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Abstract: Electrodeposited antimony can be treated with sulfuration–volatilization technology, which
causes antimony to volatilize in the form of antimony sulfide. During this process, gold is enriched
in the residue, thereby realizing the value-added use of antimony and the recovery of gold. In
this study, the thermodynamic conditions of antimony sulfide were analyzed by the Clausius–
Clapeyron equation. Moreover, the volatilization behavior of antimony sulfide and the enrichment
law of gold were studied by heat volatilization experiments. The effects of the sulfide temperature
and volatilization pressure on the separation efficiency of antimony and gold enrichment were
investigated. The results demonstrate that the sulfuration rate was the highest, namely 96.06%, when
the molar ratio of sulfur to antimony was 3:1, the sulfur source temperature was 400 ◦C, the antimony
source temperature was 550 ◦C, and the sulfuration time was 30 min. Antimony sulfide prepared
under these conditions was volatilized at 800 ◦C over 2 h at an evaporation pressure of 0.2 atm, and
the volatilization rate was the highest, namely 92.81%. Antimony sulfide with a stibnite structure
obtained from the sulfuration–volatilization treatment of electrodeposited antimony meets the ideal
stoichiometric ratio of sulfur and antimony in Sb2S3 (3:2), and gold is enriched in the residue.

Keywords: electrodeposited antimony; sulfuration–volatilization; antimony sulfide; enriched gold

1. Introduction

Antimony is a rare metal, and its average abundance in the earth’s crust is only
0.2–0.5% [1]. In 2014, the European Union classified antimony as a key raw material [2].
The conductivity of antimony is between conductor and insulator, it is not easily oxidized at
room temperature, and it has corrosion resistance. In addition, antimony compounds also
have the excellent characteristics of high heat resistance and low resistance, and are often
used to manufacture laser-guided bombs, various missile seekers, and friction materials. Sb
and its compounds were first only used in fireworks, firewood, and other daily life fields.
With the rapid development of science and technology, antimony and its compounds have
become widely used in the nuclear industry, batteries, semiconductors, catalysis, enamel,
and alloys, as well as in the medical and pharmaceutical fields, the military, etc. Antimony
is also characterized by low substitution and high military demand, and a single supply
source mainly obtained via primary mining [3–5].

Antimony is a traditionally dominant mineral resource in China. According to sur-
vey data released by the United States Geological Survey (USGS), China’s antimony ore
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resource reserves account for 25% of the world’s total reserves, with antimony ore reserves
ranking first in the world. Moreover, China’s antimony ore mining accounted for 52% of
the world’s antimony mining in 2020, with extraction of antimony ores also ranking first
in the world [6]. With the increasing development of mining technology, the production
process of antimony mineral resources, mainly jamesonite and stibnite, has become increas-
ingly mature. At present, the research on antimony production in China has gradually
shifted to investigations of complex polymetallic symbiotic ores, represented by antimony–
gold deposits [7]. The traditional treatment method of antimony minerals is the smoke
method [8,9]; this is because antimony–gold ore contains gold and other minerals, and gold
is often associated with sulfides, such as pyrite, antimonite, and arsenopyrite. In addition
to natural gold and continuous gold, which represent the free existence of raw gold, most
gold is embedded in sulfide and oxide minerals, which belong to the category of refractory
gold mines [10–14]. Considering the enrichment and extraction of precious metals, sodium
sulfide leaching–sodium thioantimonate solution electrodeposition is a commonly used
technology for the treatment of antimony–gold ore.

Antimony–gold ore can be treated by a sodium sulfide leaching–sodium thioanti-
monate solution electrowinning process. However, during this treatment, up to 10.3%
of the gold in the ore will be dissolved into the leaching solution, and this gold will be
precipitated during electrowinning before the antimony in the leaching solution is reduced;
the antimony produced in this solution system contains not only a large amount of sodium
salt, but also gold [15–18]. Therefore, there is an urgent need to explore processes that
can simultaneously purify electrodeposited antimony and achieve gold enrichment. The
recovery and value-added use of valuable metals from metallurgical by-products can be
achieved by sulfidation [19] and vacuum distillation [20,21]. Zhang [22] purified electrode-
posited antimony by vacuum distillation and enriched gold in the residue. The present
research is based on the problem that electrodeposited antimony contains precious gold, the
smelting product of antimony–gold ore. By using the basic principle whereby the saturated
vapor pressure difference between Sb, Sb2S3, and Au is significant, a two-stage process
of sulfuration–volatilization is used to directly sulfurate the electrodeposited antimony.
Antimony sulfide can be produced and purified by distillation via a novel process for the
treatment of electrodeposited antimony. In this process, antimony is volatilized in the form
of sulfide antimony, while gold is enriched in the residue, thereby realizing the value-added
use of the main metal antimony and the recovery of gold.

2. Materials and Methods
2.1. Materials and Device

The experimental raw materials used in this study were electrodeposited antimony
produced by Shandong Hengbang Group (Yantai, China) and sulfur powder produced
by Tianjin Fengchuan Chemical Reagent Technology Co., Ltd. (Tianjin, China). Chemical
analysis and gravimetric methods were used to quantitatively determine the chemical com-
position of the electrodeposited antimony and sulfur powder. The chemical composition
of antimony electrodeposited from raw materials was obtained via chemical analysis and
X-ray fluorescence, and the results are reported in Table 1.

Table 1. Chemical composition of electrodeposited antimony.

Element Na Fe As Se Sb Au 1

Content/wt% 0.400 0.170 0.044 0.033 93.690 38
1 The unit of Au content was g/t.

In this experiment, to fully react the electrodeposited antimony, excess sulfur powder
was needed; thus, the molar ratio of S: Sb was set to 3:1. The tube furnace was filled with
argon. One of the dual-temperature-zone tube furnaces was the sulfuration temperature
zone with an antimony crucible, the other was the sulfur volatilization temperature zone
with a sulfur crucible, and the temperature of the sulfuration temperature zone was set
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to 400–650 ◦C. The temperature gradient was set to 50 ◦C, and the heating rate was
10 ◦C·min−1. The volatilization system was set to 400 ◦C, the heating rate was 8 ◦C·min−1,
the pressure was 1 atm, and the temperature was maintained for 30 min. A furnace box of
the tube furnace was used for the volatilization test, and graphite paper was placed at both
ends to collect volatiles. The samples obtained under optimal vulcanization conditions were
volatilized at 800 ◦C. The atmospheric pressure in the volatilization zone was respectively
set to 0.2, 0.4, 0.6, 0.8, and 1.0 atm, and the temperature was maintained for 120 min.

Reactions in the system:
2Sb + 3S→ Sb2S3 (1)

The reaction flowchart is presented in Figure 1.
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Figure 1. Process flow chart of electrodeposited antimony sulfide volatilization and enrichment
of gold.

The experimental device was a dual-temperature-zone tube furnace, produced by
Shanghai Yifeng Electric Furnace Co., Ltd. (Shanghai, China), as shown in Figure 2. The
shell of the tube furnace was welded with a thin steel plate at the edge, and the furnace
lining was made of refractory fiber material. The spiral heating element was made of
an iron-chromium-aluminum alloy electric heating wire and inserted into the furnace
lining. The tube furnace was equipped with a temperature controller and an Ni-Cr-Ni-
Si thermocouple, which could measure, indicate, and automatically control the furnace
temperature. Thermocouples for temperature measurement and control were inserted
through the thermocouple holes, and the gaps between the holes and thermocouples were
filled with cotton fiber.
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2.2. Methods

Scanning electron microscopy (SEM, VEGA3 TESCAN, Brno, Czech Republic) was em-
ployed to observe the microscopic morphology of antimony sulfide. Raman spectroscopy
was performed with a Renishaw (London, England). Raman microscope equipped with
a 514 nm laser, integrated switchable gratings with 600 or 1800 lines/mm, and a CCD
detector. An electron probe micro-analyzer (EPMA-1720H, Shimadzu, Shimane, Japan) was
used to scan the elemental distributions of the samples. Energy-dispersive spectroscopy
(TM3030Plus, HITACHI, Tokyo, Japan) was employed for the elemental analysis of the
micro-samples. X-ray photoelectron spectroscopy (XPS, PHI5000 Versaprobe-II, ULVAC-
PHI, Chigasaki, Japan) was carried out to measure the binding energy of the electrons to
identify the chemical properties and composition of the volatiles.

The sulfuration rate of electrodeposited antimony was calculated by the following formula:

Sulfuration rate = (m1 −m0)/m, (2)

where m0 is the mass (g) of the empty crucible before the experiment; m1 is the total mass of
the crucible containing the electrodeposited antimony after the reaction; and m is calculated
by the chemical reaction equation of the reaction between elemental sulfur and elemental
antimony.

The volatilization rate of samples after vulcanization was calculated by the following formula:

Volatilization rate = (m2 −m3)/m2, (3)

where m2 is the mass of the sample prepared under the optimal vulcanization conditions
before volatilization in the crucible, and m3 is the mass of the residue in the crucible
after volatilization.

3. Theoretical Calculation

The theoretical basis for vacuum metallurgical separation, purification, and refining is
based on the different saturated vapor pressures of various substances. The relationship
between pressure and temperature when a pure substance reaches two-phase equilibrium
can be expressed by the Clausius–Clapeyron equation:

dp/dT = H/T(Vg − Vl) (4)
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In the process of substance sublimation and evaporation, p represents the saturated
vapor pressure of the substance at temperature T, Pa; T represents temperature, K; H
represents the latent heat of vaporization of the substance, J/mol; Vg represents the molar
volume of the substance in the gas phase volume, m3/mol; and Vl indicates the molar
volume of the substance in the liquid phase, m3/mol.

For gas–liquid equilibrium, the equilibrium pressure was the vapor pressure of the
liquid phase. Since the molar volume Vg when the substance was in the gas phase was
much larger than the molar volume Vl when the substance was in the liquid phase, Vl can
be ignored, namely:

Vg − Vl = Vg (5)

Therefore, the Formula (4) was simplified to:

dp/dT = Hl/T Vg (6)

The liquid phase has a low saturated vapor pressure and can be treated as an ideal
gas. The gas phase follows the ideal gas law:

p Vg = R T (7)

Substituting Formula (7) into Formula (6), we can get:

dp/dT = Hl p/R T2 (8)

Owing to dp/p = p lnp, Formula (8) becomes:

dp/dT = Hl p/R T2 (9)

When the temperature changes, the change in latent heat of evaporation cannot be
ignored, then:

Hl = H0 + aT + bT2 + cT3 + . . . . . . (10)

Substituting Formula (10) into Formula (9), we can get:

ln p = −L0/RT + a/R lnT + b/R T + . . . . . . + c (11)

To further simplify:
lg p = AT−1 + B lgT + CT + D (12)

From Equation (12), it can be seen that the image is a curve, representing a non-
linear relationship.

The constants A, B, C, and D in Formula (12) are evaporation constants, which can be
obtained by consulting related thermodynamic manuals.

From the literature [23,24]:
For metal Sb:

lg p = 8.00 − 6060/T T ≤ 1573 ◦C (13)

lg p = 9.15 − 7880/T T > 1573 ◦C (14)

For Sb2S3:
lg p = 14.67 − 11,200/T 673 ◦C ≤ T < 773 ◦C (15)

lg p = 9.92 − 7068/T 773 ◦C ≤ T < 1223 ◦C (16)

For Au:
lg p = (14.50 − 19,280/T) − 1.01 × lgT (17)

Therefore, the relationship between saturated vapor pressure and temperature can be
obtained as shown in Table 2 and Figure 3:
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Table 2. Saturated vapor pressure of Sb2S3 and Au.

Substance
Saturation Vapour Pressure/Pa

773 K 873 K 973 K 1073 K 1173 K

Sb 1.45 11.44 59.13 225.05 674.15
Sb2S3 5.98 66.65 447.58 2127.46 7752.19

Au 4.38 × 10−14 2.79 × 10−11 4.65 × 10−9 2.96 × 10−7 9.19 × 10−6
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Table 2 and Figure 3 show that in the temperature range of 400 ◦C to 900 ◦C, the saturated
vapor pressure of Au was much less than that of Sb and Sb2S3, while the saturated vapor
pressure of Sb was much lower than that of Sb2S3, and varied with increasing temperature.
The difference in saturated vapor pressure between Sb and Sb2S3 also gradually increases.

In summary, the saturated vapor pressures of Sb2S3 and Sb were much greater than
that of Au, and the saturated vapor pressure of Sb2S3 was much greater than that of Sb,
indicating that Au was less volatile and Sb2S3 was more volatile than Sb. In this experiment,
sulfur vapor was first used to vulcanize Sb to produce Sb2S3, and then to volatilize the
vulcanized Sb2S3. Recovery of antimony sulfide from electrodeposited antimony and
enrichment of gold.

4. Experimental Analysis
4.1. Sulfuration Reaction
4.1.1. Sulfuration Rate Calculation

During the sulfuration process, a small portion of the generated antimony sulfide
will volatilize. The volatile Sb2S3 was condensed in the non-heating zone and adhered
to the wall of the quartz tube. A portion of the antimony sulfide generated during the
sulfuration process was volatilized, resulting in the calculated sulfuration rate being lower
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than the actual sulfuration rate. At 400 and 450 ◦C, the electrodeposited antimony was not
fully vulcanized, and the sulfuration rates were only 79.57% and 79.21%, respectively. The
sulfuration rate reached 89.78% at 500 ◦C. A good sulfuration rate of 96.06% was achieved
at 550 ◦C. However, the calculated sulfuration rates at 600 and 650 ◦C were only 88.89%
and 89.78%, respectively. The reason for this is that a portion of the antimony will be in the
melting–recrystallization zone, as shown in Figure 4.
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4.1.2. SEM Analysis

Figure 5 displays the SEM images of the samples after sulfuration at constant at-
mospheric pressure and a constant holding time. The SEM images (Figure 5a, b) reveal
that a large number of bright particles inside the electrodeposited antimony were not
vulcanized at 400 and 450 ◦C. At 500 ◦C, the sulfuration rate increased to 89.78%, and the
unsulfurated electrodeposited antimony particles were relatively reduced as compared to
those at 400 and 450 ◦C; however, there remained a considerable amount of unsulfurated
electrodeposited antimony. At 550 ◦C, the number of bright electrodeposited antimony
particles in the visible field of view was very small, and they had been vulcanized to form
Sb2S3. At 600 and 650 ◦C, the number of brightly electrodeposited antimony particles
in the electron microscopic view decreased significantly as compared with that in the
low-temperature reaction.
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Figure 5. SEM images of antimony sulfide synthesized by electrodeposited antimony sulfide and
electrodeposited antimony at different temperatures: (a) 400 ◦C, (b) 450 ◦C, (c) 500 ◦C, (d) 550 ◦C,
(e) 600 ◦C, and (f) 650 ◦C.

4.1.3. EPMA Analysis

When a certain temperature was reached, the sulfuration rate decreased with the
increase of the sulfuration temperature; this issue was further investigated. After reacting
at 600 and 650 ◦C, melting and recrystallized regions of antimony appeared in the crucible
(Figure 4). The samples sulfurized at 650 ◦C were analyzed by electron probe microanalysis
(EPMA). Figure 6 presents the surface scanning images of the antimony sulfide area at
650 ◦C. The images of elemental Sb and elemental S reveal that their distributions were
basically consistent. However, as indicated in the image of elemental Sb, there were some
areas where the Sb content was very low, but in the image of elemental Na, the area of
concentrated Na was the empty area in the image of elemental Sb.
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Figure 7 presents the surface scanning images of the melting–recrystallization zone of
antimony at 650 ◦C (the area circled in Figure 4). The figure reveals that the recrystallization
zone was mainly unsulfurated metal Sb, resulting in a decrease in the vulcanization rate,
and some areas were enriched with Na.
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In comprehensive consideration of the images of the sulfide samples presented in
Figure 4 and the EPMA results, the main reasons for the occurrence of the melting–
recrystallization zone at 600 and 650 ◦C are the following. (1) The sulfur source temperature
remained constant at 400 ◦C, so the sulfur partial pressure remained certain. With the
increase of the antimony source temperature, the amount of sulfur vapor diffused to the
antimony end gradually decreased, and the collision between sulfur and antimony at the
upper end of the antimony source decreased, resulting in the decrease of the vulcanization
rate. (2) With the increase of the reaction temperature, the pressure of the reaction system
increases, and the sulfur pressure in the antimony reaction zone becomes higher than that in
the low-temperature zone; thus, the gas moves to the sulfur end. (3) When the pressure of
the reaction system is high, the gas reaction proceeds in the direction of volume shrinkage,
and the gaseous sulfur particles collide with each other to form macromolecular liquid
sulfur, resulting in the reduction of sulfur involved in the vulcanization reaction.

4.1.4. EDS Analysis

The chemical formula of antimony sulfide is expressed as Sb2S3, the S/Sb ratio of
which is 1.5. At 400 and 450 ◦C, the highest S/Sb ratio calculated by the obtained EDS
data was about 1.32, indicating that the vulcanization at 400 and 450 ◦C was insufficient.
At 500 ◦C, the S/Sb ratio was higher than those at 400 and 450 ◦C, and the calculated
value was 1.45, which was close to the ideal value of 1.50. However, there remained an
unsulfurated area, indicating that the vulcanization effect at 500 ◦C was still not ideal. At
600 and 650 ◦C, the obtained S/Sb values were distributed in the range of 0.9–1.3. However,
as reported in Section 4.1.1, the melting–recrystallization zone of metal antimony appeared
at 600 and 650 ◦C, which led directly to a reduction in the vulcanization rate and ultimately
caused the vulcanization effect to be less than ideal. At 550 ◦C, an S/Sb ratio of 1.46 was
obtained, and the sample was well vulcanized; compared with the S/Sb value under other
temperature conditions, this was the optimal value. The EDS data also confirm that the
best vulcanization effect was achieved at 550 ◦C.

4.1.5. Raman Spectroscopy Analysis

The experimental results revealed that strong Raman peaks appeared at 71, 99, 135,
178, 241, and 290 cm−1; according to the existing literature [25–28], these are characteristic
peaks of antimony sulfide (Figure 8). Figure 8 also shows that at 550 ◦C, the characteristic
peaks of Sb2S3 corresponding to 135, 178, and 241 cm−1 changed from broad and scattered
peaks to narrow and sharp peaks, indicating a better degree of crystallinity of the sulfide
formed at this reaction temperature.
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In summary, the sulfuration effect was the best under conditions of standard atmo-
spheric pressure, a temperature of 550 ◦C, and a holding time of 30 min. The number of
bright electrodeposited antimony particles in the SEM scanning field of sulfide at 550 ◦C
was very small, and these particles had been basically vulcanized to form Sb2S3 with a
sulfuration rate of 96.06%. As determined by the EDS data, the best S/Sb ratio of 1.46 was
achieved at 550 ◦C, and was the closest to the theoretical value of S/Sb = 1.5.

4.2. Volatilization Reaction
4.2.1. XPS Analysis

The optimal sulfuration conditions of standard atmospheric pressure, a temperature of
550 ◦C, and a heat preservation time of 30 min were adopted to prepare sulfuration samples
as the raw material for the volatilization experiment. In the experiment, the holding time
was set to 2 h, the volatilization temperature zone was set to 800 ◦C, the volatilization
pressure gradient was set to 0.2 atm, and the pressure values were 0.2, 0.4, 0.6, 0.8, and
1.0 atm, respectively.

According to the experimental and calculation results, the volatilization rate of anti-
mony sulfide at 0.2 atm was 92.81%, and the contents of Na, Fe, and Se were lower than
those under other pressure conditions. To characterize the chemical state of the product,
XPS analysis was performed on the volatiles and residues under the conditions of 0.2 atm,
800 ◦C, and 2 h. The results are presented in Figures 9 and 10, which respectively display
the representative XPS spectra of the volatiles and residues. The binding energy of C 1s
was designated as the standard value of 284.8 eV [29], and a correction was carried out; the
corrected values of charge displacement were respectively 2.50 and 2.40 eV.
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The high-resolution XPS spectrum of S 2p is presented in Figure 9a, while the high-
resolution XPS spectrum of Sb 3d is exhibited in Figure 9c. The double peaks of Sb 3d5/2 and
Sb 3d3/2 related to the Sb-S bond were observed around 529.80 and 539.05 eV, respectively;
these peaks are both characteristic of the Sb3+ state. The S 2p peak was observed near
161.50 eV. The peak positions of Sb and S were similar to those reported in the existing
literature [30–33], indicating that the phase representing the volatile was Sb2S3.

The high-resolution XPS spectrum of S 2p is presented in Figure 10a, and the S 2p
peak was observed near 160.90 eV. The high-resolution XPS spectrum of Sb 3d is presented
in Figure 10c, and the double peaks of Sb 3d5/2 and Sb 3d3/2 related to the Sb-S bond were
observed around 529.00 and 538.40 eV, respectively; these peaks are both characteristic
of the Sb3+ state. The peak positions of Sb and S were similar to those reported in the
existing literature [25–28], indicating that the phase of the residue was Sb2S3. The Na 1s
peak was clearly observed near 1071.32 eV, and the binding energy of Na 1s in the sodium
compounds was found to be between 1071.00 and 1071.50 eV based on a database [34].
However, no obvious Na was observed in the XPS spectra of the volatiles; there was no
obvious Na 1s peak, indicating that most of the elemental Na remained in the residue.

4.2.2. Chemical Composition Analysis

The chemical compositions of the volatiles and residues under the optimal conditions
of a temperature of 800 ◦C, a pressure of 0.2 atm, and a holding time of 2 h were analyzed.
As reported in Table 3, the Na and Fe elements were well separated; compared with
their contents in the raw materials, their contents in the volatiles were reduced by about
7.4 and 58.6 times, respectively. Elemental Au was not detected in the volatile species,
and it was enriched in the residue by about 1.6 times. These findings demonstrate that
this experimental method can realize the enrichment of all the Au in the electrodeposited
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antimony in the residue, volatilization to obtain the antimony sulfide, and the effective
removal of the Na and Fe elements in the antimony sulfide volatiles. Excluding As and Se,
other impurities are basically concentrated in the residue. The experimental results reveal
that 0.2 atm was the best volatilization pressure within the experimental pressure range.
Under this condition, the gold in the electrodeposited antimony was effectively enriched
and antimony sulfide was formed simultaneously.

Table 3. Chemical composition of volatiles and residues at 800 ◦C and 0.2 atm.

Type
Content/wt%

Na Fe As Se Sb Au 1

Volatile 0.054 0.003 0.037 0.017 73.180 0
Remains 2.500 0.150 0.000 0.018 68.950 60

1 The unit of Au content was g/t.

5. Conclusions

In this study, an electrodeposited antimony sulfuration–volatilization method was
proposed to prepare antimony sulfide while enriching gold. The feasibility of the process
was demonstrated on a laboratory scale, thereby providing theoretical guidance for the
value-added use of the electrodeposited antimony obtained via the alkaline leaching of
antimony–gold ore. In the experimental temperature range, as the temperature gradually
increased, the S/Sb value of the vulcanized sample was also found to gradually increase.
The best S/Sb ratio of 1.46 achieved at 550 ◦C was close to the theoretical S/Sb ratio of
1.50 at 550 ◦C. The results of SEM and Raman analyses proved that the reaction conditions
were the best curing conditions in the experimental range. Under these conditions, the
sulfuration rate was the best, namely 96.06%. Moreover, as compared to those under the
other pressure conditions, the S/Sb value of the volatile substance under the condition of
0.2 atm was closer to the theoretical value of S/Sb = 1.5. Compared with their contents in
the raw materials, the contents of Na and Fe in the volatile matter were reduced by about
7.4 and 58.6 times, respectively. Elemental Au was not detected in the volatile species,
and it was enriched in the residue by about 1.6 times. In summary, all the Au in the
electrodeposited antimony was basically enriched in the residue, and the effective removal
of the Na and Fe elements in the antimony sulfide volatiles was simultaneously realized.
The best volatilization pressure within the experimental pressure range was found to be
0.2 atm, and the best volatilization conditions were found to be a pressure of 0.2 atm, a
temperature of 800 ◦C, and a heat preservation time of 2 h. Electrodeposited antimony was
found to enrich the gold in the residue via sulfuration–volatilization treatment and generate
antimony sulfide, which effectively increased the added value of these products. Antimony
sulfide has good volatility and high commercial value. This method increases the product
value and reduces the energy consumption of the reaction. Furthermore, this technology
has no toxic and harmful by-products, which can reduce environmental pollution and
realize clean and effective metallurgy.
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