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Abstract: The increasing demand for iron ore in the world causes the continuous exhaustion of
mineral resources. The utilization of iron in secondary resources has become of focus. The present
study was carried out to recover iron from high-sulfur cyanide tailings by coal-based reduction
roasting-magnetic separation. The mechanism of CaO to increase iron recovery and reduce sulfur
was investigated by observing CO and CO2 gas composition produced by the reaction, mineral com-
position and microstructure, distribution characteristics of sulfur, and the intercalation relationship
between iron particles and gangue minerals. The results showed that the addition of CaO could in-
crease the gasification rate of the reducing agent, increase the amount of CO2 gas produced, promote
the reduction of iron minerals, and improve the metallization degree of iron. When CaO was not
added, sulfur was mainly transformed into troilite, which was closely connected with iron particles
and was difficult to remove by grinding and magnetic separation. With the addition of CaO, CaO
preferentially formed oldhamite with active sulfur, which reduced the formation of troilite. Oldhamite
was basically distributed in an independent gangue structure. There was a clear boundary between
iron particles and gangue minerals. Oldhamite could be removed by grinding-magnetic separation.

Keywords: cyanide tailings; reduction roasting-magnetic separation; CaO; troilite; oldhamite

1. Introduction

The increasing demand for iron ore in the world causes the continuous exhaustion of
mineral resources [1]. High-grade iron ore resources are decreasing [2]. Accordingly, many
researchers are focused on the use of secondary sources of iron [3,4].

According to incomplete statistics, the annual discharge of cyanide tailings from
Chinese gold smelting enterprises has exceeded 20 million tons [5]. Based on the different
cyanide leaching processes, cyanide tailings can be divided into heap leaching tailings,
full mud cyanide tailings, concentrate cyanide tailings, oxidation roasting-cyanide tailings,
etc. [6]. Cyanide tailings often contain harmful substances such as cyanide and arsenic,
which are harmful to the environment [7–9]. Some scholars have conducted research on
the harmlessness of cyanide tailings and achieved good results [10–13]. In addition, the
proportion of oxidation roasting-cyanide tailings is relatively large, reaching more than
30% of the cyanide tailings. Chemical analysis shows that there is a large quantity of
iron minerals in oxidation roasting-cyanide tailings (hereinafter referred to as “cyanide
tailings”). The iron grade is often higher than 30%, and some are even higher than 45% [14].
Therefore, cyanide tailings have great potential as an available secondary resource in iron
recovery [15,16]. However, for technical and economic reasons, cyanide tailings are still
mainly stored and currently only used as ingredients [17,18]. The storage of a large amount
of cyanide tailings causes a great waste of resources [19].
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Phase analysis indicated that iron minerals in the cyanide tailings were mainly
hematite. There was often more than 0.8% sulfur in the cyanide tailings, and sulfur was
mainly in the form of sulfide. Studies have shown that the reduction roasting-magnetic sep-
aration technique is an effective method for treating cyanide tailings to recover iron [20–24].
According to the different degree of reduction of iron minerals, the magnetic separation
product can be divided into iron concentrate and reduced iron [25,26]. Some researchers
have used the reduction roasting-magnetic separation process to treat the cyanide tailings
and obtained iron concentrate with higher iron grades under optimal conditions [27–29].
The thermodynamic reaction law of the iron-containing compound in the reduction roasting
process of cyanide tailings was also revealed [30]. Some scholars have obtained reduced
iron products with an iron grade greater than 90% by the reduction roasting-magnetic
separation process [31–35]. However, the common problem is that the reduced iron prod-
ucts often contain higher sulfur. When reduced iron is used as a raw material for blast
furnace ironmaking, almost all the sulfur will be concentrated in molten iron. Therefore,
desulfurization is important for the effective utilization of high-sulfur cyanide tailings.

Researchers used calcium oxide or calcium carbonate as additives to carry out the
study of iron extraction and sulfur reduction in cyanide tailings and found that adding
CaO effectively improved iron reduction and decreased the sulfur content in reduced iron
products [36–38]. However, how CaO affects the gasification rate of the reducing agent has
not been reported yet. Moreover, the phase transition law of sulfur during the reduction
roasting of cyanide tailings remains unknown.

Therefore, in this work, the mechanism of CaO in reduction roasting was investigated
using the CO and CO2 gas composition produced by the reaction, total reaction gasifica-
tion rate, mineral composition and microstructure, distribution characteristics of sulfur,
and intercalation relationship between iron particles and gangue minerals, for which the
roasting temperature and time were 1150 ◦C and 40 min, and bituminous coal was 20 wt%.
It is expected that the present research will provide theoretical guidance for desulfurization
in treating high-sulfur cyanide tailings.

2. Materials and Methods
2.1. Cyanide Tailings

The cyanide tailings used in this study were sampled from a gold smelter (Shandong
Province, China). The results of main chemical element/oxide analysis are shown in Table 1.
The total iron grade and sulfur grade of cyanide tailings are 48.05% and 1.05%, respectively.
Cyanide tailings contain SiO2 (20%), Al2O3 (5.38%), and Na2O (3.48%), respectively. Iron
is the main recycling valuable element. Sulfur may affect the quality of iron products.
The results of X-ray diffraction (XRD) analysis (Rigaku Corporation, Akishima-shi, Japan)
are presented in Figure 1. Combined with microscope observation results and Figure 1,
cyanide tailings were mainly composed of hematite, magnetite, quartz, albite, potassium
feldspar, and pyrite.

Table 1. Results of main chemical element/oxide analysis on cyanide tailings.

Element/Oxide TFe S P SiO2 Al2O3 MgO CaO Na2O K2O

Content (wt%) 48.05 1.05 0.02 20.00 5.38 0.78 0.69 3.48 0.73

The results of a chemical-phase analysis of iron are shown in Table 2. From Table 2,
iron mainly existed in the form of hematite and magnetite, with distributions of 92.48% and
3.27%, respectively. Iron in iron oxide was mainly recovered by reduction roasting-magnetic
separation. The results of chemical-phase analysis of sulfur are shown in Table 3. As shown
in Table 3, sulfur mainly existed in the form of pyrite, with a distribution of 96.23%.
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Figure 1. Results of XRD analysis of cyanide tailings. 
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Table 2. Results of iron phase analysis on cyanide tailings.

Distribution Phase Iron in
Magnetite

Iron in
Hematite

Iron in
Pyrite

Other
Iron Total

Content (wt%) 1.57 44.40 0.89 1.15 48.01
Distribution (%) 3.27 92.48 1.85 2.40 100.00

Table 3. Results of sulfur phase analysis on cyanide tailings.

Distribution Phase Sulfur in Pyrite Sulfur in Sulfate Total

Content (wt%) 1.02 0.04 1.06
Distribution (%) 96.23 3.77 100.00

2.2. Reductant and Additive

Bituminous coal was chosen as the reductant. The results of a bituminous coal industry
analysis are presented in Table 4. The additive calcium oxide (CaO) is chemically reagent
grade from Sinopharm Group Chemical Reagent Co., Ltd (Shanghai, China).

Table 4. Results of industry analysis on bituminous coal (wt%).

Moisture Ash Volatile Component Fixed Carbon

1.42 9.17 33.68 55.73

2.3. Testing Method

The steps of reduction roasting-magnetic separation tests of cyanide tailings were
as follows: (1) mixing; (2) reduction roasting; (3) grinding and magnetic separation; and
(4) analysis. The process flowsheet is shown in Figure 2. The specific operation process was
as follows.
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Figure 2. Experimental procedure for reduction roasting-magnetic separation process of cyanide tailings.

(1) Mixing. Cyanide tailings (40 g), bituminous coal (20 wt%), and a certain proportion
of CaO were accurately weighed. The samples were fully mixed.

(2) Reduction roasting. The samples were loaded into the corundum crucibles (height
of 80 mm and internal diameter of 77mm). The reduction roasting tests were carried out in
the shaft furnace. When the furnace temperature rose to the preset reduction temperature
of 1150 ◦C, 5 L·min−1 of N2 was introduced to remove the air in the shaft furnace. When
the flue gas analyzer showed that the O2 in the furnace was zero, the corundum crucible
was hung into the shaft furnace. Then, the N2 flow rate was reduced to 3 L·min−1. The
volumetric concentration of CO and CO2 gas produced by the reaction was measured and
recorded in real time by the flue gas analyzer. When the set reduction time was reached,
the hanging corundum crucible was taken out, and the roasted products were cooled to
room temperature.

(3) Grinding and magnetic separation. The grinding and magnetic separation pro-
cess was two-stage grinding and two-stage magnetic separation. The first-stage grind-
ing fineness was −0.074 mm 85% and the strength of magnetic field was 112 kA·m−1.
The second-stage grinding fineness was −0.043 mm 80%, and the magnetic field strength
was 96 kA·m−1. The main grinding and magnetic separation equipment used were a
RK/BK three-roll four-tube smart rod mill and a CXG-99 magnetic separator (Tianjin
Hualian Mining Instrument Co. Ltd., Tianjin, China). The resulting magnetic product was
called powder direct reduced iron product, or “reduced iron” for short.

(4) Analyses. S and Fe grade in the roasted products and the reduced irons were
examined by infrared absorption method and titrimetric method, respectively. The iron
metallization degree was calculated according to Equation (1):

η =
MFe
TFe

× 100% (1)

where η is the iron metallization degree (%), MFe is the mass content of metallic iron of the
roasted products (%), and TFe is the total iron grade of the roasted products (%). A part of
the roasted products was pulverized to −0.074 mm and analyzed by XRD (Rigaku D/Max
2500, Rigaku Corporation, Akishima-shi, Japan) and phase analysis of sulfur. The other
part of the roasted products was made into polished sections for observing microstructure
by SEM-EDS (Vega 3 XHU, Tescan Co. Ltd., Brno, Czech Republic). The microstructure of
the reduced irons was also observed by SEM.
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3. Results and Discussion
3.1. The Influence of CaO on Reducing Atmosphere

It is generally accepted that the reduction effect in the direct reduction of materials
is mainly the CO gas produced by the gasification reaction of fixed carbon. At the same
time, there is a partial pressure balance of CO and CO2 in the reaction system. When the
partial pressure of CO2 generated by the reduction reaction exceeds the equilibrium partial
pressure of CO2 of the Boudouad reaction, the CO2 in the system will react with the fixed
carbon to generate CO, and then the generated CO will further react with FexOy, and the
cycle is repeated [39–41]. When the mass fraction of CaO was 0, 5 wt%, 10 wt%, and 15 wt%,
the gas composition of CO and CO2 produced by direct reduction roasting of cyanide as a
function of roasting time were studied.

It can be seen from Figure 3 that the CO and CO2 generated by the reduction roasting
reaction of cyanide tailings had the same changing law when the mass fraction of CaO
was different. CO2 gas was produced first, and then CO started to be produced. With the
acceleration of the gasification reaction, the amount of CO produced was much greater
than the amount of CO2 produced. When the mass fraction of CaO was 5 wt%, 10 wt%, and
15 wt%, the amount of CO2 produced was higher than that when CaO was not added. The
results show that adding CaO in the reduction roasting of cyanide tailings could promote
the production of CO2 gas.
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the total reaction gradually increased in the early stage of the reduction reaction of cya-
nide tailings (0–10 min). It shows that adding CaO could increase the gasification rate of 
the reducing agent bituminous coal; that is, reaction (2) increased the amount of CO gas 
produced. It was beneficial to reaction (3) (T represents the sample), resulting in an in-
crease in the amount of CO2 gas produced. In the late stage of the cyanide tailings reduc-
tion reaction (10–40 min), the gasification promotion effect of CaO on bituminous coal 
was weak. This may be due to the gradual reduction in bituminous coal consumption as 
the reduction reaction progresses. 

Figure 3. Effect of the added amount of CaO on the gas composition of CO2 and CO. (a) 0 wt% CaO;
(b) 5 wt% CaO; (c) 10 wt% CaO; (d) 15 wt% CaO.

Figure 4 shows that as the added amount of CaO increased, the gasification rate
of the total reaction gradually increased in the early stage of the reduction reaction of
cyanide tailings (0–10 min). It shows that adding CaO could increase the gasification rate
of the reducing agent bituminous coal; that is, reaction (2) increased the amount of CO gas
produced. It was beneficial to reaction (3) (T represents the sample), resulting in an increase
in the amount of CO2 gas produced. In the late stage of the cyanide tailings reduction
reaction (10–40 min), the gasification promotion effect of CaO on bituminous coal was
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weak. This may be due to the gradual reduction in bituminous coal consumption as the
reduction reaction progresses.
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Figure 5 shows that the addition of CaO increased the metallization degree of iron.
The metallization degree of iron was 89.79%, 91.90%, 93.25%, and 94.12%, respectively.
This also further confirmed that adding CaO promoted the reduction of iron oxides and
generated more CO2 gas.

C + CO2 → 2CO (2)

T + CO→ reducedT + CO2 (3)
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3.2. The Influence of CaO on the Mineral Compositions of the Roasted Products

Under the conditions of different CaO dosage, 20 wt% bituminous coal addition,
roasting temperature of 1150 ◦C, and roasting time of 40 min, the roasted products were
obtained. The phase transition behavior of the roasted products was analyzed by XRD. The
results are presented in Figure 6.
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Figure 6. XRD patterns of roasted products under the different added amounts of CaO. 1—Metal iron
(Fe); 2—Quartz (SiO2); 3—Oldhamite (CaS); 4—Troilite (FeS); 5—Wollastonite (Ca3Si3O9); 6—CaO.

Figure 6 shows that when CaO was not added, the roasted product was mainly
composed of metallic iron and quartz and a small amount of troilite. The results indicate
that hematite and magnetite were reduced to metallic iron.

The high-temperature reducing atmosphere converted pyrite into troilite, volatilized
gaseous elemental sulfur (S2), and gaseous carbonyl sulfide (COS), as in Equations (4) and
(5) [42]:

2FeS2 = 2FeS + S2(g) (4)

FeS2 + CO = FeS + COS(g) (5)

The reduced metallic iron reacted with gaseous elemental sulfur (S2) to form troilite,
as in Equation (6):

2Fe + S2(g) = 2FeS (6)

When the amount of CaO was 5 wt%, the roasted product mainly consisted of metallic
iron and quartz, as well as a small amount of troilite and oldhamite. Compared with no
CaO, the diffraction peak intensity of metallic iron was enhanced, the diffraction peak
intensity of troilite was weakened, and oldhamite appeared newly. This shows that CaO
promoted the transformation of iron oxide to metallic iron. In a reducing atmosphere, CaO
reacted with the active sulfur [S] generated in the roasting process to form the oldhamite
(CaS), which reduced the formation of troilite, as in Equations (7) and (8) [43]. However, in
the literature [37], in addition to the formation of oldhamite, there was also a formation of
jasmundite (Ca11(SiO4)4O2S), which was mainly due to the different types of coal.

CaO(s) + [S] = CaS(s) + [O] (7)

CaO(s) + [S] + C(s) = CaS(s) + CO(g) (8)

When the amount of CaO was increased to 10 wt%, the roasted product was mainly
composed of metallic iron and quartz, as well as a small amount of troilite, oldhamite, and
wollastonite. Compared with the addition of 5 wt% CaO, the diffraction peaks of metallic
iron and oldhamite were further enhanced, the diffraction peaks of quartz and troilite
were further weakened, and wollastonite appeared newly. It shows that in addition to the
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reaction of CaO with active sulfur [S] to form oldhamite, CaO also reacted with quartz to
form wollastonite, as Equation (9):

CaO + SiO2 = CaSiO3 (9)

When the amount of CaO was increased to 15 wt%, the roasted product was mainly
composed of metallic iron and quartz, a small amount of troilite, oldhamite, wollastonite,
and calcium oxide. Compared with the 10 wt% CaO dosage, the diffraction peak of
oldhamite was further enhanced, and the intensity of the diffraction peak of troilite was
further weakened. The results show that reactions (7) and (8) were further enhanced, while
suppressing the occurrence of reaction (6). The appearance of CaO indicated that calcium
oxide remained.

3.3. The Influence of CaO on the Distribution of Sulfur in the Roasted Products

In order to reveal the law of sulfur conversion during the roasting process, the roasted
products under different CaO dosage were analyzed for sulfur phases. The results are
shown in Figure 7.
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Figure 7 presents that when no CaO was added for roasting, the sulfur in the roasted
product mainly occurred in the form of troilite and sulfate, and the distribution ratio of
sulfur was 95.15% and 4.85%, respectively. It shows that the sulfur in the pyrite after
reduction roasting mainly produced troilite; that is, reactions (4)–(6) occurred. When the
amount of CaO was 5 wt%, the distribution ratio of sulfur in oldhamite and troilite was
68.27% and 26.92%, respectively. This was because CaO and gaseous sulfur reacted (7) and
(8) to produce oldhamite, which inhibited the progress of the reaction (6) between gaseous
sulfur and metallic iron. As the amount of CaO continued to increase, the sulfur in the
oldhamite gradually increased, and the sulfur in the troilite gradually decreased. When the
amount of CaO was 15 wt%, the distribution ratio of sulfur in oldhamite rose to 91.27%,
and the distribution ratio of sulfur in troilite decreased to 4.85%. The results revealed that
reactions (7) and (8) were further enhanced, and reaction (6) was further suppressed.

3.4. The Influence of CaO on the Microstructure of the Roasted Products

The SEM images of the roasted products with additive CaO dosages of 0, 5 wt%,
10 wt%, and 15 wt% are shown in Figure 8. The SEM-EDS images and elemental surface
scanning images of the roasted products without CaO and with 15 wt% CaO are shown in
Figure 9 and Table 5.
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Figure 8. SEM images of roasted products under different CaO dosage. (a) 0 wt% CaO; (b) 5 wt%
CaO; (c) 10 wt% CaO; (d) 15 wt% CaO.

Table 5. Chemical composition of points indicated in Figure 9 (wt%).

Point C S Ca Fe Phase

1 0.27 36.17 0.25 63.31 Troilite
2 0.18 44.10 54.97 0.75 Oldhamite

It can be seen from Figures 8 and 9 and Table 5 that the sulfur-containing minerals in
the roasted products were mainly troilite in the absence of CaO. These troilite were closely
connected with iron particles and were difficult to effectively remove by grinding and
magnetic separation, resulting in high sulfur content in reduced iron products. The sulfur-
containing minerals in the roasted products after adding CaO were mainly oldhamite.
This oldhamite was distributed in independent gangue structures, and the amount closely
connected with metallic iron particles was very small. It was easy to remove in the grinding
and magnetic separation process, thereby reducing the sulfur content in the reduced iron
product. The iron particles when CaO was not added were larger than those after CaO
was added, indicating that the addition of CaO was not conducive to the melting and
aggregation of iron particles.

When the amount of CaO was 15 wt%, the inclusion structure of some gangue minerals
can be clearly seen in the roasted products, as shown in Figure 10 and Table 6. Figure 10
and Table 6 showed that the thin layer outside of the package was mainly gangue minerals
such as wollastonite, and the middle package was mainly oldhamite. These inclusions and
iron particles were not intercalated with each other. So, they were easily removed through
the grinding and magnetic separation process.
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Figure 9. SEM-EDS images and elemental surface scanning images of roasted products without
CaO and with 15 wt% CaO. (a) SEM-EDS images without CaO, “+” refers to analyzed point by EDS,
numbers refer to composition data in Table 5; (b) SEM-EDS images with 15 wt% CaO; (c) elemental
surface scanning images of (a); (d) elemental surface scanning images of (b).
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Figure 10. SEM-EDS images and elemental surface scanning images of roasted products with 15 wt%
CaO. (a) SEM-EDS images with 15 wt% CaO; (b) the structure of magnified inclusion, “+” refer to
analyzed point by EDS, numbers refer to composition data in Table 6; (c) elemental surface scanning
images of (a).
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Table 6. Chemical composition of points indicated in Figure 10 (wt%).

Point O S Ca Si Fe Phase

1 - 44.69 54.92 0.39 - Oldhamite
2 41.02 - 34.40 24.21 0.37 Wollastonite

3.5. The Influence CaO on Iron Recovery and Sulfur Reduction

To observe the influence of CaO on the reduction roasting-magnetic separation of
cyanide tailings, reduction roasting-grinding-magnetic separation tests were carried out.
Figure 11 shows that, under the conditions of 20 wt% bituminous coal, 1150 ◦C reduction
temperature, and 40 min reduction time, with the increase in CaO addition, the iron grade
of reduced iron gradually decreased, the iron recovery gradually increased, and the grade
of sulfur greatly decreased. When CaO was not added, the sulfur grade in reduced iron was
as high as 0.49%, and the iron grade and iron recovery were 92.64% and 88.73%, respectively.
When CaO was added at 5 wt%, the sulfur grade dropped to 0.21%, and the iron grade
and iron recovery were 91.59% and 90.80%, respectively. When the amount of CaO added
was 15 wt%, the sulfur grade dropped to 0.06%, and the iron grade and iron recovery
were 90.68% and 92.71%, respectively. The above results show that the addition of CaO
promoted iron reduction, increased iron recovery, and decreased sulfur grade in reduced
iron products. The quality of reduced iron met steelmaking requirements.
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Figure 11. Effect of the different added amounts of CaO on reduction iron product index.

SEM analysis was performed on the reduced iron products obtained without CaO
and 15 wt% CaO, as shown in Figures 12 and 13 and Tables 7 and 8. Figure 12 and Table 7
show that, after grinding and magnetic separation, the reduced iron product without
CaO contained more sulfur (troilite). The troilite and metallic iron particles were densely
embedded, and it was not easy to realize the monomer dissociation through the grinding
process. The troilite could not be effectively removed by the magnetic separation process,
which affected the quality of the reduced iron. Figure 13 and Table 8 show that there was
almost no sulfur content in the reduced iron product after adding 15 wt% CaO. The results
revealed that the oldhamite was easily removed by grinding and magnetic separation,
which greatly reduced the sulfur content of the reduced iron product.
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Figure 12. SEM-EDS images and elemental surface scanning images of reduced iron products without
CaO. (a) SEM-EDS images, “+” refer to analyzed point by EDS, numbers refer to composition data in
Table 7; (b) elemental surface scanning images of (a).
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Figure 13. SEM-EDS images and elemental surface scanning images of reduced iron products with
15 wt% CaO. (a) SEM-EDS images, “+” refer to analyzed point by EDS, numbers refer to composition
data in Table 8; (b) elemental surface scanning images of (a).
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Table 7. Chemical composition of points indicated in Figure 12 (wt%).

Point C S Ca Si Fe Phase

1 6.60 - - 0.92 92.48 Iron
2 0.44 36.42 0.03 - 63.11 Troilite

Table 8. Chemical composition of points indicated in Figure 13 (wt%).

Point C Si Fe Phase

1 6.11 0.84 93.05 Iron
2 6.53 0.71 92.76 Iron

4. Conclusions

(1) The direct reduction reaction of cyanide tailings first produced CO2 gas and then
started to produce CO. With the acceleration of the gasification reaction, the amount of
CO produced was much greater than that of CO2. CaO increased the gasification rate of
bituminous coal and promoted the reduction of iron minerals as well as the metallization
rate of iron.

(2) In the absence of CaO, the sulfur minerals in the cyanide tailings were transformed
into troilite, which were closely connected with iron particles and were difficult to remove
by grinding and magnetic separation. With the addition of CaO, CaO preferentially reacted
with active sulfur to form oldhamite, which inhibited the formation of troilite. There was a
clear boundary between oldhamite and iron particles. Oldhamite was removed by grinding
and magnetic separation.

(3) The addition of CaO improved the effect of reduction roasting-magnetic separation
of cyanide tailings. Under the conditions of 20 wt% bituminous coal, 15 wt% CaO, 1150 ◦C
reduction temperature, and 40 min reduction time, the reduced iron index of 90.68% iron
grade, 0.06% sulfur grade, and 92.71% iron recovery rate was obtained. The reduced iron
product can be used for subsequent steelmaking.
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