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Abstract: The stability of underground goaf in filling mining is dominated by the interaction mecha-
nism of the backfill-surrounding rock combination. In order to investigate the interaction mechanism
and failure characteristics of the backfill-surrounding rock combination, backfill-red sandstone com-
binations with three different cement–sand ratios were prepared for uniaxial compression tests. The
deformation and failure characteristics of the specimens were analyzed. It was found that at the
cement–sand ratio of 1:4, the backfill and red sandstone interacted with and restricted each other,
and the through cracks appeared in the whole specimens, which indicated that the backfill and
red sandstone can jointly resist external loads and play a role in common bearing. However, with
the decrease of the cement–sand ratio, the stress mainly acts on the backfill, and the deformation
observed in the backfill is large while there is no obvious rupture in the rock. Based on the failure
characteristics and the stress–strain curves of the specimens, the damage constitutive relationship
that can describe the failure process and deformation characteristics is proposed. Correlated with
the experiment results, the damage constitutive equation is established in three stages including
compaction pre-synergy stage, quasi-elastic synergy deformation stage and rupture deformation
stage. The failure characteristics observed in each stage are analyzed. The research results are of
great significance to accurately understanding the interaction between backfill and surrounding rock,
which can be used to design and select the mixture ratio of the filling materials.

Keywords: backfill-red sandstone combination; uniaxial compression test; stress–strain curve;
synergistic deformation and failure characteristics; damage constitutive model

1. Introduction

Deep mining is one of the major technical issues faced by the mining industry. With
the increase of mining depth, the ground pressure and roadway offset increase resulting in
frequent occurrence of rock burst, which significantly increases the difficulties in maintain-
ing the stability of roadway and stope. The filling mining method is more and more widely
used for its high resource recovery rate, which also effectively prevents roof caving and
stope collapse, as well as meets the requirements of green mine construction. In the process
of underground filling, the surrounding rock and filling form a kind of heterogeneous, dis-
continuous and nonlinear special support. The surrounding rock and filling work together
to bear the load of overburden, which has complex mechanical properties and deformation
and failure mechanisms [1–3]. Therefore, it is necessary to establish the common bearing
mechanical model of backfill-surrounding rock combination (BSRC) and study the damage
evolution characteristics of surrounding rock and backfill after reasonable matching, which
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has an important reference value for exploring the damage and failure mechanism of the
BSRC model in deep mining.

In order to improve the safety of underground filling mining areas, a lot of research
on the mechanical properties, loss and failure characteristics of rock and backfill have been
carried out world widely [4–7]. In terms of rock damage and failure, many scholars have
analyzed the damage evolution in the process of rock deformation, and failure through
experimental means and established constitutive models [8–11]. Bustamante et al. [12]
proposed a nonlinear constitutive relation to simulate the properties of sandstone and
studied the compressional and shear wave properties of rock under compression, finding
that the compressional wave velocity is related to the compressive load. Zhao et al. [13]
discussed the fracture toughness and subcritical crack propagation of rock under different
environments, established a simple and practical rheological fracture model of rock crack
and proposed a modified shear strength model of filled joint. Shahin et al. [14], based on
viscoelastic and nonlinear dynamics, gave a mechanical interpretation of compaction creep
and defined a constitutive operator to describe the evolution of compaction creep, so as to
evaluate the spontaneous accumulation of pore collapse in the active compaction zone. In
addition, by comprehensively considering the effects of damage threshold and residual
strength, the Drucker Prager criterion, Harris function, Nishihara shear creep model and
Burgers shear creep model of rock micro unit strength were improved; the deformation
characteristics and long-term shear strength of rock during creep were analyzed, and
the statistical constitutive models of rock damage and strain softening were established,
respectively [15–19]. In terms of backfill, many scholars have conducted a lot of research
on the properties and failure modes of filling materials [20,21]. Shahsavari et al. [22]
considered the different behaviors and irreversible thermodynamics of concrete in tension
and compression, decomposed the Gibbs potential energy of concrete into three parts,
elasticity, damage and healing, and obtained the evolution equation of damage and healing
variables by using Clausius Duhem inequality. In addition, lots of laboratory tests on filling
materials with different lime sand ratio have been conducted. Based on the experimental
results and damage mechanics theory and combined with the research results of fracture
characteristics of different filling materials, the defect coupling constitutive models based
on continuous damage mechanics were established [23–25]. With the wide application
of filling mining method, the existing research on the deformation and failure of filling
material and backfill under load is also more in-depth.

The above studies only focus on the damage evolution process of rock or backfill under
different conditions. Considering that in the process of underground filling, the backfill
is greatly affected by confining pressure from the surrounding rock. Koupouli et al. [26]
showed that the interface of backfill with low cement content showed strain hardening
behavior, and the shear strength between backfill and surrounding rock was affected by
cohesion and internal friction angle. Fang et al. [27] experimentally studied the influence of
different curing temperatures on the shear behavior and strength of the CPB-rock interface
and found that higher curing temperature could improve cement hydration and self-drying
rate, thus increasing the peak shear stress at the interface between CPB and rock in the early
stage. Falaknaz et al. [28] used the numerical simulation method to create the response
of two adjacent filling stopes. Based on the explicit relationship between Poisson’s ratio
and the friction angle in the backfill, the stress state of the filling stope was changed. The
simulation results expressed in stress, displacement and strain explained the influence
of different parameters and evaluated the interaction between the filling material and
surrounding rock to ensure the safe application of the filling material. The above research
on the combined action of surrounding rock and backfill mainly involved their mechanical
action mechanism and only studied the failure law, without considering the synergistic
effect, and thus the damage constitutive model was established [29–32]. The surrounding
rock and backfill were regarded as independent individuals and studied their roles under
different combination structure modes, respectively. However, under the action of load,
the surrounding rock and backfill form a composite by compression contact coupling. The
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properties and strength of the two materials are different, and the deformation and failure
mode and law will inevitably change.

In this study, the backfill-red sandstone combination is prepared by red sandstone and
full tailings cemented backfill with different cement–sand ratios. The uniaxial compression
tests are carried out, and the deformation and failure characteristics of the composites in the
uniaxial compression process are analyzed. The appropriate cement–sand ratio to realize
the synergy between red sandstone and backfill is obtained. According to the stress–strain
curve of the specimens during the compressing process, the damage constitutive relation-
ship of the backfill-red sandstone combination under uniaxial compression is analyzed.
Combined with the damage constitutive and elastic–plastic theory, the damage process is
divided into three stages including compaction pre-synergy stage, quasi-elastic synergy
deformation stage and rupture deformation stage. The damage constitutive model of the
backfill-red sandstone combination is established which is able to describe the damage
evolution law of the synergistic action between the surrounding rock and backfill. The
obtained results provide an important reference value for improving the damage theory
and failure mechanism of interaction between surrounding rock and backfill.

2. Experiment
2.1. Experimental Materials
2.1.1. Tailings

The tailings selected as aggregates in this research were collected from an iron mine
in Shaanxi, China. The main chemical compositions of tailings obtained through analysis
are shown in Table 1. The main chemical compositions are Fe2O3 and SiO2, accounting for
88% of the total solid weight. The content of SiO2 is 67.72%, indicating that the tailings are
high-silicon iron tailings.

Table 1. Composition of iron tailings.

Composition SiO2 Al2O3 Fe2O3 CaO MgO Na2O Other

Content (%) 67.72 2.05 20.65 4.66 3.16 0.5 1.26

The particle size distribution is illustrated in Figure 1. The average particle size of
the tailings d50 is 86.40 µm, the non-uniformity coefficient Cu is 5.70, and the curvature
coefficient Cc is 1.39, indicating that the iron tailings have good gradation, compaction and
mechanical properties.
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Figure 1. Particle size distribution of the tailings.

2.1.2. Backfill Material

The backfill materials are composed of iron tailings, P.O42.5 cement and city tap water.
P.O42.5 cement is used as gelling agents in the experiment. By adjusting the quality of
cement, iron tailings and water, the filling slurry with different cement–sand ratio can
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be prepared. The backfill samples were selected with different cement–sand ratios (1:4,
1:6, and 1:8, respectively), and material concentration of 80%. According to the designed
material ratio, three specimens with the same cement–sand ratio were in each group, and
three groups of nine standard cylindrical specimens with dimensions of 50 and 100 mm in
diameter and height were prepared. Nine specimens were marked and placed in a curing
box for curing for 28 days with the curing temperature of 20 ± 5 °C and relative humidity
of 95% ± 5%. Then, the backfill specimens were taken out for UCS test. The strength
characteristics of specimens are shown in Table 2. With the change of the cement–sand
ratio, there is an obvious gradient change in the compressive strength of the backfill. The
strength of the backfill increase with the increase of the cement–sand ratio. The larger the
cement–sand ratio, the higher the strength of the backfill.

Table 2. Strength characteristics of backfill.

No. Solid Content /wt% Cement–Sand Ratio UCS (MPa) Elastic Modulus (GPa)

B4-1

80

1:4 6.41 1.09
B4-2 1:4 6.47 1.12
B4-3 1:4 6.93 1.14
B6-1 1:6 4.21 0.46
B6-2 1:6 4.52 0.62
B6-3 1:6 4.46 0.57
B8-1 1:8 3.34 0.25
B8-2 1:8 3.36 0.27
B8-3 1:8 3.07 0.19

2.1.3. Red Sandstone

The surrounding rock in this research was red sandstone with good uniformity. The
average density of red sandstone is 2132 kg/m3; the uniaxial compressive strength (UCS)
of red sandstone cylinder specimen with 50 mm in diameter and 100 mm in height is
22.39 MPa (average value).

By comparison, it is observed that there is a large difference in uniaxial compressive
strength between the red sandstone and backfill. The backfill-red sandstone combination
specimen is composed of two materials with different strength. How to realize a syner-
gistic effect between two different materials with large strength difference is the focus of
this paper.

2.2. Specimen Preparation

In strict accordance with the standard for test methods of engineering rock mass, code
for rock test of water conservancy and Hydropower Engineering (DL/t5368-2007) and the
standards recommended by the international society of rock mechanics, the red sandstone
is prepared into a standard cylindrical sample with a diameter of 50 mm and a height of
50 mm, as shown in Figure 2a. The full tailings from iron ore, cement and water were
used to make the slurry with a cement–sand ratio of 1:4, 1:6, 1:8 and mass fraction of 80%.
The standard red sandstone sample (Φ 50 mm × H 50 mm) was placed in cylinder mold
with size Φ 50 mm × H 100 mm, and then, the evenly stirred filling slurry with different
proportions was slowly injected into the cylinder mold until the liquid level was flat with
the mold, as shown in Figure 2b. After the filling slurry was fully cemented and solidified,
the surface was troweled. Then, the prepared composite specimens were placed in the
standard curing box for curing for 28 days. The curing environment was the same as in
the backfill experiment. In total, 3 groups of backfill-red sandstone combination specimens
with different cement–sand ratio were finally prepared, as shown in Figure 2c.

2.3. Testing Procedures

The microcomputer controlled electro-hydraulic servo universal testing machine after
improvement was used for the uniaxial compression test, and the loading adopted dis-
placement control mode, as shown in Figure 3. The composite specimen was placed on
the pressure plate. Due to the different material properties of the backfill body and red
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sandstone, the strain gauges were pasted on the backfill and red sandstone, respectively, to
collect the strain data of the two parts. The attached positions are shown in Figure 3. (Strain
gauge BFH120-10AA-D150, sensitivity coefficient 2.0 ± 1%, resistance 120 Ω). The strain
gauges were connected to the strain measuring instrument to obtain the strain data during
the compression process of the specimen. The strain instrument transmitted data to the
computer to obtain the actual stress–strain curve of the composite specimen. During the
loading process, especially near the peak failure, the failure process was carefully observed
and photographed. When the specimen entered the residual strength stage, it could be
seen that with the increase of strain, the stress remained basically unchanged, and the
test stopped.
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The mechanical parameters obtained from the uniaxial compression test are shown
in Table 3. σp and σr represent the peak stress and residual stress, respectively. εp and
E represent the peak strain and elastic modulus. The variables of σp, σr, εp and E were
obtained from the stress–strain curves. The elastic modulus E is defined as the tangent of
the secants corresponding to 30%–60% of the peak stress [33].

Table 3. Mechanical parameters of backfill-red sandstone combination specimens.

Composite Specimen Solid Content /wt% Cement–Sand Ratio σp (MPa) σr (MPa) εp E (GPa)

HB4-1

80

1:4
9.32 4.08 1.09 × 10−3 8.95

HB4-2 9.88 4.13 1.16 × 10−3 9.45
HB4-3 10.29 4.08 1.39 × 10−3 10.77
HB6-1

1:6
7.44 3.57 2.03 × 10−3 4.58

HB6-2 5.40 3.46 2.06 × 10−3 2.43
HB6-3 6.32 3.46 2.03 × 10−3 3.34
HB8-1

1:8
5.55 / 2.26 × 10−3 2.57

HB8-2 5.40 / 2.18 × 10−3 2.48
HB8-3 4.48 / 2.11 × 10−3 2.28
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3. Results and Analysis
3.1. Stress–Strain Curves

Due to the different material properties of the backfill and red sandstone, the strain
gauges were pasted on the backfill and red sandstone, respectively, to collect the strain
data from the two parts. The stress–strain curves of the backfill and red sandstones were
obtained in the uniaxial compression tests, as shown in Figures 4–6. The different lines
in the stress–strain curves represent different parts of the specimens rather than different
materials. The red line represents the stress–strain curve drawn by the data collected from
the strain gauges affixed to the red sandstone during loading, while the blue line is the
stress–strain curve drawn by the data from the strain gauges on the upper backfill. The
gray line represents the synthesis of the two parts, namely, the stress–strain curve of the
backfill-red sandstone composite specimen from the load equipment.
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The stress–strain curves of the specimens with the cement–sand ratio of 1:4 (HB4) in the
uniaxial compression tests are displayed in Figure 4. According to the stress–strain curves,
the failure process could be separated into several stages. The first stage is compaction
pre-synergy stage. During this period, the microcracks or gaps in the composite are
continuously compacted with the strain increased rapidly for both the backfill and red
sandstone. With the continuous increases of axial load, there is an obvious inflection
point in the stress–strain curve of the specimen; the value of this inflection point is about
three quarters of the compressive strength of the backfill with cement–sand ratio of 1:4.
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The reason for this phenomenon is that there is an interface between the backfill and
red sandstone, which is different from the complete rock sample, resulting in the plastic
yield of the upper backfill under load. This stage is also a key preparation stage for the
synergy between the upper backfill and the lower red sandstone. The second stage is
the quasi-elastic synergy deformation stage. It occurs between the inflection point in the
previous stage and the peak stress. At this stage, the stress–strain curve of the specimen
is approximately linear. The reason for this phenomenon is that the upper backfill and
the lower red sandstone basically achieve synergy. The upper backfill and the lower red
sandstone bear the load together. The third stage is the rupture deformation stage. After
reaching the peak stress, the stress decreases rapidly while the strain increases rapidly. The
curve shows an obvious parabolic shape. At this stage, the upper backfill and the lower
red sandstone fully realize the synergistic support. The micro ruptures in the composite
continue to expand, producing new ruptures and large through ruptures in the specimens.
During this process, the strength of the composite specimens did not completely lose.
The bearing capacity gradually decreased with the increase of strain, showing an obvious
softening phenomenon.

The deformation trends of the curves in Figure 4 are consistent, the failure modes of
the upper and lower components of the backfill-red sandstone combination specimens are
basically the same, and the shear failure occurred in both the red sandstone part and the
backfill part. This observation indicated that the upper backfill and the lower red sandstone
can achieve coordinated deformation and jointly resist damage. In the compaction pre-
synergy stage, due to the interface between the upper backfill and the lower sandstone,
there is an obvious inflection point in the stress–strain curve. At this stage, the upper backfill
first reaches plastic yield, but there is no crack on the surface. Therefore, in the next stage,
the synergistic effect between the upper backfill and the lower red sandstone is obvious, the
stress–strain curve is approximately linear, and the stress increases continuously with the
increase of strain. After reaching the peak value, the composite specimen produces through
cracks as a whole, and the stress does not decrease rapidly, but there is a small section
of basic stability maintenance state, at which time the strain continues to increase. With
the continuous increase of load, the strain continues to increase, while the stress begins to
decrease rapidly, and finally reaches the residual strength of the specimen.

The stress–strain curves of the specimens with the cement–sand ratio of 1:6 (HB6) are
shown in Figure 5. Due to the huge difference in the deformation between the backfill and
red stone, the upper backfill and the lower red sandstone failed to realize the overall synergy
resistance during the compression tests. Therefore, compared with the 1:4 composite
specimens, there is no obvious inflection point in the stress–strain curve. Additionally, after
reaching the peak stress, only the upper backfill breaks and produces plastic deformation.
During the loading process, due to the large deformation of the upper backfill, there was
no obvious through rupture in the lower red sandstone, which indicated the failure mostly
occurred in the backfill parts.

Figure 6 shows the stress–strain curve of the specimens with the cement–sand ratio of
1:8 (HB8) under uniaxial compression. The deformation process of the composite specimen
is similar to that of HB6. With the continuous application of load, the strain increase
rate is significantly greater than the stress increase rate, and the stress–strain curve of the
backfill part basically coincides with the stress–strain curve of the composite specimen.
The stress–strain curve of the lower red sandstone is obviously different from that of the
backfill. During the loading process, the deformation of the backfill is large. After the stress
reaches the peak value, there is a step decline and obvious plastic deformation, which
further shows that the load mainly acts on the backfill. The experiment ended with the
destruction of the backfill without obtaining the residual strength of combination.

Comparing the variation characteristics of stress–strain curves of the specimens with
three different cement–sand ratios, it can be found that the strain of red sandstone gradually
decreases with the decrease of the cement–sand ratio. When the cement–sand ratio is 1:8,
the failure of red sandstone at the bottom of the composite is not obvious. The strain of the
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backfill gradually increases with the decrease of the cement sand ratio. The final stress and
strain mainly act on the backfill, and the main damage of the composite is the backfill.

3.2. Macroscopic Failure Patterns

Three composite specimens with the most representative failure characteristics are
selected from nine specimens, as shown in Figure 7. Figure 7a shows the macroscopic
failure phenomenon of composite specimen HB4-3. It is obvious that the cracks occur in
both the backfill and red sandstone. The backfill first has cracks and large deformation.
With the continuous increase of stress, the red sandstone splits after reaching the peak,
indicating that the backfill limits the evolution of rock displacement and damage to a certain
extent. Figure 7b shows the macroscopic failure phenomenon of the composite specimen
HB6-1. Cracks first appear in the backfill and extend downward to the contact surface.
The edges and corners of red sandstone specimens are slightly damaged, and the cracks
in the upper backfill are further expanded and damaged, finally showing a “V” rupture.
Figure 7c shows the macroscopic failure phenomenon of composite specimen HB8-1. With
the continuous increase of load, the red sandstone was not damaged, but the backfill was
seriously damaged, and finally the occurrence of failure was “flaking”.
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3.3. Deformation and Failure Characteristics

The backfill-red sandstone combination is composed of two different materials, which
is different from the intact rock or backfill, and its bearing mechanism is different. When
the composite specimen is subjected to load, the two materials interact and restrict each
other. Nine stress–strain curves are summarized and analyzed, and three groups of typical
stress–strain curves of backfill-red sandstone combinations with different ratios are ob-
tained, as shown in Figure 8. It can be seen that the peak strength of backfill-red sandstone
combination specimens decreases with the decrease of the cement–sand ratio. The residual
strength of HB4 is large. At the cement–sand ratio of 1:4, the red sandstone and the backfill
jointly resist the external load, and the stress continues to increase with the increase of
strain. For the composites HB6, the residual strength is smaller. With the increase of load,
the strain increases rapidly, but the strain of the lower part of the red sandstone increases
slowly and remains constant after reaching the peak. Therefore, the red sandstone part has
not undergone large deformation, which shows that the strength of the backfill under this
cement–sand ratio fails to match well with the red sandstone, and the synergy cannot be
realized. At the cement–sand ratio of 1:8, the load completely acts on the backfill, and the
strain of the red sandstone almost tends to zero. The stress–strain curve of composite speci-
men with the cement–sand ratio of 1:8 can be approximately regarded as the stress–strain
of the backfill. The difference in the mechanical properties and failure patterns of the
specimens suggest that it is necessary to reasonably optimize the cement–sand ratio of the
backfill to realize synergy support of the red sandstone and the backfill.
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Figure 8. Comprehensive stress–strain curves of backfill-red sandstone combination specimens with
different cement–sand ratios.

4. Synergy Support Damage Constitutive Model

According to the stress–strain curves as well as failure characteristics of the speci-
mens, it is found that at the cement–sand ratio of 1:6, the upper backfill is completely
destroyed, while the lower red sandstone corner is slightly damaged. The backfill and
red sandstone cannot achieve the role of synergy support. When the cement–sand ratio
is 1:8, the stress–strain curve of the upper backfill part basically coincides with the com-
posite specimen. The main damage of the composite is the backfill while the lower red
sandstone is almost not damaged. The overall compressive strength and elastic modulus
are small, and the backfill and red sandstone fail to achieve synergy support. Only when
the cement–sand ratio is 1:4, the cracks occur in both the backfill and red sandstone. The
composite specimens composed of red sandstone and backfill realize the synergy support
and common bearing.

For the backfill-red sandstone combinations with the cement–sand ratio of 1:4, the
loading damage can be equivalent to the coupling of two damage states of backfill and red
sandstone. The first part is the damage state of the initial backfill, that is, the initial damage
caused by the initial defect on the upper part of the delamination plane. The second part
is the common damage state of the backfill and the loading of red sandstone part, that is,
the damage caused by the continuous loading of the backfill-red sandstone combination.
The third part is that the backfill and red sandstone bear together until damage and
rupture expansion occur. Layered structure and load weaken the cohesion of materials with
different mechanical mechanisms. Combined with the damage and failure characteristics
of backfill-red sandstone combination specimens, the uniaxial compression failure process
can be divided into three stages: compaction pre-synergy stage (OA), quasi-elastic synergy
deformation stage (AB) and rupture deformation stage (BC) (Figure 9).
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4.1. Constitutive Model in Compaction Pre-Synergy Stage (OA)

From a macroscopic point of view, the backfill-red sandstone combinations did not
rupture at the beginning of the loading process. However, it can be found that due to
the mutual bonding between the upper backfill and red sandstone, the microcracks at the
contact surface between the backfill and the rock compacted rapidly. With the increase of
strain, the stress obviously shows a non-linear elastic rise. At this time, the microcracks in
the upper backfill are slowly compacted with the increase of load, and the micro elements in
the internal structure of the backfill are damaged. With the continuous increase of stress, the
composite specimen enters the non-linear elastic failure stage, and the stress–strain curve
shows the OA segment, which is called the compaction pre-synergy stage. According to
experimental data and stress–strain curve, it is identified that there is a certain relationship
among the elastic modulus of the backfills, red sandstone and the combinations. In practical
engineering, the elastic modulus of the backfill after curing and consolidation is lower than
red sandstone. At this time, the main function of the backfill is to transfer load. Therefore,
the concept of relative contribution degree is introduced to preprocess the initial weight
of elastic modulus of red sandstone and backfill, that is, the contribution degree η is set.
According to the bearing capacity characteristics of red sandstone and backfill during
loading, the response model of their elastic modulus during initial loading is obtained:

E0 = η1Ec + η2Eh (1)

where E0 is the initial elastic modulus of the combination; η1 is the relative contribution
of backfill; η2 is the relative contribution of red sandstone; Ec is the elastic modulus of the
backfill; Eh is the elastic modulus of red sandstone.

Under load, the deformation mechanism of the internal meso element of the combi-
nation specimen is complex. The damage theory is introduced to characterize the change
law of the meso element. At this stage, the meso element strength of backfill-red sand-
stone combination specimen tends to follow Loland damage model [34]. Under the action
of continuous load, the relationship between stress and strain of the OA segment can
be obtained:

σ̃ =
E0ε

(1− D0)
=

(η1Ec + η2Eh)ε

(1− D0)
(2)

where σ̃ is the effective stress; ε is strain; D0 is the initial damage, and the specimen
has certain damage before loading. Because the current technical conditions cannot well
measure the damage in the initial stage, it is considered that D0 = 0.

Therefore, the damage constitutive model of the OA segment can be obtained as follows:

σ = σ̃(1− De) (3)

where De is the damage variable of the OA segment.
According to the stress–strain curve of the OA segment, the microcracks in the backfill

are closed under the action of load, resulting in micro element structure damage. The
damage value De is expressed as:

De = D0 + Cεβ (4)

where C and β are the backfill material parameters.
Based on the stress–strain curve and the boundary conditions:

(i) ε = εp, σ = σp; (ii) ε = εp,
dσ

dε
= 0 (5)

The constant C, β is

C =
1− D0

1 + β
εp (6)
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β =
σp

(η1Ec + η2Eh)εp − σp
(7)

4.2. Constitutive Model in Quasi-Elastic Synergy Deformation Stage (AB)

Under the action of continuous load, the backfill-red sandstone combination has no
macro rupture. At the micro level, the internal deformation and failure of the upper backfill
occurred slowly. The internal structure of the lower red sandstone is also damaged, result-
ing in micro element damage. The backfill-red sandstone combination is like linear elastic
deformation, and its internal original damage begins to intensify and evolve until it exceeds
the peak stress failure. The stress–strain curve shows the AB segment, which is called the
quasi-elastic synergy deformation stage of backfill and red sandstone. Considering the
contribution of backfill and red sandstone to the composite, the response model of elastic
modulus at this stage is obtained:

Ep = η′1Ec + η′2Eh (8)

where Ep is the peak elastic modulus of composite; η′1 is the relative contribution of backfill
in the AB segment; η′2 is the relative contribution of red sandstone in the AB segment.

According to the stress–strain curve of the AB segment, the damage constitutive model
of stress and strain can be obtained:

σ = Epε(1− Dp) =
(
η′1Ec + η′2Eh

)
ε(1− Dp) (9)

where ε is the strain of the composite specimen in section AB; Dp is the damage variable of
the AB segment.

At this stage, the micro element strength of backfill-red sandstone combination speci-
men obeys Weibull distribution [35,36], the probability density function is

P(F) =

 0 , F < 0
b
F0

(
F
F0

)b−1
exp

[
−
(

F
F0

)b
]

, F ≥ 0
(10)

where F is the stress level of the composite specimen in the AB segment; F0 is the character-
istic stress; b is the distribution parameter.

F =
(
η′1Ec + η′2Eh

)
ε (11)

F0 =
(
η′1Ec + η′2Eh

)
ε0 (12)

where ε0 is the strain parameter of the AB segment.
Thus, substituting Equations (11) and (12) into Equation (10) can obtain:

P(ε) =
b
ε0

(
ε

ε0

)b−1
exp

[
−
(

ε

ε0

)b
]

(13)

By integrating Equation (13), the damage variable expression can be obtained as follows:

Dp =
∫

P(ε)dε = exp

(
−
(

ε

ε0

)b
)

(14)

Substituting Equation (14) into Equation (9) can be obtained:

σ =
(
η′1Ec + η′2Eh

)
ε

(
1− exp

(
−
(

ε

ε0

)b
))

(15)
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In the stress–strain relationship curve of the composite, the peak stress σp and the
corresponding strain εp also meet the boundary conditions of Equation (5). Thus:

σp =
(
η′1Ec + η′2Eh

)
εp

(
1− exp

(
−
(

εp

ε0

))b
)

(16)

The partial differential equation obtained from Equation (15) is

dσ

dε
=
(
η′1Ec + η′2Eh

)(
1 + exp

(
−
(

ε

ε0

)b
)(

b
(

ε

ε0

)b
− 1

))
(17)

Substitute Equation (17) into Equation (5) to obtain:

b
(

εp

ε0

)b
= 1 (18)

According to Formulas (16) and (18), it can be obtained:

ε0 =
εp(
1
b

) 1
b

(19)

b =
1

ln
(

(η′1Ec+η′2Eh)εp

(η′1Ec+η′2Eh)εp−σp

) (20)

4.3. Constitutive Model in Rupture Deformation Stage (BC)

After reaching the peak value, both the upper backfill and the lower red sandstone are
damaged, and the backfill appears complex damage phenomena such as cracks propaga-
tion, bifurcation and detour. The cracks of the red sandstone develop rapidly and show
splitting cracks in varying degrees. At this time, the stress of the composite specimen
gradually weakens, and its bearing capacity decreases rapidly with the increase of axial
strain. The stress–strain curve shows the BC segment, which is called the rupture defor-
mation stage of backfill-red sandstone combination specimen. At this stage, according
to D. Krajcinovic [37], it is assumed that the damage and strain principal axis coincide
with the material principal axis in the process of the uniaxial compression. Assume the
equivalent stress is σ̃ = σ(I − D)−1, and the equivalent strain is ε̃ = ε(I − D), the equation
Ẽ = E(I − D)2 can be obtained. Thus, the constitutive equation is

{σ} =
[

Ẽ
]−1
{ε} (21)

According to the stress–strain curve of the BC segment, the constitutive relationship
of the backfill at this time is as follows:

σ =
(
η′1Ec + η′2Eh

)
ε(1− Dr)

2 (22)

where σ is the stress of the BC segment; ε is the strain of the BC segment; Dr is the damage
variable of the BC segment.

Considering the residual strength of composite specimens and the damage character-
istics of actual stress–strain curves, the above constitutive equation was improved:

σ =
(
η′1Ec + η′2Eh

)
ε(1− Dr)

2 + σrDr
2 (23)

where σr is residual strength of the backfill-red sandstone combination.
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For the whole process of the BC segment, severe damage will occur in the backfill-
red sandstone combination after reaching the stress peak. The damage variable can be
expressed as

Dr = A|ε|N (24)

where A and N are the material parameters of the composite.
Considering the boundary conditions, the following is obtained from Equation (5):

N =

√(
η′1Ec + η′2Eh

)
2
√
(η1Ec + η2Eh)−

√(
η′1Ec + η′2Eh

) (25)

A =
1

(2N + 1)|εP|N
(26)

5. Model Validation
5.1. Relative Contribution Value

For determining the relative contribution value, the mechanical interaction model
between backfill and red sandstone is analyzed. In order to simplify its mechanical model,
lateral constraints and lateral deformation of backfill are temporarily ignored in the labora-
tory test, and the model shown in Figure 10 is obtained. Ec and εc are the elastic modulus
and strain of backfill, Eh and εh are the elastic modulus and strain of red sandstone, respec-
tively. Eh is significantly higher than Ec.

Minerals 2021, 11, x FOR PEER REVIEW 14 of 20 
 

 

lateral constraints and lateral deformation of backfill are temporarily ignored in the labor-
atory test, and the model shown in Figure 10 is obtained. Ec and εc are the elastic modulus 
and strain of backfill, Eh and εh are the elastic modulus and strain of red sandstone, respec-
tively. Eh is significantly higher than Ec.  

 
Figure 10. Mechanical analysis model of backfill-red sandstone combination specimen. 

According to the failure characteristics of the specimens, the load in the initial stage 
mainly acts on the microcracks compaction process of the backfill and the surface contact 
between the backfill and red sandstone. Based on the characteristics of stress–strain curve 
and engineering experience, the relative contribution of the elastic modulus of red sand-
stone at this stage to the elastic modulus of the initial composite can be calculated and 
distributed as follows: 

hc

hc

EE
EE

⋅
−

=2η  (27)

At this time, the relative contribution of the elastic modulus of the backfill to the elas-
tic modulus of the initial composite is 

21 1 ηη −=  (28)

In the next stage, with the continuous loading, the upper backfill and the lower red 
sandstone bear the load together. At this time, the relative contribution of the elastic mod-
ulus of the red sandstone to the elastic modulus of the composite is 

hc

hc

EE
EE

+
⋅=′2η  (29)

At this time, the relative contribution of the elastic modulus of the backfill to the elas-
tic modulus of the composite is 

21 2 ηη ′−=′  (30)

In the initial stage, the microcracks in the upper backfill and the microcracks in the 
stratified contact surface are compacted under the action of load. This process is the full 
combination process of the upper backfill and the lower red sandstone, so as to achieve 
the purpose of synergy. The lower red sandstone bears the load and the gravity of the 
upper backfill, so its relative contribution is high. In the next stage, with the continuous 
increase of load, the upper backfill and the lower red sandstone are fully combined to 
achieve the synergistic support effect. In this stage, the relative contribution of the upper 
backfill and the lower red sandstone is basically the same. The calculation results of rela-
tive contribution are shown in Table 4.  

  

Figure 10. Mechanical analysis model of backfill-red sandstone combination specimen.

According to the failure characteristics of the specimens, the load in the initial stage
mainly acts on the microcracks compaction process of the backfill and the surface contact
between the backfill and red sandstone. Based on the characteristics of stress–strain
curve and engineering experience, the relative contribution of the elastic modulus of red
sandstone at this stage to the elastic modulus of the initial composite can be calculated and
distributed as follows:

η2 =
|Ec − Eh|

Ec · Eh
(27)

At this time, the relative contribution of the elastic modulus of the backfill to the elastic
modulus of the initial composite is

η1 = 1− η2 (28)
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In the next stage, with the continuous loading, the upper backfill and the lower red
sandstone bear the load together. At this time, the relative contribution of the elastic
modulus of the red sandstone to the elastic modulus of the composite is

η′2 =
Ec · Eh

Ec + Eh
(29)

At this time, the relative contribution of the elastic modulus of the backfill to the elastic
modulus of the composite is

η′1 = 2− η′2 (30)

In the initial stage, the microcracks in the upper backfill and the microcracks in the
stratified contact surface are compacted under the action of load. This process is the full
combination process of the upper backfill and the lower red sandstone, so as to achieve
the purpose of synergy. The lower red sandstone bears the load and the gravity of the
upper backfill, so its relative contribution is high. In the next stage, with the continuous
increase of load, the upper backfill and the lower red sandstone are fully combined to
achieve the synergistic support effect. In this stage, the relative contribution of the upper
backfill and the lower red sandstone is basically the same. The calculation results of relative
contribution are shown in Table 4.

Table 4. Values based on relative elastic modulus contribution.

No. Ec (GPa) Eh (GPa) η1 η2 E0 (GPa) η′1 η′2 Ep (GPa)

HB4-1 1.09 9.32 0.20 0.80 7.67 1.02 0.98 10.24
HB4-2 1.12 9.76 0.21 0.79 7.94 0.99 1.01 10.97
HB4-3 1.14 11.15 0.21 0.79 9.05 0.98 1.02 12.49

5.2. Verification of Damage Parameters and Constitutive Equations
In order to verify the deduced constitutive model, three backfill-red sandstone com-

bination specimens with the cement–sand ratio of 1:4 are compared and analyzed. The
mechanical parameters of three backfill-red sandstone combination specimens are shown
in Table 5.

Table 5. Mechanical parameters of composite specimen.

No. σp (MPa) E0 (GPa) εp (10−3) σr (MPa) Ep (GPa) β C b ε0 N A

HB4-1 9.32 7.67 1.09 4.08 10.24 4.15 0.21 0.61 0.48 3.19 0.10
HB4-2 9.88 7.94 1.16 4.12 10.97 1.93 0.39 0.94 1.07 2.94 0.09
HB4-3 10.29 9.05 1.39 4.08 12.49 1.46 0.56 1.11 1.52 2.84 0.06

Based on the data in Table 5, the stress value of intersections of the three-stages are
calculated (Table 6). The error between theoretical calculation and experiment value is
slight. The theoretical curves of the constitutive model are constructed and compared with
the test curves. As shown in Figure 11, the theoretical curves of the model are consistent
with the test curves, which confirmed the validities of the proposed constitutive model to
described characteristics of the whole damage deformation stage of the specimens.

Table 6. Data table of intersections of composite specimen at each stage.

No. Actual σA (MPa) OA Section σA (MPa) Actual σp (MPa) AB Section σp (MPa) Actual σr (MPa) BC Section σr (MPa)

HB4-1 4.73 4.52 9.32 9.49 4.08 3.45
HB4-2 4.33 4.29 9.88 9.93 4.08 3.50
HB4-3 4.43 4.39 10.29 10.18 4.12 3.54
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It can be found that the experimental curves basically have three stages: compaction
pre-synergy stage, quasi-elastic synergy deformation stage and rupture deformation stage
(Figure 12). The three types of damage constitutive relations established according to these
stages are in good agreement with the experimental curves. However, due to the influence
of experimental environment, experimental errors and other factors, there are still some
differences in each group of data. According to the damage deformation characteristics
and test results in each stage, the damage constitutive equation and damage deformation
characteristic diagram of each stage are obtained (Table 7).
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5.3. Damage Variable and Evolution Law

According to its load damage, the synergy deformation of the specimens can also
be divided into three stages. The first stage is the microcracks compaction process of the
upper backfill and layered contact surface. The second stage is the common bearing process
of the upper backfill and the lower red sandstone. The third stage is the rupture process
of backfill-red sandstone combination. The damage patterns in each stage are different.
According to the established damage constitutive model, the damage evolution process
of backfill-red sandstone combination can be characterized, and the relationship between
damage variables and strain can be obtained, as shown in Figure 13.
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Table 7. Constitutive equation and damage of each stage.

Stage Division Damage Constitutive Model Damage Deformation Diagram Description of
Deformation Characteristics

Section OA: compaction
pre-synergy stage

Constitutive equation:
σ = (η1Ec + η2Eh) · ε

(
1− C · εβ

)
Actual parameter equation:
σ = 9.05 · ε

(
1− 0.56 · ε1.46)
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Figure 13. Damage variable change of HB4-3.

According to Figure 13, it can be found that in the process of the uniaxial compression,
the initial damage in the upper backfill is less than 0.1 due to the influence of microcracks.
With the continuous increase of stress, the lower red sandstone and the upper backfill bear
the load together. The damage increases sharply, and cracks appear after exceeding the
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peak stress. With the continuous action of load, the damage of backfill-red sandstone combi-
nation continued, and the specimen was completely destroyed. The macro failure patterns,
micro damage variables, overall deformation and failure characteristics all prove that the
backfill-red sandstone combination realize the synergistic support at the cement–sand ratio
of 1:4. This provides a reference for the study of synergistic support between backfill and
surrounding rock in the process of underground filling. The results also provide a basis for
the damage evolution law and failure process of the synergy support between backfill and
surrounding rock.

5.4. Synergy Analysis between Backfill and Red Sandstone

In the process of actual backfill mining, the backfill and surrounding rock form a
combination to bear ground pressure together. This leads to an interaction system between
rock mass and backfill. From the compression tests, it was found that the interaction and
matching effect between the backfill and red sandstone were affected by the cement–sand
ratio. The larger the cement–sand ratio, the higher the strength of the backfill and the
greater load-carrying capacity of backfill-red sandstone composite. When the cement–sand
ratio was 1:4, the part of backfill had the highest strength, which can fully cooperate with
red sandstone to resist the load. The peak stress reached 10.29 MPa. The cracks occurred
in both the backfill and red sandstone and propagated to form split failure. When the
cement–sand ratio was 1:8, the backfill failed to cooperate with red sandstone. Only the
backfill part of composite broke completely. Therefore, the strength of backfill is the key
to realize the synergistic support for backfill mining. In the actual mining engineering, in
order to save the cost, mining industry is looking always to lower cement ratio in their
mixtures. To solve this problem, the new cementing material with low cost can be selected
in the future to obtain the backfill with low ratio and high strength.

In this research, the backfill with cement–sand ratio 1:4 had a good matching effect
with the red sandstone. During the load-carrying process, the backfill and red sandstone
complemented each other and each played their own role. The two achieved synergistic
support. According to stress–strain curves and failure characteristics, their functions were
analyzed. The relative contribution degrees of backfill and red sandstone were proposed
and calculated. The damage constitutive models were established. From the viewpoint of
damage, the synergistic mechanism between the backfill and red sandstone was analyzed.
In the initial stage, the backfill and red sandstone bore the load together. The interaction
of two parts produced the resistance force inside them, and the internal structure was
damaged. At this stage, the damage changed slowly, and it provided the foundation for
the matching of the two. In the second stage, the strength of backfill matched with the red
sandstone, and the first inflection point of the damage variable curve appeared. Under the
stress at this point, the backfill should be broken, but in fact, there were no macroscopic
cracks in it. For damage variable, the change rate accelerated with the increase of load
from this point on. At the end of this stage, the second inflection point of variable damage
appeared, and there was peak stress at this point. Then, in the third stage, the synergistic
effect between backfill and red sandstone continued. With the continuous increase of load,
the rate of damage change decreased compared with that in the previous stage. The through
crack was rapidly generated and expanded, and the composite was finally damaged. The
damage process reflected the synergistic support between the backfill and red sandstone;
the bearing and support effect of composite was no longer dependent on one of them
because their support depended on both.

6. Conclusions

Uniaxial compression tests on the backfill-red sandstone combination with different
cement–sand ratios were carried out. It was found that at the cement–sand ratio of 1:4,
backfill and red sandstone realized synergistic support; the two parts interacted and
restricted each other, jointly resisted external loads and played a role in common bearing.
However, with the decrease of the cement–sand ratio, the stress mainly acted on the filling
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materials, and the deformation observed in the backfill was large while there was no
obvious rupture in the red sandstone. The backfill-red sandstone combination with the
cement–sand ratio of 1:4 had a splitting failure and obvious ruptures. With the cement–sand
ratio of 1:6, the upper backfill of combination specimen had a V-shaped rupture, and the
lower red sandstone had some small cracks. With the cement–sand ratio of 1:8, the upper
backfill of the backfill-red sandstone combination had a “slope” rupture, and there were no
cracks in the lower red sandstone.

According to the stress–strain curve of the specimens, the damage failure process is
divided into three stages: compaction pre-synergy stage, quasi-elastic synergy deformation
stage and rupture deformation stage. The damage constitutive models in each stage are
established, respectively. The damage of backfill-red sandstone combination under load
is equivalent to the coupling of two damage states of backfill and red sandstone. The
theoretical curves obtained from the damage constitutive model are highly consistent with
the experimental curves which confirmed the validities of the proposed constitutive model
to describe the coupling relationship between the red sandstone and the backfill. The
results obtained from this study are of great significance for accurately understanding the
synergy relationship between backfill and surrounding rock and for selecting reasonable
backfill strength and material ratio in goaf.
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