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Abstract: Wolframite-quartz vein-type tungsten deposits constitute the world’s major tungsten re-
sources and are integral to tungsten production. A major share of this mineralization product is found
in Southeast China, with other significant resources in the Central Andean belt, the East Australian
belt, the Karagwe-Ankole belt and the European Variscan belt. In the past few decades, extensive
studies on wolframite-quartz vein-type tungsten deposits have been conducted, but many key ques-
tions concerning their ore-forming fluid and metallogenic mechanism remain unclear. Additionally,
a summary work on the global distribution and fluid characteristics of these wolframite-quartz
vein-type tungsten deposits is still lacking. In this contribution, recent progress regarding several
major issues related to the fluid processes involved in the forming of these veins are overviewed, and
challenges in terms of future research are proposed. These issues include the nature of ore-forming
fluids, their sources, and their transportation and wolframite deposition mechanisms. In particular,
the affinity between veins and the exposed granitic intrusion from the Zhangtiantang-Xihuashan ore
district, where an as-yet undiscovered deep intrusion, rather than the exposed granitic intrusion, was
probably responsible for the formation of the wolframite-quartz veins, is reevaluated. This study also
reviews the existing fluid and melt inclusion data from several tungsten deposits to address whether
the mineralization potential of the magmatic-hydrothermal systems was directly correlated with the
metal contents in the granitic melts and the exsolving fluids.

Keywords: wolframite-quartz vein; Nanling; magmatic-hydrothermal; fluid & melt inclusion; metal-
logenic mechanism

1. Introduction

Wolframite-quartz vein-type tungsten deposits, generally related to granitic intrusions,
are the source of much of the tungsten used by humans [1–8]. Mineralization of these
deposits generally consists of wolframite (dominantly FeWO4 or MnWO4) in subhorizontal
centimeter- to meter-scale quartz veins with lateral extents of hundreds of meters. The
significant advantages of this type of tungsten deposit other than scheelite skarn are not
only that it is easier for mining, but also due to the specialty of wolframite, which are
more amenable to mineral processing [9]. In China, the exploitation of wolframite-quartz
veins can be traced back to the Song Dynasty. However, the early mining activities were
restricted to the utilization of quartz and cassiterite, which are common by-products of
wolframite-quartz veins. Large-scale mining activities of wolframite-quartz veins began to
break out around the beginning of last century. For example, wolframite in South China was
first found in the Xihuashan tungsten deposit, and its mining and utilization officially took
place in 1907. Panasqueira, which is located in Portugal, is the second largest tungsten mine
in Europe and has been active for ca. 130 years with a total production of 76,000 metric tons
of W since 1934 [8]. Because of its important economic significance, a significant number
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of studies on the fluid processes of wolframite-quartz vein-type W deposits have been
carried out all over the world [4,5,10–21]. However, preliminary reviews on their global
distribution, fluid processes and metallogenic mechanism are relatively scarce.

The formation of hydrothermal ore deposits, especially for magmatic–hydrothermal
deposits, are generally related to hydrothermal fluids carrying metal elements. Therefore,
the study of ore-forming fluid properties is very important to understand the material
source and formation process of the deposits, and also to determine the deployment of
geological exploration and prospecting work. The wolframite-quartz vein-type tungsten
deposits belong to typical magmatic hydrothermal deposits, and magmatic hydrothermal
activity is the dominant process controlling the supply, migration and precipitation of
elements with economic value [4,6,13,15,17,18,22,23]. For a long time, the nature and
source of magmatic hydrothermal fluid that led to the formation of these deposits has been
discussed. In the early part of the last century, qualitative description of mineralization
and hydrothermal alteration were the main methods to determine the features of ore-
forming fluid responsible for tungsten mineralization, due to the limitations of analytical
technology [24–27]. Since the 1960s, fluid inclusion analysis was successfully applied to
explore the features of ore-forming fluids [28–31]. As fluid inclusions were trapped within
mineral growth during hydrothermal processes, they provided a unique means of directly
characterizing the fluid responsible for mineralization. Although mineral geochemical
and isotopic studies have also provided a broad knowledge on the fluid processes, the
main focus of this paper is on fluid inclusion-related studies, which enables the direct
compilation and comparison of global data. During the last half century, the fluid inclusion
method was widely applied to constrain the fluid properties of wolframite-quartz vein-
type deposits, and a large number of microthermometric results of ore-forming fluids
were reported [4,6,11,13,15,22,32–37]. Although a series of important discoveries has been
achieved in relation to the hydrothermal processes forming these deposits, there are still
different views on the sources of ore-forming materials, the properties of ore-forming
fluids and the wolframite deposition mechanism, which hinder the establishment of the
metallogenic model. For example, in terms of the properties of ore-forming fluids, there are
two different viewpoints: the magma–hydrothermal transition state and aqueous solution
fluid [4,6,22,35,38,39]. The selective appearance of CO2-rich fluids in different ore deposits
brings confusion to the role of volatiles in mineralization [4,6,17]. In addition, the source
of ore-forming materials is also debated between magma and wall rocks [9,13]. Moreover,
simple cooling of ore-forming fluid, fluid mixing, fluid–rock interaction and fluid boiling
were put forward to explain the mechanism controlling wolframite deposition, and there is
still no unified conclusion [4,6,9,13,15,17].

In this paper, we begin with a preliminary review and synthesis of the geological and
distribution of wolframite-quartz vein-type tungsten deposits from all over the world, pro-
viding a view toward better understanding the metallogenic background of these tungsten
deposits (Table 1). By combining the study of geological characteristics with research on
ore-forming fluids, we attempt to provide tentative answers to some relevant questions, in-
cluding the following: What are the general properties of fluids forming wolframite-quartz
veins? What is the sequential relationship between wolframite and associated quartz?
Does CO2 play an important role in the transport and precipitation of tungsten? Where
are the ore-forming fluids sourced from? What are the main depositional controls for
wolframite? In addition, the genetic link between veins and related granite is discussed for
the Zhangtiantang-Xihuashan ore district based on their geological relationships and fluid
properties to evaluate whether the exposed granitic intrusions were the direct parental rock
for wolframite-quartz vein formation. Finally, this paper summarizes some recent single
melt and fluid inclusion compositional data from W (-Sn) and other typical magmatic-
hydrothermal systems, on the basis of which the compositions of ore-forming and ore
barren melts/fluids are discussed comparatively.
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Table 1. Summary of the characteristics of wolframite quartz vein W deposits from all over the world, including chronological data and WO3 reserves.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Dajishan Quannan,
Jiangxi

Wolframite-
quartz
vein

W 16 Wolframite;
Scheelite

Cambrian
metasedimen-

tary

Fine-grained
muscovite

granite
161 ± 1.3 Molybdenite

Re-Os [40]

Baxiannao Shangyou,
Jiangxi

Wolframite-
quartz
vein

W 2.9 Wolframite;
Scheelite

Cambrian
metasedimen-

tary

Fine-grained
porphyritic

granite
157 ± 1.5 Molybdenite

Re-Os [41]

Anqiantan Yudu, Jiangxi
Wolframite-

quartz
vein

W-Bi Wolframite;
Scheelite

Cambrian-
Devonian

metasedimen-
tary

Fine-grained
porphyritic

granite
156.1 ± 3.6 Molybdenite

Re-Os [42]

Kuimeishan Dingnan,
Jiangxi

Wolframite-
quartz
vein

W-Bi 5.3 Wolframite;
Scheelite

Cambrian
metasedimen-

tary
Biotite granite 153.7 ± 1.5 Molybdenite

Re-Os [43]

Jiulongnao Chongyi,
Jiangxi

Wolframite-
quartz
vein

W-Sn 1.9 Wolframite;
Cassiterite

Fine-grained
biotite granite

Fine-grained
biotite granite 151.5 ± 1.1 Molybdenite

Re-Os [44]

Zhangdongkeng Chongyi,
Jiangxi

Wolframite-
quartz
vein

W Wolframite;
Cassiterite

Cambrian
metasedimen-

tary

Fine-grained
biotite granite 151.3 ± 1.7 Molybdenite

Re-Os [44]

Maoping Chongyi,
Jiangxi

Wolframite-
quartz
vein

W-Mo 10.8 Wolframite;
Molybdenite

Cambrian
metasedimen-

tary

Fine-grained
biotite granite 156.8 ± 1.5 Cassiterite

U-Pb [45]

Muziyuan Chongyi,
Jiangxi

Wolframite-
quartz
vein

W-Sn 0.6 Wolframite;
Cassiterite

Cambrian
metasedimen-

tary
Biotite granite 151 ±8.5 Molybdenite

Re-Os [46]

Xushan Jiangxi
Wolframite-

quartz
vein

W Wolframite Neoproterozoic Granite 147.1 ± 3.4 Rb-Sr [47]

Xingluokeng Fujian
Wolframite-

quartz
vein

W Wolframite;
Scheelite Granite Granite 156.3 ± 4.8 Molybdenite

Re-Os [40]

Niuling Chongyi,
Jiangxi

Wolframite-
quartz
vein

W-Sn 2.9 Wolframite;
Cassiterite

Cambrian
metamor-
phosed

sandstone

Calc-alkaline
granite 152 ± 8.5 Molybdenite

Re-Os [44]
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Table 1. Cont.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Panguahsn Yudu, Jiangxi
Wolframite-

quartz
vein

W-Bi 11 Wolframite;
Scheelite

Devonian
clastic rocks

Two
mica granite 155 ± 2.8 Molybdenite

Re-Os [48]

Piaotang Yudu, Jiangxi
Wolframite-

quartz
vein

W-Sn 6.9 Wolframite;
Cassiterite

Cambrian
metasedimen-

tary

Two
mica granite 156 ± 2.8 Cassiterite

U-Pb [49]

Taoxikeng Chongyi,
Jiangxi

Wolframite-
quartz
vein

W-Sn 12.06 Wolframite;
Cassiterite

Paleozoic
clastic rocks

Biotite
monzogranite 154 ± 3.8 Molybdenite

Re-Os [50]

Huameiao Dayu, Jiangxi
Wolframite-

quartz
vein

W 6.7 Wolframite;
Scheelite

Sinian
metasedimen-

tary

Fine-grained
muscovite

granite
158.5 ± 3.8 Molybdenite

Re-Os [51]

Huangsha Yudu, Jiangxi
Wolframite-

quartz
vein

W 12.69 Wolframite;
Scheelite

Cambrian
metasedimen-

tary

Two
mica granite 153 ± 3 Molybdenite

Re-Os [52]

Hukeng Jiangxi
Wolframite-

quartz
vein

W-Sn 15.4 Wolframite;
Cassiterite

Sinian
metasedimen-

tary

Fine-grained
muscovite

granite
150.2 ± 2.2 Molybdenite

Re-Os [53]

Xihuashan Dayu, Jiangxi
Wolframite-

quartz
vein

W 20.7 Wolframite;
Scheelite

Cambrian
metasedimen-

tary

Two
mica granite 157.8 ± 0.9 Molybdenite

Re-Os [54]

Zhangdou Dayu, Jiangxi
Wolframite-

quartz
vein

W 4 Wolframite;
Scheelite

Cambrian
metasedimen-

tary

Fine-grained
biotite granite 149.1 ± 7.1 Molybdenite

Re-Os [44]

Baiyunxian Rucheng,
Hunan

Wolframite-
quartz
vein

W-Sn 3.3 Wolframite;
Scheelite

Sinian
metasedimen-

tary

Fine-grained
biotite granite 169.6 ± 2.7 Molybdenite

Re-Os [55]

Da‘ao Daoxian,
Hunan

Wolframite-
quartz
vein

W-Sn Wolframite;
Cassiterite

Sinian
metasedimen-

tary

Fine-grained
biotite granite 151.3 ± 2.4 Molybdenite

Re-Os [56]

Yaogangxian Chenzhou,
Hunan

Wolframite-
quartz
vein

W 20 Wolframite
Cambrian

metasedimen-
tary

Fine-grained
two-mica

granite
158 Cassiterite

U-Pb [57]

Dawangshan Jiangxi
Wolframite-

quartz
vein

W Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 147.6 ± 1.8 Molybdenite

Re-Os [58]
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Table 1. Cont.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Zhangjialong Hunan
Wolframite-

quartz
vein

W 5.7 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 160.2 ± 2.2 Molybdenite

Re-Os [5]

Zhenkou Hunan
Wolframite-

quartz
vein

W Wolframite
Sinian

metasedimen-
tary

Fine-grained
granite 148.1 ± 0.8 Muscovite

Ar-Ar [59]

Hejiangkou Hunan
Wolframite-

quartz
vein

W Wolframite Fine-grained
granite

Fine-grained
granite 156.6 ± 0.7 Muscovite

Ar-Ar [60]

Gaoling Hunan
Wolframite-

Scheelite-quartz
vein

W Wolframite;
Scheelite

Sinian
metasedimen-

tary

Fine-grained
granite 212 ± 20 Scheelite

Sm-Nd [61]

Qingshan Chongyi,
Jiangxi

Wolframite-
quartz
vein

W 6 Wolframite;
Cassiterite

Ordovician
slate

medium-
grained
granite

228.7 ± 2.5 Molybdenite
Re-Os [62]

Chuankou Hengyang,
Hunan

Wolframite-
Scheelite-quartz

vein
W 4.9 Wolframite;

Scheelite
Fine-grained

biotite granite
Fine-grained

biotite granite 212 Wolframite
U-Pb [21]

Xianetang Chongyi,
Jiangxi

Wolframite-
quartz
vein

W Wolframite;
Cassiterite

Sinian
metamorphic

rocks

medium-
grained
granite

231.4 ± 2.4 Muscovite
Ar-Ar [63]

Liguifu Guangxi
Wolframite-

quartz
vein

W-Mo 1.13 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 211.9 ± 6.4 Molybdenite

Re-Os [64]

Sanjiaotan W Hengyang,
Hunan

Wolframite-
quartz
vein

W 4.9 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 225 ± 3.3 Ma Molybdenite

Re-Os [65]

Shuiyuanshan Chenzhou,
Hunan

Wolframite-
quartz
vein

W 5 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 220.7 ± 4.1 Ma Molybdenite

Re-Os [61]

Yejiwo Chenzhou,
Hunan

Wolframite-
quartz
vein

W 6 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 228.1 ± 2.6 Ma Molybdenite

Re-Os [61]

Yuntoujie Guangxi
Wolframite-

quartz
vein

W 1 Wolframite Fine-grained
biotite granite

Fine-grained
biotite granite 216.8 ± 7.5 Molybdenite

Re-Os [66]
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Table 1. Cont.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Meiziwo Shaoguan,
Guangdong

Wolframite-
quartz
vein

W-Sn Wolframite;
Cassiterite

Cambrian-
Devonian

metasedimen-
tary

Biotite
granite 157.7 ± 2.8 Molybdenite

Re-Os [67]

Hongling Shaoguan,
Guangdong

Wolframit-
Wolframite-

quartz
vein

W Wolframite;
Scheelite

Biotite
granite

Biotite
granite 159.1 ± 1.5 Molybdenite

Re-Os [68]

Yaoling Shaoguan,
Guangdong

Wolframite-
quartz
vein

W-Sn Wolframite;
Cassiterite

Cambrian-
Devonian

metasedimen-
tary

porphyritic
biotite
granite

159.5 ± 2.8 Molybdenite
Re-Os [67]

Shirenzhang Shaoguan,
Guangdong

Wolframite-
quartz
vein

W 5.3 Wolframite;
Cassiterite

Devonian
metasedimen-

tary
Granite 160 ± 2 Cassiterite

U-Pb [69]

Shigushan Shaoguan,
Guangdong

Wolframite-
quartz
vein

W-Bi Wolframite;
Bismuthinite

Cambrian
metasedimen-

tary
Granite 154.2 ± 2.7 Molybdenite

Re-Os [70]

Dongping Jiangxi
Wolframite-

quartz
vein

W 21.4 Wolframite Neoproterozoic Granite 132.9 ± 1.4 Zircon U-Pb [71]

Dajinshan Yunfu,
Guangdong

Wolframite-
quartz
vein

W-Sn 5.27 Wolframite;
Cassiterite

Devonian-
Triassic

metasedimen-
tary

porphyritic
biotite
granite

84. 93 ± 1. 42 Molybdenite
Re-Os [72]

Jubankeng Shaoguan,
Guangdong

Wolframite-
quartz
vein

W-Sn 12.96 Wolframite;
Cassiterite

Cambrian-
Devonian

metasedimen-
tary

137.7 ± 3.2 Muscovite
Ar-Ar [67]

Shanhu Guangxi
Wolframite-

quartz
vein

W-Sn 6.38 Wolframite;
Cassiterite

Cambrian
metasedimen-

tary
Granite 100.8 ± 0.7 Muscovite

Ar-Ar [73]

Xiangdong Hunan
Wolframite-

quartz
vein

W 4.6 Wolframite muscovite
granite

muscovite
granite 136.8 ± 3.3 Cassiterite

U-Pb [74]
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Table 1. Cont.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Pedra Preta Brazil
Wolframite-

quartz
vein

W - Wolframite Metasedimentary,
metavolcanic Granite 1883 Zircon U-Pb [75]

Nyakabingo Rwanda
Wolframite-

quartz
vein

W-Sn Wolframite;
Scheelite

sand-stones
and black,

organic-rich
metapelitic

rocks

Porphyritic
microgranite [11]

Baid al
Jimalah Saudi Arabia

Wolframite-
quartz
vein

W-Sn - Wolframite;
Cassiterite sericite schist Porphyritic

biotite granite [76]

Fielders Hill Australia
Wolframite-

quartz
vein

W-Sn - Wolframite;
Cassiterite

Paleozoic
crustal

sequences
Granite 246 Zircon U-Pb [77]

The New
Hope Mine Australia

Wolframite-
quartz
vein

W-Sn - Wolframite;
Cassiterite

Paleozoic
crustal

sequences
Granite 242 Zircon U-Pb [77]

Balmains and
Rumsby’s

Lodes
Australia

Wolframite-
quartz
vein

W-Sn - Wolframite;
Cassiterite

Paleozoic
crustal

sequences
Granite 244 Molybdenite

Re-Os [78]

Eastern
Flagstone

Lodes
Australia

Wolframite-
quartz
vein

W-Sn - Wolframite;
Cassiterite

Paleozoic
crustal

sequences
Granite 247 Muscovite

Ar-Ar [78]

Mazet France
Wolframite-

quartz
vein

W-Sn - Wolframite;
Cassiterite

Mica schist;
orthogneiss Granite 335 Wolframite

U-Pb [19]

St-Mélany France
Wolframite-

quartz
vein

W-Sn - Wolframite;
Cassiterite

Mica schist;
orthogneiss Granite 343 Molybdenite

Re-Os [79]

Beauvoir France
Wolframite-

quartz
vein

W-Sn - Wolframite;
Cassiterite

Mica schist;
orthogneiss Granite 308 Molybdenite

Re-Os [80]

La Bosse France
Wolframite-

quartz
vein

W-Sn - Wolframite;
Cassiterite

Mica schist;
orthogneiss Granite 334 Muscovite

Ar-Ar [19]
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Table 1. Cont.

Name Location Mineralization
Type Resource W Reserve

(104 t)
Ore

Mineral Wall-Rock Granitic
Intrusion Age Method Reference

Borralha Portugal
Wolframite-

quartz
vein

W - Wolframite Granite 280 Muscovite
Ar-Ar [81]

Panasqueira Portugal
Wolframite-

quartz
vein

W - Wolframite Schist, meta-
graywacke Granite 305 Rutile U-Pb [8]
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2. Multiple-Aged Granitoid and Related Wolframite-Quartz Veins

Wolframite-quartz vein-type tungsten deposits are typically spatially associated with
granitic intrusion. However, the generation of the largest deposits is often restricted
to specific segments and limited periods of time. The most important vein-type tung-
sten resources of the world are found in the Southeast China and the Southeast Asian
belt [3,4,82,83] with significant resources also found in the Central Andean belt [84], the
East Australian belt [85], the Mesoproterozoic Karagwe-Ankole belt [12], and the European
Variscan belt [80]. Wolframite-quartz veins found in the Nanling region of south China
and in the Variscan belt of Europe form an important class of W deposits that have con-
tributed to the world’s major W production in recent decades (Figure 1). Wolframite-quartz
vein-type tungsten deposits generally occur in clusters and are formed within specific time
intervals worldwide (Figure 1). The explanation of this non-uniform pattern could be key
to understanding how and why metals accumulate in some places and not in others, and is
therefore fundamental for mineral exploration. In this part, two typical ore clusters, i.e.,
the Nanling region and the Variscan belt, are selected to illustrate the characteristics of the
strata, structures and granitic intrusions related to these tungsten deposits.
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The Nanling region is located in the central part of Southeast China. Within an area of
about 160,000 km2, the region contains several giant wolframite-quartz vein-type tungsten
deposits and intense granitoid magmatism (Figure 2). The stratigraphy exposed in the
Nanling region mainly includes Precambrian-Ordovician clastic rocks, Devonian-Permian
carbonates, and Triassic-Cretaceous pyroclastic rocks. The strata dominated by clastic rocks
are mainly distributed in the middle and east of the Nanling region, corresponding to the
concentrated distribution of wolframite-quartz vein tungsten deposits (Figure 2). Multiple-
aged granitoid magmatism formed from the Caledonian to the Cretaceous are accompanied
by syngenetic quartz vein-type tungsten mineralization of different degrees of economic
significance, of which the worthiest to be proposed are those that occurred in the Triassic
and Jurassic periods [57,61,83,86,87]. In the Triassic period (220~200 Ma), the tectonic
setting of South China underwent post-collisional extension. The vein-type tungsten
deposits formed at this time period were generally related to peraluminous granite magma
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triggered by crustal heating [9,88,89]. The Triassic wolframite-quartz vein-type deposits
were previously believed to be of less economic significance due to their relatively rarer
occurrences and smaller scales. In recent years, however, numerous geological research
studies and exploration works have been carried out on Triassic W (-Sn) metallogenic
events in South China. Liu et al. (2008) [63] reported a mica Ar-Ar age of 231.4 ± 2.4 Ma
for the Xianetang tungsten deposit in southern Jiangxi Province. Subsequently, Li et al.
(2021) [87] reported a wolframite Re-Os age of 225.5 ± 3.6 Ma for the Chuankou tungsten
deposit in south Hunan province, which provides evidence for the existence of large-scale
Indosinian quartz vein-type tungsten mineralization in the Nanling region. Although
mineralization occurred occasionally from the Caledonian to the Indosinian, the most
intensive emplacement of granite and the formation of cogenetic wolframite-quartz vein-
type tungsten deposits peaked in South China during the Yanshanian movement (Figure 2).
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High-precision metallogenic chronology yielded ages of 160~150 Ma for most of these
vein-type tungsten deposits, although a few tungsten mineralization occurred in the late
Cretaceous, such as the mineralization of the Shanhu tungsten deposit (100.2 ± 1.0 Ma [90]).
It is generally believed that the metallogenic background of the Yanshanian tungsten deposit
is a lithospheric extensional environment controlled by the subduction of the paleo-Pacific
plate [1,57,86]. This process led to the upwelling mantle heating of the ancient materials of
the crust and the reactivation of the W-rich part of the crust. Although the more concen-
trated debate still involves whether the mantle materials are involved in mineralization,
the heated crustal materials formed W-rich magmas, and then these magmas experienced
strong differentiation, resulting in the distribution of tungsten to later phases, and finally
ore precipitation from magmatic-hydrothermal systems at favorable tectonic stratigraphic
coupling sites [3,37,57,83,86,91]. The morphology of wolframite-quartz vein-type tungsten
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deposits is characterized by typical hydrothermal filling in tensile fractures. As a prospect-
ing indicator, fine mica + quartz veins are often distributed at the top of the vein systems,
accompanied by very little wolframite (Figure 3A). Wolframite-bearing quartz veins gener-
ally exhibit arborization and crosses in slate, granite or metasandstone, forming ore-bearing
quartz veins with large width variation (Figure 3). Numerous associated sulfides, such
as pyrite, arsenopyrite and chalcopyrite, were identified in the middle of the quartz vein
(Figure 3C). Occasionally, hydrothermal topaz veins were identified in some deposits and
occurred as the main gangue mineral rather than the common and more advantageous
quartz (Figure 3D). Most wolframite crystals grow radially at the vein walls (Figure 3B,E–G),
but sometimes they also occur in veins with no contact with the vein wall. Mica selvages
composed mainly of muscovite and/or zinnwaldite are often sandwiched between the wall
rock and quartz vein when the surrounding rock is metamorphic sedimentary rock rather
than granite (Figure 3G,H). Hydrothermal alterations including sericitization, chloritization
and tourmalinization in slate and sandstone generally developed within 0.5~1 m distance
along the outer contact of both vein walls. Greisenization in the cupola of the deep granite
is common in wolframite-quartz vein-type tungsten deposits.

The Variscan belt formed during the continental collision between Gondwana and
Laurussia through the Upper Paleozoic, which extends across 2000 km from the Iberian
Massif to the west and the Bohemian Massif to the east (Figure 4, [92,93]). The Variscan
belt represents an important metallogenic province with world-class districts for tungsten
deposits in Cornwall, the Iberian Massif, the Bohemian Massif, the Armorican Massif and
the French Central Massif [14,19,80]. The majority of the tungsten deposits in these regions
are generally related to Hercynian S-type or I-type granites which have significant W-Sn
contents [80,82,94].

The Bohemian is the easternmost Massif and represents a tectonic collage of several
continental terranes with distinct compositional and temporal tectonostratigraphic evolu-
tion. These units in massif have been widely intruded by voluminous granitic intrusions
forming strongly peraluminous S-type and slightly peraluminous A-type granite [14]. Sev-
eral granite-related vein-type W deposits were developed in the area, such as the Zinnwald
Sn-W and the Sadisdorf Sn-W greisen-vein deposits [95,96]. LA-ICP-MS U-Pb cassiterite
dating restricted these deposits to 326.1 ± 3.4 to 320.1 ± 2.8 Ma [96]. The Cornwall re-
gion, located in SW England, includes ophiolitic rocks of the Lizard Complex, which
suggest proximity to a suture zone, namely the Rhenohercynian suture [97,98]. Numer-
ous well-known vein-type Sn-W mineralization are identified in the region, including the
Cligga Head mine founded within the Cligga Head granite and Marazion Beach deposits
linked to St. Michael’s Mount granite [99]. Cassiterite U-Pb dating yielded ages from
ca. 295 to 274 Ma for Sn-W deposits in the SW England [100]. The French Massif Central
hosts several vein-type W-Sn deposits that have a close spatial relation with Carboniferous
granites. For example, the Vaulry deposit, located in the northwestern part of the Massif,
consists of a network of NNE-trending wolframite-bearing quartz veins that crosscut the
Blond granite and metamorphic rocks [101]. Three W-mineralizing episodes were reported
in the French Massif Central, corresponding to the orogenic compression and emplacement
of large peraluminous leucogranites (ca. 333~327 Ma), the development of late-orogenic
extension and emplacement of syn-tectonic granites (ca. 317~315 Ma) and post-orogenic
extension with Permian volcanism (315~310 Ma), respectively [102].
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Figure 3. Representative quartz veins from tungsten deposits in South China. (A) Thin wolframite–
quartz vein in the Piaotang tungsten deposit. (B) Quartz vein hosted in slate from the Taoxikeng
tungsten deposits. (C) Pyrite and chalcopyrite coexisting with wolframite in the Yaogangxian
tungsten deposit. (D) Euhedral wolframite grain occurring in topaz from the Maoping tungsten
deposit. (E) Wolframite occurring at the point of contact between quartz vein and wall-rock from
the Dajishan tungsten deposit. (F) Feldspar vein hosted in the central of quartz vein from the
Shangping tungsten deposit. (G) Morphology of wolframite crystals from the Shanhu tungsten
deposit. (H) Quartz veins with muscovite envelopes hosted in metapelitic sandstone from the
Shanhu tungsten deposit. Abbreviations: Mic—Mica; Qtz—Quartz; Py—Pyrite; To—Topaz; Ccp—
Chalcopyrite; Wol—Wolframite; Fel—Feldspar.
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The Beira Baixa region (central Portugal), the most important tungsten mineralization
province of the Variscan belt, includes several hypothermal quartz vein-type deposits
containing wolframite as the chief ore mineral. These veins generally intersect Cambrian
metapelites and, less commonly, cut granites. The Panasqueira W (-Sn) deposit is one of the
largest tungsten deposits in Europe, and the deposit itself accounts for 79% of Portugal’s
total W reserves (5.4 kt, [103]). Densely developed wolframite-bearing subhorizontal
hydrothermal quartz veins and the greisenized cupola (greisen) of a Variscan S-type granite
provide the main W resources in Panasqueira. These quartz veins are mainly hosted
in the Cambrian schist-metagraywacke complex, and are mainly composed of quartz,
tourmaline, muscovite, topaz, apatite, wolframite, cassiterite and minor arsenopyrite and
galena [8,104–106]. Rutile that coexists with wolframite yielded LA-ICP-MS U-Pb ages of
305 Ma and this is suggested as the mineralization age for wolframite [8]. Another apatite
U-Pb age of 295 ± 5 Ma was obtained from wolframite-bearing quartz veins, confirming
that the formation of mineralized veins occurred roughly at the Hercynian [20].

Globally, wolframite-quartz vein tungsten deposits are often restricted to specific seg-
ments and limited periods of time, which are closely related to regional tectonic movement
and magmatism. The Hercynian, Indosinian and Yanshanian periods provide 90% of the
global reserves, although a small amount of vein-type tungsten deposits formed during
the Caledonian movement have been reported [5,20,57,83,86]. In addition, wolframite-
quartz vein-type tungsten deposits are extremely unevenly distributed worldwide, with
the majority of them developed in South China (Figure 1).

3. Nature of Ore-Forming Fluids

Wolframite-quartz vein tungsten deposits show a close genetic relationship to magmatic-
hydrothermal systems, which are not only the principal source for tungsten but also a
heat source for mobilizing external metallogenic materials. Knowledge of the tungsten
contents and physical and chemical characteristics of the ore-forming fluid is thus key to
understanding the formation of this economically important class of tungsten deposits.
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Many studies have attempted to determine the characteristics of the fluids responsible
for hydrothermal tungsten mineralization in quartz veins. Most of these are based on
fluid inclusion and stable isotope analyses with some use of thermodynamic modeling
(e.g., [4,6,14,15,17,107–109]). Here, we focus on the roles these fluids played in the formation
of wolframite-quartz veins. We start with an evaluation of fluids recorded in ore and gangue
minerals from this type of deposit worldwide and then pay attention to the significance of
magmatic-hydrothermal transition fluids, as well as the role of CO2 in W mineralization.

3.1. Fluids Forming Ore and Gangue Minerals

Wolframite and quartz are undoubtedly the main ore and gangue minerals in wolframite-
quartz vein-type tungsten deposits. The formation sequence of these two minerals has
been an enduring and critical question in terms of understanding mineralization processes.
In addition to their intimate relationship observed in the field, fluid inclusions hosted in
wolframite and quartz also provide evidence elucidating their deposition sequences. Before
the 1980s, fluid inclusions trapped within gangue minerals, i.e., quartz and topaz, were
used for the investigation of ore-forming fluids [107,110–116], with the hypothesis that the
crystallization of quartz (or topaz) and wolframite occurs simultaneously. Subsequently, the
application of infrared technology in the geological field provides a window for the direct
testing of fluid inclusions in wolframite [22,117–121]. Since then, intensive comparative
studies have been carried out on the fluid inclusion of wolframite and quartz, and the
results show that the homogenization temperature of fluid inclusions in wolframite are
mostly higher than those in quartz, i.e., the Dajishan, Pangushan, Piaotang and Maoping
tungsten deposits from the tungsten belt in southern Jiangxi, China [4,23], the Yaogangxian,
Chuankou tungsten deposit in southeastern Hunan, China [6,21] and the St. Michael’s
Mount and Cligga Head deposits, Cornwall, England [22]. Combining these results with
the field observation that most wolframite crystals grow from the edges of quartz veins, it is
suggested that most of the quartz crystals were formed after precipitation of the coexisting
wolframite [4,6,17].

However, the above studies are based on a more macro perspective of the mineralog-
ical sequence, where detailed dissection of mineral precipitation and fluid entrapment
sequence are generally lacking. This leads to the illusion that ore and gangue minerals
are crystallized from separated hydrothermal fluids. Combined quartz cathodolumines-
cence and microanalytical investigations on fluid inclusions provide a powerful tool to
reconstruct the detailed hydrothermal evolution in quartz. Quartz crystals containing
several generations of fluid inclusions were examined in great detail by scanning electron
microscope-cathodoluminescence (SEM-CL), allowing differentiation between inclusions
that were trapped in diverse fluid evolution stages [17,122–125]. For wolframite-quartz
vein-type tungsten deposits, Pan et al. (2019) [17] described a mineral sequence consisting
of three wolframite stages and four quartz stages from a single sample of coexisting wol-
framite and quartz, suggesting that wolframite precipitation can be concurrent with quartz.

To further identify the fluid properties forming wolframite and quartz, published
fluid inclusion salinity and homogenization temperature data from wolframite-quartz
vein-type tungsten deposits worldwide were summarized (Figure 5). The dataset shows
that the homogenization temperature of wolframite-hosted fluid inclusion is in the range
of 250~400 ◦C, while that of quartz is 150~350 ◦C (Table 2). The salinities of wolframite and
quartz-hosted fluid inclusions are generally in the same range between approximately 2
and 10 wt % NaCl equiv. It is worth noting that in those quartz vein-type deposits, which
are dominated by tin, fluid inclusions containing halite daughter minerals are frequently
identified, resulting in a significant increase in fluid salinity (Figure 5). In addition, the
results show that wolframite and quartz have obvious overlapping areas in terms of salinity
vs. homogenization temperature (Figure 5). These results may imply that the crystallization
of a portion of quartz and wolframite can occur in identical fluid stages. This conclusion
is also supported by mineral sequences from field observations. It is found that there are
not only wolframite crystals distributed in the edge, but also some wolframite crystals
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growing in the middle of quartz veins. This probably implies that wolframite at the edge
of the vein crystalized earlier, while wolframite in the middle of the quartz vein was
formed contemporaneously with quartz in relatively late stages. In addition, Pan et al.
(2019) [17] confirmed that late-stage wolframite fine crystals were attached to the surface
of preexisting quartz crystals. In summary, we suggest that fluid inclusions in quartz can
sometimes provide information on wolframite ore-forming fluids if detailed mineralogical
and SEM-CL evidence are available.
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3.2. Significance of Magmatic-Hydrothermal Transition Fluids

Most fluid inclusion studies and experimental simulations have shown that wol-
framite in quartz veins is crystallized from aqueous hydrothermal solutions containing
salts and volatiles [4,14,15,17,32,107]. Moreover, the results of fluid–melt partition coeffi-
cients obtained by LA-ICPMS analysis of coexisting fluid and melt inclusions are gener-
ally in good agreement with the simulation experiments and demonstrate that tungsten
strongly partitions into the fluid phase [14,131–133]. Nonetheless, a few researchers sug-
gested that the ore-forming fluid for wolframite can be dominant in terms of melt or
magmatic-hydrothermal transition fluids [38,39,134]. Huang et al. (2012) [38] proposed
a melt–hydrothermal transition origin of wolframite in the Xihuashan tungsten deposit,
based on the supposition that the melt inclusions hosted wolframite and beryl. Moreover,
according to the crystallization experiment of tungsten in melts, it was proposed that
wolframite crystals can be crystallized from flux-rich subaluminous to peraluminous melts
at low temperature [39]. Alekseev et al. (2011) [135] discovered that accessory wolframoixi-
olite was crystalized in granitic rocks from the Chukchi Peninsula, and further inferred that
tungsten can be precipitated at the earlier greisen stage. In addition, wolframite crystals can
occur in greisen at the top of granitic intrusions associated with some wolframite-quartz
veins. For example, there are disseminated wolframite bodies of economic significance
in the Maoping tungsten deposit in the Nanling region [15]. These few thermodynamic
experiments and geological phenomena seem to imply that wolframite can precipitate at
the transition stage of fluid exsolution from a crystallizing melt.

Based on the statistics of the mineralization characteristics of global wolframite-quartz
veins and the research results of metallogenic fluids, previous studies revealed that fluid
inclusions, rather than melt inclusions, have an absolute advantage in both wolframite
and associated quartz [4,6,11,15,22,23,36,112,127,136–138]. Although a few melt inclusions
recorded in wolframite and beryl have been reported in the Xihuashan tungsten deposit,
there is still a lack of research on the properties of the unclear melts captured in these
inclusions. Accessory wolframite was described in granites and pegmatites from some
tungsten deposits, i.e., the Yaogangxian tungsten deposit in Nanling, and the Spokoininsky
and Taptanai deposits in Transbaikalia [139–141]. However, wolframite in granites and
pegmatites is low in number in contrast to greisen, skarn and quartz veins, which are
the main styles of hydrothermal tungsten mineralization. In addition, the attribution of
wolframite crystals crystallized in greisen is still a question, because the greisenization
process itself is the process of fluid metasomatism of crystallized granite. Specifically, these
wolframite crystals may be formed by W-rich fluids through microcracks in granite. In
conclusion, we propose that aqueous hydrothermal fluid is the tungsten-bearing media
of absolute predominance responsible for wolframite-quartz veins, and the question of
whether wolframite crystals can crystallize from melt or magmatic-hydrothermal transition
fluid in nature still needs more integrated studies in order to be resolved.

3.3. The Role of CO2 in W Transportation

CO2 is a common volatile in magmatic hydrothermal ore deposits, e.g., porphyry Cu-
Au-Mo, skarn Cu–Fe–Au, orogenic Au and Sn deposits [4,6,111,124,142]. Similarly, a large
number of studies on wolframite-quartz vein-type W deposits show that fluid inclusions
bearing different amounts of CO2 are observed worldwide. For example, Li et al. (2018) [6]
reported a large number of CO2-rich fluid inclusions in quartz from the Yaogangxian and
Huangsha tungsten deposits in the Nanling region (Figure 6A–C). Coincidentally, the
Panasqueira tungsten deposit in Western Europe also has a significant amount of volatiles
dominated by CO2 in the ore-forming fluid [106]. However, it is also important to note that
many other wolframite-quartz vein-type tungsten deposits do not contain CO2-rich fluids,
as exemplified by the Maoping (Figure 6E), Xingluokeng (Figure 6F), Piaotang (Figure 6G)
and Taoxikeng (Figure 6H) tungsten deposits, all of which are large to super-large deposits.
These observations have raised the following questions: What role does CO2 play in the
migration and precipitation of W? Furthermore, why is carbon dioxide not present in all
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wolframite-quartz vein-type W deposits? In order to determine its specific role in tungsten
deposit formation, Higgins (1980; 1985) [107,111] carried out fluid inclusion and stable
isotope research on the Grey River W deposit, a typical wolframite-quartz vein-type deposit.
The results show that the fluid in the mining area has experienced a strong immiscible
process characterized by loose CO2, which occurred before the precipitation of wolframite.
Therefore, it is considered that the occurrence of CO2 may have facilitated wolframite’s pre-
cipitation from ore-forming fluid. Moreover, experimental studies under high temperature
and pressure have found that CO2 may participate in the migration and precipitation of W.
For example, Li et al. (2018) [6] carried out a dissolution and crystallization experiment of
wolframite under the conditions of simulated metallogenic physicochemical conditions and
controllable CO2 using a hydrothermal diamond pressure chamber. They found that the
solubility of wolframite is positively related to the relative content of CO2 in the system. In
addition, by establishing the reaction equilibrium model of the W-Fe-Cl-Na-O-C-H system,
Liu and Zhang, (2019) [143] proposed that CO2 escape caused by depressurization can
induce a decrease in tungsten solubility of 27~47%. Therefore, this process may be one
of the key mechanisms of wolframite precipitation. The above studies emphasize that
CO2 may have effects on tungsten solubility, and thus may play an important role in the
precipitation of wolframite and other minerals.
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Figure 6. Representative fluid inclusions captured in quartz from wolframite-quartz vein-type tung-
sten deposits in South China. CO2-bearing inclusion coexisting with liquid-rich aqueous inclusions
in the Yaogangxian (A) and Huangsha tungsten deposit (D). (B) Typical three-phase fluid inclusions
in quartz generally consist of liquid CO2, gas CO2 and a small amount of aqueous solution, respec-
tively (the Yaogangxian tungsten deposit). (C) CO2-bearing inclusion in the Huangsha tungsten
deposit. (E–H) Two-phase aqueous inclusions in the Maoping (E), Xingluokeng (F), Piaotang (G) and
Taoxikeng (H) tungsten deposits, respectively. Abbreviations: Qtz—Quartz; YGX—Yaogangxian;
HS—Huangsha; MP—Maoping; PT—Piaotang; XLK—Xingluokeng; TXK—Taoxikeng; L—liquid;
V—vapor; LCO2—liquid CO2; VCO2—vapor CO2.
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Despite the above mentioned studies, it is very important to note that the knowledge of
CO2-rich fluid’s occurrence in tungsten deposits is based mostly on observations of quartz-
hosted fluid inclusions. However, through the infrared microscope observation of wol-
framite in the Cornwall vein-type tungsten deposit, Campbell and Panter (1990) [22] found
that wolframite-hosted fluid inclusions are not rich in CO2. Similarly, Luder (1996) [118]
carried out infrared research on wolframite-hosted fluid inclusions in Panasqueira, and
no inclusions containing CO2 were found. In South China, Ni et al. (2015) [4] conducted
fluid inclusion research on typical wolframite-quartz vein-type tungsten deposits in several
deposits in Southern Jiangxi, such as the Xihuashan, Dajishan and Pangushan deposits,
and also found that only aqueous inclusions were observed in wolframite. Recently, similar
views have been supported by fluid inclusion investigations from the Yaogangxian, Maop-
ing, Xingluokeng, Piaotang and Taoxikeng tungsten deposits in South China (Figure 7).
Although small amounts of CO2 were revealed by microthermometry in wolframite-hosted
fluid inclusions at some of these deposits such as Yaogangxian [6] and Maoping [23], there
is, in general, a lack of immiscible assemblage.
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fluid inclusion assemblages in wolframite from the Yaogangxian (A), Maoping (B), Xingluokeng
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To better evaluate the role of CO2 in ore-forming fluids, we compiled the existing
fluid inclusion data from wolframite-quartz vein-type tungsten deposits all over the world
(Table 2). There are 18 case studies that provide direct information on ore-forming fluids
from wolframite-hosted fluid inclusions [4,6,15,22,23,58,130,136,137,139]. It is notewor-
thy is that only four of these deposits show the existence of a small amount of CO2
in wolframite-hosted fluid inclusions. The rare occurrence and low abundance of CO2-
rich fluid inclusions observed in wolframite crystal are interpreted, therefore, to indicate
wolframite’s precipitation from CO2-poor hydrothermal fluid. In addition, studies of ore-
forming fluids of many wolframite-quartz vein-type tungsten deposits show that even
gangue minerals such as quartz do not contain observable CO2 (Figure 6E–H). The ex-
perimental simulation of wolframite solubility also found that the migration of tungsten
is achieved predominantly by tungstate species, and thus, tungsten–chloride, tungsten–
fluoride or tungsten–carbonate complexes are not required for W transport [144]. Therefore,
it is considered that CO2-free aqueous solution is sufficient for effective wolframite trans-
portation and precipitation [11,36,112,138]. In conclusion, we propose that although CO2
may have some indirect influence on tungsten’s solubility, the existence of CO2 is essentially
not necessary for effective wolframite mineralization in vein-type tungsten deposits.

4. Wolframite Precipitation Mechanism

The tungsten precipitation from hydrothermal fluid is the key process that occurs
during the formation of an economic W deposit. The solubility experiment and thermody-
namic simulation of wolframite show that tungsten mainly migrates in the form of simple
tungstic acid (H2WO4, HWO4

−, HWO4
2−) and alkaline tungstate ion pairs (KHWO4,

NaHWO4, KWO4
−, NaWO4) in hydrothermal systems [144]. The solubility of tungstic

acid or tungstate in hydrothermal solution is mainly affected by temperature, salinity, pH,
oxygen fugacity and the activity of cationic precipitants (Fe, Mn) [144,145]. Therefore, the
change of any of the above factors will lead to the instability of tungsten complexes in
fluid, resulting in the precipitation of wolframite. Here, several prevailing mechanisms for
wolframite deposition proposed in the literature are summarized and discussed.

Based on a large number of comprehensive research studies, the widely accepted precipita-
tion mechanism of wolframite in quartz vein includes fluid boiling or immiscibility, fluid–rock
interaction, simple cooling and meteoric water mixing [4,6,13,15,17,21,111,144,146–148]. How-
ever, which precipitation mechanism plays the key role in certain W deposits formation has
been a matter of dispute for decades. The experimental simulation study shows that the
solubility of wolframite is greatly affected by temperature between approximately 300 and
350 ◦C [149]. Therefore, the simple cooling of W-bearing magmatic hydrothermal solution
is an efficient mechanism for wolframite precipitation [145,150]. In studies of wolframite-
hosted fluid inclusions from South China, it was found that the direct ore-forming fluids
belong to the H2O-NaCl system, and a macroscopic cooling process was recorded based
on the microthermometric measurement of many deposits [4,6,45]. These thermodynamic
experiments and fluid inclusion analyses support the dominance of simple cooling as the
main mechanism of wolframite precipitation.

As mentioned in the previous section, CO2-bearing fluid inclusions are abundant in
associated gangue minerals such as quartz (Figure 6A–C), and thus, fluid immiscibility
characterized by CO2 discharge is proposed as an important mechanism of tungsten
mineralization [111,146]. Based on the analysis of single-fluid inclusions in both wolframite
and coexisting quartz, Korges et al. (2018) [15] proposed that fluid boiling triggered
by decompression plays a key role in the precipitation of wolframite. Thermodynamic
simulation studies show that the escape of acid gaseous components caused by fluid
boiling/immiscibility will lead to the increasing of fluid pH, thus reducing the solubility
of wolframite and causing wolframite precipitation [10,107,144,151]. Recently, Pan et al.
(2019) [17] dissected the multi-stage fluid evolution process of the Yaogangxian W deposit in
the Nanling region, and found that the ore-forming fluid of later-stage wolframite is mainly
characterized by the significant loss of CO2, CH4, B, As and S. It is therefore proposed that
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the loss of acidic gases caused by fluid immiscibility is accompanied by a certain stage of
wolframite precipitation in the Yaogangxian tungsten deposit.

Changes of the activity of cationic precipitants is also important for W mineralization
given that Fe and Mn are indispensable materials for wolframite formation. Via a geochem-
ical analysis of both fluid inclusion and wall rock, Lecumberri-Sanchez et al. (2017) [13]
proposed that the addition of Fe provided by fluid–rock interaction is the main controlling
factor of wolframite precipitation at Panasqueira, Portugal. Similarly, quantitative analysis
of fluid inclusion and wall rock alteration suggest that wall rocks are possible sources of
Fe required for the precipitation of wolframite in the Chuankou tungsten deposit, South
China [21]. On the contrary, Yang et al. (2019) [16] reported very high Mn (up to 6.7 wt%)
and Fe (up to 44.4 wt%) concentrations in quartz-hosted fluid inclusions from the Piaotang
deposit in southern Jiangxi and suggested that the magmatic-hydrothermal fluids them-
selves contain enough Fe and Mn for wolframite deposition. However, the reported Fe
and Mn concentrations in the study of Yang et al. (2019) [16] are too high to be true given
that the measured fluid inclusions are all two-phase aqueous inclusions of low salinity
(5.0 wt% NaCl equiv.). In summary, fluid–rock interaction may be a major controlling
factor for the selective occurrence of wolframite-bearing quartz veins in some strata, i.e.,
Fe-rich metasediments. However, this seemingly does not explain the occurrence of many
wolframite-quartz vein deposits that are hosted entirely in granite, such as some of the
deposits in the Xihuashan-Zhangtiantang ore district in Nanling region.

The addition of meteoric water is occasionally used to explain the precipitation of
wolframite (e.g., [137,148]). However, the major evidence is often provided by mineral
bulk H-O isotopes, which are usually affected by secondary fluid inclusions [101,152].
Previous studies on wolframite-hosted inclusions from most W deposits confirm that the
salinity of ore-forming fluids is relatively consistent during wolframite deposition and
does not decrease with temperature [4,6,17,23]. These results suggest that fluid mixing,
although frequently recorded in late stage quartz, is not primarily responsible for large-scale
wolframite precipitation.

In conclusion, the precipitation mechanism of wolframite ore is still subject to much
dispute, with proposed mechanisms that include boiling, simple cooling, fluid–rock interac-
tion and meteoric water mixing. For the former three mechanisms, wolframite precipitation
is caused by changing fluid parameters (temperature, pH, etc.) or element concentrations
in fluid, which can result in a significant decrease in W solubility. On the contrary, mete-
oric water mixing or dilution alone do not seem to be effective approaches to reduce W’s
solubility in hydrothermal fluids and are not suggested by fluid inclusion evidence from
wolframite. Therefore, we propose that the precipitation of wolframite is mainly affected
by simple cooling, fluid boiling, and fluid–rock interaction, whereas fluid mixing may
not be an effective precipitation mechanism for the formation of giant wolframite-quartz
vein-type tungsten deposits.

5. Ore-Forming Fluid Sources

A close temporal and spatial relationship generally exists between the wolframite-
quartz vein-type tungsten deposits and granitic intrusion. However, the genetic link
between granitic magma and associated wolframite-bearing quartz veins is still contro-
versial (e.g., [5,11,16,21,23,74,80,153,154]). Two well-known genetic models have been
proposed: The “orthomagmatic hypothesis” emphasizes that granitic magma is the direct
source of W-bearing fluid, and ore-forming fluid is directly separated during the cooling
and crystallization of granitic magma [11,80,85,155]. The “circulation hypothesis” holds
that granitic magma provides a heat source to drive the convective circulation of external
fluid (such as metamorphic fluid and meteoric water) from host rocks, which causes ore
materials to be leached from wall rock (metamorphic sedimentary rocks) and enriched in
fluid [101,156]. From the above two controversial genetic models, it can be seen that the
source of ore-forming fluid responsible for wolframite-quartz vein-type tungsten deposits
is still in dispute.
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The study of fluid inclusions and stable isotopes provides the main medium for tracing
the source of ore-forming fluid. Previous studies on H and O isotopes and fluid inclusions
show that the ore-forming fluid in the main mineralization stage of wolframite-quartz
vein-type deposits has a magmatic origin [4,6,11,23,80,85], and diverse degrees of meteoric
water mixing in the late stage were reported [6,33,35,152]. Recently, Korges et al. (2018) [15]
analyzed the composition of individual inclusions at different mineralization stages of the
Zinnwald Sn-W deposit and found that the ratio of incompatible elements such as Cs and
Rb in the fluid remain almost unchanged, which suggests a single sourced magmatic fluid.
Similar results were obtained from fluid inclusions hosted by coexisting wolframite and
quartz at the Yaogangxian W deposit and indicate a consistent magmatic-hydrothermal
origin [17]. It is worth noting that some W deposits also show metamorphic fluids being
involved in the metallogenic process of wolframite [101,130]. For example, the study of
the Vaulry W (-Sn) deposit in France suggests that the ore-forming fluid is either a true
metamorphic fluid or a surface-derived fluid that was deeply equilibrated with the granitic
basement [101]. Similarly, the large amount of CO2 and CH4 in the ore-forming fluid
of the Pedra preta W deposit in Brazil implies a possible reductive metamorphic fluid
from shallow metamorphic surrounding rock [130]. By analyzing the ore-forming fluid
of the Yaogangxian tungsten deposit, Pan et al. (2019) [17] proposed that the true ore-
forming fluid corresponding to wolframite precipitation is enriched in Sr and Ca, which
may indicate the addition of Sr and Ca from sedimentary water.

In addition, it is still controversial as to whether mantle-derived materials were in-
volved in the ore-forming fluid of wolframite-quartz vein-type W deposits. Traditional
views suggest that granites related to W mineralization are typical S-type granites derived
from continental crust remelting [57,157–161]. This means that the large-scale ore-forming
fluid mainly comes from the crust. With the application of He-Ar isotopes in the tracing
of fluid sources [162–165], studies of He and Ar homologues of some typical wolframite-
quartz vein-type tungsten deposits have shown that mantle-sourced fluids are involved
in the mineralization process [3,129,164,166]. On the contrary, the He-Ar isotopic results
of some W deposits such as Piaotang [167], Tieshanlong [168] and Maoping [45] suggest
that the ore-forming fluid is mainly crustal-derived without the obvious participation of
mantle-derived fluid. Therefore, the issue of whether or not mantle-derived materials are
involved in the ore-forming process of wolframite-quartz veins and, if so, the nature of
their role is worth further discussion.

6. Wolframite-Quartz Veins and Their Parental Granite

Reconstructing the genetic model of wolframite-quartz vein-type tungsten deposits
is critical for understanding their genesis and for the development of prospecting strate-
gies within known ore districts and metallogenic provinces. Wolframite-bearing quartz
veins commonly show zonings of different mineralization forms in the vertical direction
(Figures 8 and 9). A general pattern of vein morphology from the bottom to the top is
concluded as the “Five-floors” model, which suggests that vein thickness is commonly
reduced with the increasing of the distance from the associated granitic intrusion. This pat-
tern is particularly true in the Nanling region for both steeply (Figures 8A and 9) and gently
dipping veins (Figure 8B, [23]). In most cases, wolframite-quartz veins are rooted from the
cupola of the deep-seated granite and can sometimes extend into the granite for limited
distances (Figure 8B). In rare cases, the expected granite is not revealed (e.g., Figure 8A),
implying its occurrence at greater depth. Where granite is encountered, disseminated W
(-Sn) mineralization, which is associated with greisenization, is commonly developed at
the roof of the intrusion (Figures 8B and 9). The coupling model of the two mineralization
styles has guided the exploration of a large number of tungsten deposits and the selection of
mining targets in the Nanling region [69,169]. A few recent studies provided geochronology
and fluid evidence for a genetic link between wolframite-quartz veins and the greisen type
mineralization. For example, cassiterite U-Pb ages and trace element compositions obtained
from both wolframite-bearing quartz veins hosted in Cambrian metamorphic rocks and
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the disseminated W-Sn mineralization in granite at the Maoping tungsten deposit of South
China suggest the contemporaneous formation from the same hydrothermal system [23,45].
Similarly, the Sn-W Zinnwald deposit in Erzgebirge (Germany and Czech Republic) shows
greisen type Sn mineralization in granite, which shares the same fluid origin and properties
with W-Sn mineralization in subhorizontal wolframite-bearing quartz veins [15].
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The determination of genetic links between wolframite-quartz veins and their spatially
associated granite has been a controversial issue in some deposits. Recent geochronological
studies show that some spatially associated granites may only serve as wall rocks, rather
than as parental rocks providing materials and ore-forming hydrothermal fluids. For
example, based on the Ar-Ar age of muscovite (153 Ma) related to the disseminated
mineralization in granite and the Re-Os age of molybdenite (160 Ma) in quartz veins,
Yuan et al. (2018) [5] proposed that different tungsten mineralization scenarios in the
Zhangjialong tungsten deposit were the result of Yanshanian magmatism, despite the fact
that spatially associated granite was emplaced in the Caledonian. In addition, according to
the high-precision muscovite Ar-Ar dating of the Zhenkou tungsten deposit, Yang et al.
(2019) [16] suggested that wolframite-bearing veins were formed in Late Jurassic, and have
no genetic connection with the spatially associated Penggongmiao granite of the Early
Paleozoic. Similarly, hydrothermal zircon, high-precision cassiterite U-Pb, molybdenite
Re-Os and muscovite Ar-Ar data also show that the Xitian and Dengfuxian tungsten
mineralization are related to early Yanshanian granite intrusion rather than Indosinian
granite [60,170,171]. Recently, a U-Pb age of wolframite (212 Ma) was reported in the
large-scale Chuankou W deposit; it was found to be more than 15 Ma younger than the
associated granitic intrusion (227~237 Ma, [21]). These geochronological results suggest the
existence of syn-ore concealed granite at greater depth and, thus, the exploration potential
for disseminated W mineralization at these depths [21]. To sum up, we suggest that more
attention should be paid to the relationship between wolframite-quartz veins and spatially
associated granite. Geochronology and fluid source evaluation can provide key evidence
for verifying their genetic link and, in turn, can guide mineral exploration and targeting.

The Zhangtiantang-Xihuashan ore belt, located in the south of Jiangxi Province, is char-
acterized by more than 10 middle- to large-scale wolframite-quartz vein-type W deposits
distributed at nearly equal intervals in space (Figures 10 and 11, [172]). It is noteworthy
that these wolframite-quartz veins, of considerable economic value, were developed at
similar elevation ranges despite the fact that the emplacement depth of associated granitic
intrusions can vary significantly (Figure 11). High-precision molybdenite Re-Os along with
cassiterite and wolframite U-Pb ages indicate that these deposits were formed in a very
limited time intervals between 155 Ma and 159 Ma [45,54,173,174], which are indistinguish-
able from the granite zircon U-Pb ages of 152 Ma to 159 Ma [49,175] at the given analytical
precision. Moreover, fluid inclusion analysis showed that these deposits share similar
homogenization temperatures and salinity levels, indicating that they are likely controlled
by a regional-scale magmatic-hydrothermal event (Figure 12). Since some granite types are
exposed to the surface and host wolframite-quartz veins, such as those of the Xihuashan,
Dangping and the Zhangtiantang areas, whereas other tungsten deposits are mainly hosted
in the metasediments, this may suggest that the currently known granite types are not the
direct parental granites for W mineralization even though their ages are indistinguishable.
This is supported by the discussion in the previous paragraph. We propose that an as-yet
undiscovered deep intrusion, rather than the exposed granitic intrusion, was probably
responsible for the formation of wolframite-quartz veins in this ore belt. In addition, com-
bined with the metallogenic model described above, we put forward the possibility of
finding disseminated mineralization at the deeper part of these deposits.
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7. Evaluation of W Mineralization Potential

The fluid and melt inclusions captured during the crystallization of host minerals
are direct records of the fluids and melts involved in magmatic-hydrothermal systems. In
the last two decades, the in situ LA-ICP-MS analysis of single-fluid and melt inclusions
has provided many fundamental insights on the magmatic and hydrothermal processes
leading to the formation of economic ore deposits (e.g., [13,15,17,85,176–180]). One of
the most controversial issues in the formation of magmatic-hydrothermal ore deposits is
whether the metallogenic potential of the system is correlated with the metal content of
the emplaced magma and/or the exsolving fluids (e.g., [180,181]). For the past 20 years,
systematic determination of the chemical compositions of fluids forming wolframite-quartz
veins has been reported from a few locations including Mole Granite [85], Panasqueira [13],
Zinnwald [15] and Yaogangxian [17]. Melt composition data of granite associated with
wolframite-bearing W-Sn deposits are rare, but existing data have been obtained from a
few locations such as Mole Granite and Ehrenfriedersdorf [85,182]. These data allow us to
carry out a preliminary comparison of melt and fluid compositions in wolframite-quartz
vein-type deposits, porphyry-type deposits and barren granitic systems.
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7.1. W Contents in Barren and Mineralized Granite

Distinguishing between fertile and barren granites has long been an important issue
for understanding ore genesis and guiding mineral exploration. To clarify this issue, studies
on W-related granites have paid much attention to whether they have unique geochemi-
cal characteristics. Previous petrogeochemical studies have found that high silicon, high
potassium, W, F, Li and B anomalies, high Rb/Sr ratios, and high mica concentrations are
regarded as the marks of mineralized granites [57,183–188]. Comprehensive mineralogical
studies also provide indexes to identify the mineralization potential of granite; for example,
disseminated wolframite, scheelite and rutile are recognized as signs of strong mineraliza-
tion potential [8,46,167]. The morphology and geochemistry of titanite in granite have also
been used to evaluate W ore-forming potential [189]. Moreover, the studies of the zircon
composition from granites in East Australia, Myanmar and the Nanling region reveal that
most tungsten-associated granite is characterized by high temperatures, high tungsten
concentrations, low oxygen fugacities and high degrees of evolution [184,190,191].

Although the whole-rock analysis and mineralogical indictors of granite have con-
tributed to the accumulation of knowledge regarding the differences between mineralized
and barren granite, the exact metal contents of the granite can only be obtained reliably
from melt inclusion analysis. A series of pioneering works on melt inclusion from Mo-
mineralized and barren granite found no systematic differences in the initial Mo contents
between barren and Mo mineralized systems, and no extraordinary Mo enrichment was
involved in the magma of porphyry Mo deposits [192–194]. By comparing the volume of
the magma chamber, the emplacement depth, and the magma temperature and viscosity,
these studies suggest that the viscosity of mineralized magma is significantly lower than
the average value of magma, indicating that magma with low viscosity may be conducive
to mineral circulation and extraction, which is conducive to mineralization.

In addition, relatively rare melt inclusion data have been reported from granite as-
sociated with wolframite-quartz vein-type W (-Sn) deposits [85,182]. One reason for the
shortage of such data is probably due to the difficulty in finding workable melt inclusions
in W-associated granite that is usually fine-grained and altered. In the Nanling region of
South China, typical crystallized melt inclusions in quartz phenocryst were found, in good
preservation conditions, in many W-mineralized granite types such as Dajishan, Dangping,
Piaotang and Muziyuan granite (Figure 13). These melt inclusions provide an excellent
object of research to constrain the mineralization potential of these granites, and our LA-
ICP-MS analysis on these melt inclusions is in progress. Here, a compilation of existing
melt inclusion data from W (-Sn)-mineralized granite, Cu-dominated porphyry deposits,
Mo-dominated porphyry deposits and barren granites is shown in Figure 14A. The data
plot shows a clear positive correlation between the W and Cs concentration, suggesting
that W are gradually enriched in the melt during fractional crystallization. In addition, the
W-mineralized granites are mostly evolved and yield the highest W concentrations in melts,
indicating that high W content is probably a precondition for economic W mineralization.
Notably, barren granite with similarly high fractionation degrees has W contents that are
lower than those of mineralized granite, possibly suggesting lower initial W contents in
the protolith.
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Figure 14. Diagrams of W vs. Cs concentration or concentration ratios of melt inclusions and fluid
inclusions from mineralized, barren and porphyry systems. (A) W vs. Cs concentration diagram for melt
inclusions of W-associated and barren granite, also shown are porphyry Cu and porphyry Mo systems.
Barren granites include: Rito del Medio, Huangshan and Mt. Malosa [182,195,196]; Cu-dominated
porphyry deposits include: Elatsite [123]. Mo-dominated porphyry deposits include: Climax [193]. W-Sn
deposits include: Mole Granite and Ehrenfriedersdorf [85,182]. (B) W/Na vs. Cs/Na ratios for initial
fluids of mineralized and barren fluids, adopted from the database of [180]. Fluid compositions from
three wolframite-bearing quartz vein-type deposits, i.e., Zinnwald, Yaogangxian and Panasqueira, are also
plotted for comparison. Values are from [13], [15] and [17], respectively.
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7.2. W Contents in Barren and Mineralized Hydrothermal Fluids

Whether the mineralization potential is determined by the metal contents in the
ore-forming fluids is a fundamental question for understanding the genesis of magmatic-
hydrothermal deposits. Several previous studies have made remarkable progress on this
issue. For example, based on LA-ICPMS analyses of single-fluid inclusions in barren and
mineralized veins from the Schwarzwald mining district in SW Germany, Walter et al.
(2019) [18] reported similar Pb-Zn base metal and sulfur concentrations, which suggested
that sulfide (Pb and Zn) mineralization in these veins has no connect with metal solubility in
fluids. On the contrary, the presence of a reducing phase during fluid mixing is responsible
for metal precipitation. The systematic elemental analysis of individual fluid inclusions for
Sn-dominated and W-dominated deposits in the Mole Granite ore district showed that the
contents of Sn and W in the initial fluids were correlated positively with the corresponding
metallogenic types, and it was speculated that the metallogenic potential of the deposit
may be controlled by the metal content in the initial fluid [85]. Recently, Audetat et al.
(2019) [180] compiled 169 groups of single-fluid inclusion composition data published in
the last 20 years, and more comprehensively summarized the relationship between initial
fluid metal composition and mineralization potential in granitic magmatic hydrothermal
systems. However, the results only show a very weak positive correlation between the W
concentration in the initial fluid and the W mineralizing potential of granitic magma.

In order to take a further step on this issue, fluid compositions from several recent
studies on wolframite-quartz vein-type W deposits were compiled with the use of the
database of mineralized and barren systems provided by [180]. The selection of the data
was guided by the fact that they represent the best mineralization characteristics and
the deposits are well known mineralogically and geochemically, i.e., the Panasqueira
W-Sn deposit in Portugal [13], the Yaogangxian W deposit in South China [17] and the
Zinnwald Sn-W deposit in Germany and the Czech Republic [15]. The plot is shown
in Figure 14B, and it is worth noting that all element contents are normalized to Na to
eliminate the salinity effect. If one looks at the initial W concentrations in both the W- and
Sn-dominated mineralized systems, it is clear that W-Sn mineralized systems have the
highest W concentrations as compared to most barren granite and porphyry Cu or Mo
deposits. The positive correlation between W’s abundance and the Cs contents suggests
that W behaves as an incompatible element during fractional crystallization [180]. Thus, the
high W concentration in early-stage fluid may indicate high W mineralization potential and
thereby act as a possible exploration tool. It is important to note that the fluid inclusion data
obtained from Zinnwald, Panasqueira and Yaogangxian show relatively lower contents
of W than those attributed to initial fluids. Given that these fluid inclusions are hosted
mostly in vein quartz coexisting with wolframite, these data indeed suggest that quartz is
generally formed later than wolframite and the fluids that deposited quartz are already
W-depleted due to earlier wolframite deposition. It is expected that the early-stage fluids
in these wolframite-quartz vein-type deposits have much higher W concentrations. It is
also notable that much of the W concentrations from some barren and porphyry Cu/Mo
systems are equally high as those of mineralized systems, suggesting that W concentrations
in early-stage fluid are not the sole determinant of mineralization potential. For porphyry-
type deposits, the relatively higher oxygen fugacity of the magma can be a critical factor
that acts against the deposition of W ore minerals in these systems [153]. Significantly, it is
striking that all W-mineralized fluids have Cs/Na ratios in a very restricted interval, i.e.,
between 10 and 100 (1000*Cs/Na in ppm). This may imply a relatively fixed crystallization
degree that is favorable for economic W mineralization.

In summary, positive correlations between both melt and fluid W concentrations and
their mineralization potential are suggested by the compilation of the data. Melt and
fluid inclusions can thus be used as potential tools for guiding W exploration. However,
it is necessary to be cautious when fluid inclusion data from quartz veins are used for
such evaluations because late-stage W-depleted fluids may conceal the true mineralization
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potential of the ore-forming fluids. Thus, attention should be paid to the petrographically
early-stage fluids or the highest W concentrations of the obtained fluid inclusion data.

8. Conclusions and Prospects

(1) Quartz in the wolframite-bearing quartz veins commonly undergoes multiple stages
of precipitation, whereas wolframite is generally precipitated in narrow intervals.
Conclusively, caution needs to be exercised when the fluid inclusions recorded in
gangue minerals are used to represent ore-forming fluids.

(2) W-bearing hydrothermal fluids, rather than melts, have led to the large-scale precipita-
tion of wolframite in quartz veins. Solid evidence for wolframite crystals that crystal-
lize from melts or magmatic-hydrothermal transition fluids in nature is still lacking.

(3) Comprehensive statistics show that the occurrence of CO2 in wolframite-quartz vein
tungsten deposits is random and wolframite-hosted fluid inclusions generally have
low CO2 contents. Although the existence of CO2 can affect the pH of ore-forming
fluids and, therefore, the stability of W complexes, its occurrence is not necessary for
wolframite mineralization, especially in large-scale W deposits.

(4) Simple cooling, fluid boiling and fluid–rock interactions were found to be the principle
mechanisms responsible for the precipitation of wolframite from hydrothermal fluid,
whereas meteoric water mixing is less effective even though it frequently occurs in
post-mineralization stages.

(5) The studies of wolframite-quartz vein-type tungsten deposits from different regions
worldwide showed that the granitic magma is the main source for ore-forming fluids,
and the involvement of metamorphic fluid, sedimentary fluid and mantle-derived
fluid can occur locally.

(6) Wolframite-quartz veins are not necessarily genetically related to spatially associated
granites. High-precision geochronology and fluid source evaluation can provide key
evidence for verifying their genetic link and, in turn, can guide mineral exploration
and targeting.

(7) Based on the data compilation of melt and fluid inclusions in W-mineralized and
barren systems, it is suggested that the metallogenic potential of granite-related
magmatic-hydrothermal systems is determined to a great extent by the W contents in
granite melts and early-stage exsolving fluids, which, in turn, can be potential tools
for W exploration.
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