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Abstract: Aiming to solve the problems related to the slow settling speed and the long-term con-
sumption of ultra-fine tailings in mine filling, the effect of flocculant type on the flocculation and
settling performance of ultra-fine tailings was studied through static sedimentation experiments
on tailings. The microstructure of the flocculation was observed and analyzed using an electron
microscope. On this basis, the selection of the optimum flocculant type and dosage parameters was
carried out. The results show that the best addition amount of the AZ9020 anionic flocculant was
30 g/t, a solution concentration of 0.3%, and a stirring time of more than 45 min. The floc structure
of the full-tailings flocculation solution was formed by the AZ9020 anionic flocculant. Moreover,
the size of less than 0.1 µm was still relatively large; thus, the overall size of the structure was small
and uniformly dispersed. The floc solution had the smallest porosity, the fractal dimension was the
largest, the molecular weight of the floc was the largest, and the floc was the most compact, making
it appropriate for the rapid removal of floc structures from water. Sedimentation is also the best
flocculant for flocculation and sedimentation. The size of the flocs decreased as the height of the
flocculation sediment bed increased during flocculation and sedimentation. The research results
provide a microscopic view for the selection of the best flocculant type.

Keywords: ultrafine tailing; flocculating sedimentation; floc microstructure; fractal dimension;
gray value

1. Introduction

As a cement filling, tailings can prevent surface subsidence and can reduce the occu-
pation of ground space by tailing stacking. Thus, the use of tailings as a cement filling is
an inevitable choice for the green development of current mines [1–3]. However, ultrafine
tailings encounter problems, such as a long natural settlement time and slow speed, due to
their high content of fine particles, thus failing to meet the large-scale continuous filling
requirements of mines [4–6]. Increasing the sedimentation efficiency by adding floccu-
lants is a common practice in current mines to meet the needs of large-scale continuous
filling underground. The sedimentation speed and concentration of tailings particles in
the flocculation sedimentation process are affected by many factors, such as the type of
flocculant [7,8]. Therefore, selecting a reasonable flocculation type according to the charac-
teristics and properties of tailings is crucial to ensure the flocculation and settlement effect
of mine-filling systems.

In recent years, scholars at home and abroad have conducted various studies on the
sedimentation laws of ultrafine tailings. Jiao created a tailings sedimentation velocity model
through experiments and divided the tailings sedimentation process into the following
six stages: turbulent flow affected, accelerated sedimentation, final sedimentation velocity,
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interference sedimentation, compaction sedimentation, and ultimate sedimentation [9].
Yang conducted static flocculation sedimentation and slurry rheological test experiments
by investigating three factors, including the flocculant type, the volume fraction of the
feed, and the unit consumption of the flocculant [10]. Li conducted a static flocculation and
sedimentation experiment on ultrafine tailings and obtained the optimal flocculant unit
consumption as well as other parameters [11]. Xue performed deep-cone dense dynamic
sedimentation experiments to analyze the influence of the feeding speed, rake stirring
speed, and slurry mass fraction on the settlement behavior of flocs and obtained the op-
timal feeding and rake stirring speeds [12]. Wu studied various factors influencing the
flocculation and sedimentation processes through laboratory experiments and determined
the degree of influence [13]. Gheshlaghi M. E. and Ruan Z. E. applied numerical simulation
methods to study the flocculation and sedimentation behaviors of the tailings in a deep-
cone thickener [14,15]. Hou conducted scanning electron microscopy (SEM) observations
of tailings flocculation sedimentation samples, analyzed the particle size distribution of
tailings particles in different settlement areas, and explored the sedimentation character-
istics of tailings particles of various sizes [16]. Chen used SEM technology to analyze the
floc structures, explained the characteristics of the concentration distribution and gel point
concentration of the viscous sediment from the perspective of the floc microstructure, and
discussed common morphological pore parameters [17]. Yang used SEM to observe the
microstructure of the mortar in the compaction zone and found that the flocs had three
different forms of sedimentation, compaction, and stability, which were accompanied by
changes in the size of the flocs [18]. Hu analyzed the pore structure of the tailing fillings,
quantified the fractal dimension of the pores [19], and studied the relationship between the
grading index, pore structure, and strength.

The aforementioned studies show that laboratory experiments are an effective method
through which to examine the rules of tailings flocculation and sedimentation, while nuclear
magnetic resonance and micro-electron microscopy provide the possibility of investigating
the microstructure characteristics of tailings flocs during flocculation and sedimentation. In
this paper, laboratory experiments are used to study the flocculation and sedimentation
characteristics of ultrafine tailings in the Daye Iron Mine, and the microstructure character-
istics and floc parameters at different bed heights during flocculation and sedimentation
are analyzed through nuclear magnetic resonance (NMR) and micro-electron microscope
observations, respectively, thus providing a scientific reference for selecting the best type
of flocculant. This paper takes ultrafine iron ore tailings as the research object to conduct
experiments, and the research conclusions can provide a certain degree of reference and a
basis for other similar iron ore mines with the same grain size and chemical composition.

2. Materials and Methods
2.1. Physical and Chemical Properties of Ultrafine Tailings

Ultrafine tailings from the Daye Iron Mine were selected for the experiment. The
physical parameters are shown in Table 1, and the particle size composition is presented in
Figure 1. The figure shows that the gradation of ultrafine tailings is not particularly uniform.
Several coarse and fine particles are observed, and only a few intermediate particles are
found. The average median and surface area volume and average particle sizes of the
tailings were relatively small, belonging to the category of ultrafine particle tailings. The
tailings sorting coefficient was relatively large, making it suitable as a raw material for
downhole filling.

Table 1. Physical properties of ultrafine tailings from the Daye Iron Mine.

Median Size d50/µm
Mean Diameter of

Surface Area Volume
D(3, 2)/µm

Sorting Coefficient/S0

Specific Surface
Area by Weight
ω/m2/kg

37.925 14.319 5.595 6400
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Figure 1. Ultrafine tailings from the Daye Iron Mine: screening size statistics chart.

Table 2 shows that the main mineral components of the tailings are inert oxides SiO2,
TFe and SFe and contain active oxides, such as CaO, Al2O3, and MgO. Therefore, ultrafine
tailings are inert materials. However, these tailings have corresponding cementing activity
and can be stimulated for comprehensive utilization.

Table 2. Main chemical composition of Daye Iron tailings.

Component SiO2 TFe SFe CaO FeO Al2O3 MgO

Content (%) 26.30 20.79 20.02 12.45 10.90 6.07 5.55

2.2. Flocculant Parameters

Numerous studies have shown that anionic flocculants have superior flocculation
effects on tailings [20,21]. Therefore, the flocculants used in this article, namely AZ358,
AZ625, AZ9020, and AZ505, are all anionic. The relevant parameters are shown in Table 3.

Table 3. Technical flocculant index.

Type Experiment
Number Exterior Molecular

Weight/10,000
Solid

Content/%

AZ358 anionic L2 White particle 1400 ≥95.5

AZ625 anionic L3 White granules
or powder 1500–1600 ≥95

AZ9020 anionic L4 White granules
or powder 1500–1600 ≥95.5

AZ505 anionic L5 White granules
or powder 1600 ≥95

2.3. Experimental Program and Process

Regardless of the cross-effect between the ultrafine tailings concentration and the
additional amount of flocculant, the type of flocculant, unit consumption, concentration,
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and mixing time using a fixed ultrafine tailings concentration of 30% were determined
through indoor sedimentation experiments via the single-factor analysis method. The
research, experimental program, and process are shown in Table 4. The height and time
of the solid–liquid separation surface drop during the experiment were observed and
recorded, as shown in Figure 2.

Table 4. Experimental scheme and process of ultrafine tailings.

Experimental
Steps

Experiment
Code

Variable/Experiment
Number 1 2 3 4 5 Purpose

1 L Type Natural
setting AZ358 AZ625 AZ9020 AZ505 Determine the best

flocculant model

2 D Unit consumption 0 g/t 10 g/t 20 g/t 30 g/t 40 g/t
Determine the best unit

consumption of
the flocculant

3 N Concentration 0 0.05% 0.1% 0.2% 0.3% Determine the optimal
flocculant concentration

4 T Churning time 10 min 15 min 25 min 35 min 45 min Determine the best
flocculant mixing time
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Figure 2. Change process of the liquid surface settlement height of ultrafine total tailings flocculation
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2.4. Nuclear Magnetic Resonance (NMR) Analysis Experiment

The experimental system used for the NMR analysis in this experiment (MESOMR23-
060H-I, Suzhou, China), which has a hydrogen spectrum, is a kind of nuclear magnetic res-
onance effect of H−1 that can be used for nuclear magnetic resonance spectroscopy and has
the following parameters: resonance frequency: 23 MHz, magnet temperature: 25–35 ◦C,
temperature control accuracy: ±0.05 ◦C. The NMR spectrum is shown in Figure 3a.
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The flocculants AZ358, AZ625, AZ9020, and AZ505 were used to perform the floc-
culation and sedimentation experiments with a solution concentration of 0.3%, a unit
consumption of 30 g/t, and a stirring time of 45 min. The stirrer was taken out, and the
solution was allowed to stand, and it was then timed to observe the height of the clarified
layer in the cylinder. The flocculation solution was extracted at 200 mL of the graduated
cylinder after 30 min and was placed in a sealed glass bottle (Figure 3b). The experimental
system used for NMR analysis was also used for observation.

2.5. Micro-Electron Microscope Scanning Experiment (SEM)

For the SEM observation experiment, an SEM EVO 18 tungsten filament from Carl
Zeiss (ZEISS) was adopted, along with an image size of 1000 × 750 pixels and an accelera-
tion voltage of 20 kV.

SEM experiment 1©: Figure 3 shows the extraction of the four flocculant floc solutions
at a volume of 200 mL in a cylinder. This extraction was performed using a long pipette
according to the exact scale of the extraction floccules and by gently dropping the cut-out
on good filter paper. Liquid nitrogen freezing and fixed, conductive adhesive spraying
carbon treatment procedures, the prepared samples were into the micro-electron microscope
for scanning observation of the samples, and the electron microscope was operated at a
magnification of 2000 times.

SEM experiment 2©: The flocculant with the smallest porosity and fractal dimension
was selected to conduct the flocculation settlement experiment of the ultrafine whole
tailings a second time. The flocculant solutions at different bed positions (positions 1, 2, and
3, located at 300, 200, and 100 mL, respectively, in the measuring cylinder scale), such as
those shown in Figure 4, were extracted and prepared for use as SEM observation samples
according to the aforementioned method. The sample was observed by an operation
electron microscope with magnification of 2000 times.
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3. Results and Discussion
3.1. Flocculation Sedimentation Characteristics of Ultrafine Tailings
3.1.1. Analysis of the Influence of the Flocculant Type on the Settlement Effect

Figure 5a shows that the addition of a flocculant accelerates the sedimentation rate of
the ultrafine tailings solution in the early stages (within 60 min), and the declining height
of the clear layer of L4 is always lower than that of the four other groups (L1, L2, L3, and
L5). The maximum difference is 80 mm. Figure 5b reveals that the curve of the average
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settling velocity experienced two peaks: the first peak appeared within the first 3 min, and
the second peak appeared between 5 and 15 min. The calculation shows that the maximum
settlement velocity of L4 is K4 = 7.80 mm/min, which is higher than that of the other
groups. The limit concentrations of experimental groups L1, L2, L3, L4, and L5 after 24 h of
sedimentation were 60%, 58.48%, 58.82%, 58.03%, and 58.59%, respectively, which met the
mine-filling requirements for underflow concentrations. Experimental group L4 (AZ9020)
generally showed the best reduction in the maximum settlement velocity and in the 1 h
height of the clarification layer.
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3.1.2. Analysis of the Influence of the Flocculant Unit Consumption on the Settlement Effect

Figure 6a shows that the height of the clarified layer of the tailings solution at first
increased and then simultaneously decreased when the unit consumption of the flocculant
increased. The unit consumption of experiment D3 was 30 g/t, representing the best
consumption that was reached. Figure 6b indicates that the maximum settlement velocity
first increased and then decreased as the single consumption of the flocculant increased.
The single consumption in experiment D4 was 30 g/t, and the maximum settlement velocity
was 8.20 mm/min.
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3.1.3. Analysis of the Influence of Flocculant Concentration on the Sedimentation Effect

Figure 7a shows that the clarification layer height increases at the initial sedimen-
tation stage (0−10 min) as the concentration of the flocculant solution rises. The height
of the clarification layer is the largest at the initial sedimentation stage, when the exper-
imental N5 concentration is 0.3%, resulting in the best flocculation sedimentation effect.
Figure 7b shows that the average sedimentation velocity at each concentration reached its
maximum between 5 and 10 min, and the maximum appeared when the experimental N5
concentration was 0.3%, showing a height of 71.00 mm/min.
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3.1.4. Analysis of the Influence of Flocculant Stirring Time on the Settlement Effect of
Ultrafine Tailings

Flocculant AZ9020 was chosen under the 0.3% concentration solution and 30 g/t
unit consumption conditions (step 4). Figure 8a shows that the height of the clarified
layer increased under the same settling time conditions even though the stirring time
increased. Experiments T1, T2, and T3 revealed the presence of transparent floccules of
undissolved flocculant that were visible to the naked eye, indicating that the flocculant was
only partially dissolved in the water at this time and that the concentration did not reach
0.3%. Figure 8b shows that the clarified liquid height curve is close to the curve when the
flocculant concentration is 0.05% when the stirring time is 15 min and that the curve is close
to the curve when the concentration is 0.20% and at the stirring times of 25 and 35 min. To
achieve an improved settling effect, the stirring time should be more than 45 min.

3.2. Microscopic Characteristics of Floc Structure of Ultrafine Tailings

In order to study the flocculation effect of different flocculants from the microscopic
point of view further, nuclear magnetic resonance analysis was used to observe all of the
tailings flocculant solutions formed by the different flocculants and to analyze the porosity
and other microscopic parameters of the flocculant solutions.

3.2.1. Analysis of Pore Distribution Characteristics of Ultrafine Tailing Flocculent Solution

The pore size distribution curve of the flocculation solution under the four flocculants
is shown in Figure 9a based on the NMR detection and analysis. The spectrum is shown in
Figure 9b.
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times (AZ9020) (a) Different mixing time (b) Different mixing time and concentration.
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Figure 9 reveals that the pore size distribution of the floc solution under the AZ359,
AZ625, and AZ505 flocculants is only slightly different. The main peaks are at the same po-
sition, and the width of the pore size distribution is insignificantly different. The two main
peaks appear at 0.01−0.1 µm. The main peak at 0.1−1 µm and the width of the pore size
distribution are both large, indicating that the flocs with a pore size larger than 0.1 µm
account for a substantial proportion and that the size of the floc structure is also large.

The pore size distribution of the AZ9020 flocculant was significantly different from that
of the other flocculants. The two main peaks were located at 0.01 and 0.1 µm. The largest
main peak appeared at 0.01 µm, and the pore size distribution between 0.01 and 0.1 µm
was also large, indicating that the flocs with a pore size smaller than 0.1 µm accounted for
a substantial proportion. The results show that the flocs were small in size and that the
whole solution was homodispersed. Solutions that were formed by adding the flocculants
had a certain proportion of particles with a small pore size.

Research shows that the tightness of the material structure is negatively related to the
porosity [22]; that is, a smaller porosity leads to a tighter material structure. The porosities



Minerals 2022, 12, 221 9 of 15

of the flocculation solution corresponding to flocculants AZ358, AZ625, AZ9020, and AZ505
are 35.96%, 38.84%, 32.65%, and 37.37%, respectively. Among these solutions, the porosity
of the flocculation solution corresponding to flocculant AZ9020 is the smallest. Flocculant
AZ9020 has the best flocculation and sedimentation effects under the tailings concentration,
the amount of additional flocculant, and the concentration.

3.2.2. Fractal Characteristics of Floc Structure of Ultrafine Tailings

The SEM images are shown in Figure 10 and were obtained through the scanning
experiment 1© using the electron microscope. The dark parts of the figure represent the
pores, and the other parts represent the floc structure.
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Figure 10. SEM images of specimens with different floc structures of flocculant ultrafine tailings.

Ultrafine tailings flocculation is under the action of Brownian motion and turbulence,
in which the tailings particles collide with the flocculant and combine to form irregular
clusters with fractal characteristics. The fractal dimension is important to characterize the
fractal characteristics of the flocculation index, which can quantitatively describe the floc
structure [23,24]. Take N (N = 1, 2, 3, ...) squares with side length r to divide the image.
The divided areas do not overlap, and the area containing the flocs is denoted as N(r).
Formula (1) is then established as follows:

N(r) = 1/rD (1)

Formula (2) is obtained after taking the logarithm:

D =
lgN(r)
−lgr

(2)

where D represents the fractal dimension.
The quantitative analysis based on the SEM scanning images reveals that image

binarization work is the basis for obtaining fractal analysis. Binarization is also called
threshold segmentation. Binarization is the process of setting the pixels of an image to
0 or 255 and then presenting the entire image with a clear black and white effect. Thus,
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binarization is essentially the process of classifying each pixel. Assuming that the size of
the SEM picture is M × N, f (x, y) represents the gray value of the pixel in the (x−1)th row
and (y−1)th column of the image, where 0 ≤ x ≤ M, 0 ≤ y ≤ N, and x, y are integers. The
principle of the gray-scale image binarization process is then presented as follows:

f (x, y) =

{
1, f (x, y) ≥ T

0, others
(3)

where T refers to the threshold. All pixels in the overall image are either black or white
after the binarization process. The binarization of the image markedly reduces the amount
of data in the image, thus making the contour of the target prominent. Figure 11 shows
the binarized image obtained after processing the SEM image, and Figure 12 reveals the
obtained fractal characteristic curve.
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Figure 11. Binary image of tailings flocculation with different flocculants.

The calculated fractal dimensions of the samples under the four flocculants are 1.887,
1.894, 1.903, and 1.914. The largest fractal dimension indicates the compact flocs and the
large molecular weights of the flocculants, which are conducive to rapid sedimentation from
the water. A small particle spacing inside the flocs results in substantial differences between
the densities of the flocs and the liquid, and large sedimentation speeds facilitate improved
flocculation effects [25]. The fractal theory indicates that the order of the flocculation effects
of the four flocculants is as follows: AZ9020 > AZ625 > AZ505 > AZ358. Flocculant AZ9020
has the best flocculation and sedimentation effects for ultrafine tailings.

3.3. Microscopic Characteristics of Floc Structure of Ultrafine Tailings

In this experiment, scanning electron microscopy was used to observe the different po-
sitions of the whole tailings floc solution formed by the same flocculant (AZ9020) to analyze
the spatial morphological characteristics and microscopic parameters of the floc structure.
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Figure 12. Fractal characteristic curve of floc structure: (a) AZ358, (b) AZ505, (c) AZ625, and
(d) AZ9020.

3.3.1. Analysis of the Particle and Morphological Characteristics of Tailings Floccules

SEM images of different sedimentation bed heights of flocculant AZ9020 were ob-
tained through the scanning electron microscope experiment 2©, and the tailings flocs were
acquired through binarization processing, image contour perfection, edge detection, and
boundary discrete-point sealing treatment [26–29]. The block area is shown in Figure 13.
The white part in the picture is the tailings flocs, and their outlines are clearly demonstrated.
The particles of tailings flocs of various bed settlement heights show different characteris-
tics. The upper tailings are dispersed, the size of the middle tailings is obviously larger,
and the lower tailings become denser as a whole.
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The equivalent diameter of the floc was obtained in accordance with the enclosed area
delineated by the selected floc profile, and the normal distribution curve of the tailings floc
size was acquired as shown in Figure 14. The figure reveals the following: the upper part of
the small-sized flocs accounted for a large proportion of the solution and were concentrated
between 5 and 18 µm; the middle part of the flocs increased in size and were distributed
between 10 and 30 µm; the lower part of the large-sized flocs accounted for substantially
concentrated distributions between 20 and 60 µm. The average equivalent diameters of
the upper, middle, and lower tailings floccules were 10.55, 16.2, and 38.79 µm, respectively.
The diameter of a tailings floc is positively correlated with the settlement height.
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3.3.2. Analysis of Gray-Scale Characteristics of Ultrafine Tailing Floc Structure

The gray value refers to the dark range of the image, where the white value is 255,
and the black value is 0, which can intuitively represent the difference between pores and
entities [30]. The original SEM images obtained from the scanning electron microscope
2© experiment are analyzed on the basis of the following gray-scale characteristics:

Figure 15a shows that the gray value of flocs at the top of the settlement bed is
approximately 180, and the gray value of only one pore is below 50, with an average
gray value of 112. Figure 15b reveals that the gray value of the flocs in the middle is
approximately 110, with an average gray value of 78. Figure 15c shows that the gray value
of the flocs at the bottom is lower than 130, and the gray value of most pores is lower
than 50, with an average gray value of 52. Thus, the average gray value of flocs decreases
with the bed height. This finding indicates that the water content of the upper flocs is
high, and the flocs are bright white. The internal water is constantly drained during the
floc sedimentation process, the flocs gradually become dark, and the gray value slowly
decreases, thus forming a high concentration of ultrafine total tailings floc solution.
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3.3.3. Analysis of the Spatial Morphology of the Ultrafine Tailings Floc Structure

The different gray values of the original SEM images obtained by SEM experiment (2)
were defined as yellow, green, cyan, and blue, and the gray values of some regions were
extracted and converted into 3D graphics [31–33], such as those shown in Figure 16. The
upper part of the bed settlement (Figure 16a) reveals that the size of flocs is large, most of
which are over 20 µm. Moreover, the distribution is concentrated, and macropores that are
10 µm in size are found. The middle of the bed settlement (Figure 16b) shows that the size
of flocs ranges from 15 µm to 20 µm, and the pore size is evenly distributed. The lower part
of the bed settlement (Figure 16c) demonstrates that the size of most flocs ranges from 3 µm
to 10 µm and that there are many small flocs and a relatively increased number of pores
distributed around the flocs. The flocs were also evenly distributed. The size of tailings
flocs decreased as the settlement height decreased. This finding indicates that large-sized
flocs gradually settle, dehydrate, and disperse into small-sized flocs during the flocculation
and sedimentation processes, forming a uniform and dense floc pore structure.
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Figure 16. SEM image of tailings floccules of AZ9020 flocculant: (a) location 1; (b) location 2;
(c) location 3.

4. Conclusions

The flocculation and sedimentation characteristics of ultrafine tailings were studied in
this paper through indoor sedimentation experiments, NMR analysis, and micro-electron
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microscope scanning observations. A reasonable type of flocculant was selected, and
the microscopic characteristics of the floc structure in the flocculation and sedimentation
processes were analyzed. The main conclusions are as follows:

(1) The sedimentation characteristics of ultrafine tailings under different types of floc-
culants were studied by indoor flocculation sedimentation experiments, NMR monitoring
and analysis, and scanning electron microscope observations. The results indicate that the
optimal additional flocculant amount of ultrafine tailings from the Daye Iron Mine was
30 g/t, and the optimal concentration for the flocculant solution was 0.3%. The flocculant
was completely dissolved when the flocculant was stirred more than 45 min, and the
flocculation sedimentation effect was optimal under these conditions.

(2) The analysis of the pore distribution and fractal characteristics of the ultrafine
tailings flocculation solution revealed that the size of flocs in the ultrafine tailings floccula-
tion solution formed by the AZ9020 flocculant was less than 0.1 µm and that the overall
structure size was small and evenly dispersed. The flocculant solution had the smallest
porosity, the largest fractal dimensions, and the most compact flocs, indicating that it had
the best flocculant sedimentation effect.

(3) The analysis of the spatial morphology and gray-scale characteristics of the ultrafine
total tailings flocs showed that the average gray-scale value and size of the flocs decreased
as the height of the flocculation sedimentation bed decreased. In the flocculation and
sedimentation processes, the large-sized flocs gradually dehydrated and dispersed into
small-sized flocs, forming a more uniform and compact pore structure for the flocs.
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