entropy, tectonic fracture isodensity, tectonic fractal dimension,
rock buffering 1 km, Cu geochemical anomalies, Cu–Co–Mo composite anomalies,
aeromagnetic anomalies, alteration information, etc.). We adopted the RBFLN algo-
rithm to conduct the metallogenic prediction of the Lala ore concentration area in
Sichuan Province. Consequently, we successfully divided the secondary intervals of
the higher metallogenic target area and medium metallogenic target area, and we
determined eight ore-prospecting prospective areas by taking the above variables
as predictors;

(2) The distribution of high and middle prospective areas in the metallogenic prospective
map revealed that the metallogenic conditions would be more favorable and the
possibility of deposits would be higher if the strata were more complex, the fracture
intersection was denser, and the aeromagnetic anomaly was higher;

(3) In contrast to traditional metallogenic prediction methods, the RBFLN algorithm can
solve complex nonlinear classification problems effectively and quickly. This algo-
rithm features a simple calculating process, a rapid training speed, and an optimum
approximation ability, which is conducive to processing a large amount of geological
data and carrying out metallogenic prediction research;

(4) The cross-validation of multivariate geoscience information in favorable ore-prospecting
areas was made possible by 3D visualization technology, which provides a better
reference for ore prospecting in deep areas. However, the disadvantage of this research
lies in the absence of on-site verification. No on-the-spot investigations have been
conducted because of the impacts of the COVID-19 pandemic. Therefore, the reliability
of the RBFLN model results should be further verified through field exploration.
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