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Abstract: The use of native plants for reforestation and/or remediation in areas contaminated by
mining is a technique with low implantation and maintenance costs. The success of this practice
depends on the plant species and geochemical processes at the soil–plant interface (e.g., rhizosphere).
This study evaluated the potential of spontaneous species for mobilizing and altering mineral and
metal dynamics in the rhizosphere of Cu-rich soils resulting from the abandoned Pedra Verde mine
in NE Brazil. Rhizosphere and bulk soil samples were collected from five shrubby/arboreal species.
The pH, organic matter content, Cu fractionation, mineralogical characterization, and Cu content
in the leaves and roots of all studied species were determined. In addition, the bioaccumulation
factor (BCF) and translocation factor (TF) were used to evaluate the potential of these species for Cu
hyperaccumulation. The Cu concentration in leaf plant tissues varied from 18 to 34 mg kg−1, and
all plants presented TF and BCF < 1, indicating that the species were not Cu hyperaccumulators.
However, the root exudates induce mineral dissolution, indicating potential Cu accumulation in the
roots (from 36 to 249 mg kg−1). Combretum aff. pisoniodes Taub was the species with the greatest
potential for decreasing Cu bioavailability and phytostabilization. Our findings indicate the potential
of native Brazilian plants for growth in Cu-contaminated soil. These findings may be used for
reforestation programs.

Keywords: Cu biogeochemistry; abandoned mine soils; phytoremediation

1. Introduction

Soils within abandoned mining areas are commonly associated with acute impacts
on their physical and chemical characteristics. The loss of soil structure, a decrease in soil
organic matter content, extreme pH (alkaline or acidic) values, and high metal contents are
the most commonly reported impacts [1–4]. These impacts on soils limit the establishment
of successional vegetation or reclamation practices within abandoned mining areas [5] and
expose adjacent compartments (e.g., surrounding soils, streams, rivers, and groundwater)
to contamination risks [6,7].

In this sense, cost-effective and environmentally friendly reclamation technologies
such as plant-based approaches are some of the most successful techniques for remediating

Minerals 2022, 12, 130. https://doi.org/10.3390/min12020130 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12020130
https://doi.org/10.3390/min12020130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-4768-1248
https://orcid.org/0000-0002-6415-7897
https://orcid.org/0000-0001-5447-1842
https://orcid.org/0000-0002-4088-7457
https://doi.org/10.3390/min12020130
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12020130?type=check_update&version=1


Minerals 2022, 12, 130 2 of 13

polluted soil from abandoned mining sites [8,9]. Phytoremediation is a technique based
on the extraction, immobilization, or volatilization of metals using plants [10,11]. The
principle of phytoremediation results from the natural ability of plant species to grow
in contaminated areas and accumulate high concentrations of metals in their shoots or
restrict high metal contents into the roots and rhizosphere zone [12–14]. Accordingly, phy-
toextraction and phytostabilization are two promising techniques that are widely applied
within the field of phytoremediation [15]. Phytoextraction emerges as a technology for the
removal of metals from the environment using metal-accumulating plants [16]. By contrast,
phytostabilization involves the use of plants to reduce the mobility of contaminants (e.g.,
metals) in contaminated environments via pollutant accumulation or immobilization in
their roots or rhizosphere [17].

Although several studies have reported phytoremediation efficiency, few studies have
been conducted using native species from tropical and subtropical regions, such as those
found in Brazil [4,18,19]. Moreover, most plant species classified as phytoremediators are
from temperate regions. Despite growing in tropical regions, the use of exotic species can
cause ecological problems, especially if the objective is to restore ecological processes [20,21].
Globally, Brazil is one of the nations with the most significant mining activities and a tropical
hotspot of sites polluted by metals from such activities [22–25]. Additionally, most of these
polluted sites present a great diversity of species growing on them spontaneously, which
offers the possibility of finding several new phytoremediator plants [26].

Therefore, the objective of this study was to identify native Brazilian species (e.g.,
shrubby and arboreal) with the potential for use in Cu phytoremediation initiatives. To
achieve our objective, we assessed both the Cu content in five native species from the
Caatinga biome and the biogeochemical characteristics of its rhizospheres.

2. Materials and Methods
2.1. Site Description

The study area is near the Pedra Verde mine, located near the municipality of Viçosa
do Ceará, located in the Brazilian state of Ceará, within the NE Brazilian district (Figure 1).
The region is characterized by a tropical, hot, semi-arid climate, with a rainy (January
and May) and dry season (June to December), average annual precipitation of 981 mm,
and annual temperatures ranging from 21 ◦C to 32 ◦C [27,28]. In addition, the region is
characterized by seasonal deciduous forests, which represent transition vegetation between
the ombrophilous forest and Caatinga [4,28].

The studied site is located within an abandoned mine site that operated until 1987. Cu
from sulfides (chalcopyrite and chalcocite) and carbonates were excavated, which produced
a large volume of tailings waste [29]. After the mine activity, the tailings eroded, spreading
waste rocks containing Cu-enriched wastes (Cu concentration: ~49,000 mg kg−1) to soil
and rivers within a 1.5 km distance and representing a severe risk to the ecosystem and
public health [4,29,30].
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Figure 1. The Pedra Verde mine near the municpliatity of Viçosa do Ceará, within NE-Brazil (a–b). 
Sampled sites containing the five most abundant shrub-by/arboreal species, which were observed 
to randomly grow on the Cu-rich eroded piles (c). The five studied randomly growing species 
included: Bauhinia ungulate L. (d), Combretum aff. pisoniodes Taub (e), Combretum leprosum Mart (f), 
Croton blanchetianus Baill (g), Hymenaeae courbaril L (h), and the Cu-rich eroded piles (i). 
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produced a large volume of tailings waste [29]. After the mine activity, the tailings eroded, 
spreading waste rocks containing Cu-enriched wastes (Cu concentration: ~49,000 mg kg−1) 
to soil and rivers within a 1.5 km distance and representing a severe risk to the ecosystem 
and public health [4,29,30]. 

2.2. Plant and Soil Sampling 
To identify potential hyperaccumulator plant species, the five most abundant 
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Figure 1. The Pedra Verde mine near the municpliatity of Viçosa do Ceará, within NE-Brazil (a,b).
Sampled sites containing the five most abundant shrub-by/arboreal species, which were observed to
randomly grow on the Cu-rich eroded piles (c). The five studied randomly growing species included:
Bauhinia ungulate L. (d), Combretum aff. pisoniodes Taub (e), Combretum leprosum Mart (f), Croton
blanchetianus Baill (g), Hymenaeae courbaril L. (h), and the Cu-rich eroded piles (i).

2.2. Plant and Soil Sampling

To identify potential hyperaccumulator plant species, the five most abundant shrubby/
arboreal species (Figure 1d–h) observed to randomly grow on the eroded tailings were
selected: Bauhinia ungulate L., Combretum aff. pisoniodes Taub, Combretum leprosum Mart, Cro-
ton blanchetianus Baill, and Hymenaeae courbaril L. For each species, three juvenile specimens
were collected from the mining area. Twenty leaves and whole-root biomass were collected
from each plant area and transported to the laboratory. In the laboratory, the leaves and
roots were carefully rinsed three times with distilled water, dried in a fan-forced oven (at
65 ◦C for 72 h), ground, and stored in plastic bags for posterior analysis.

Soil samples were collected from the specimen bulk and rhizosphere soil. The rhizo-
spheric soil represents the portion of soils directly influenced by root plants; therefore, it is
chemically distinct from the bulk soil [31]. The rhizosphere samples of each plant species
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were collected in four steps, as follows: (i) the collected roots were shaken to remove the
weakly adhered soil, (ii) soil still attached to the roots was manually removed, (iii) roots
were vigorously shaken within plastic bags, and (iv) soil particles still adhering to the roots
were removed with a brush [32]. The bulk, which represents the soil mass without direct
root influence, was collected using a Dutch auger, close (~1.5 m) to plant specimens up to a
depth of 0–20 cm. At the laboratory, the soil samples (rhizosphere and bulk) were dried at
room temperature, sieved to 2 mm, and characterized for organic matter content, pH, Cu
solid-phase fractionation, and mineralogical characterization.

2.3. Chemical Analyses: pH, Organic Matter Content, and Cu Solid-Phase Fractionation

The pH was measured in a 1:2.5 suspension soil/water in bulk and rhizosphere soils
using a previously calibrated (pH 4.0 and 7.0) glass electrode [33]. The pH values were
determined after the suspension was decanted for 30 min by submerging the electrode in
the clear portion of the suspension, and the pH readings were determined after stabiliza-
tion [32].

The organic matter (OM) contents were determined via loss of ignition after heating
at 450 ◦C for 2 h. Prior to drying at 105 ◦C, the samples were re-weighed after heating at
450 ◦C [34].

Cu fractionation in the samples was determined using a combined method of sequen-
tial chemical extraction [29,33,35,36]. This procedure allows for a better understanding of the
dynamics of metals in soil. The following operationally distinct fractions were determined:

1. Exchangeable or soluble (CuEX)–extracted using a MgCl2 1 mol L−1 solution at a
pH 7.0.

2. Associated with carbonates (CuCAR)–extracted with a 1 mol L−1 NaOAC solution at
a pH 5.0.

3. Associated with organic matter (CuOM) extracted with 6% NaOCl at a pH 8.0;
4. Associated with amorphous iron oxides (CuAM), extracted with an oxalic acid solu-

tion (0.2 mol L−1) + ammonium oxalate (0.2 mol L−1) at a pH 3.0;
5. mol L oxides (CuOX), extracted with sodium bicarbonate (0.25 mol L−1) + sodium

bicarbonate (0.11 mol L−1) + 3 g sodium dithionite;
6. Associated with sulfides (CuS), extracted with a 4 mol L−1 HNO3 solution;
7. Residual Cu (CuRES) was extracted by triacid digestion (HCl + HNO3 and HF) during

microwave-assisted digestion.

Thus, the sum of the seven fractions was considered to constitute the pseudo-total content.

2.4. Plant Tissues Digestion and Factors Calculation

The Cu content in the leaves and roots was determined after hot digestion (250 ◦C)
using a combination of nitric acid (65%) and perchloric acid (37%) in a 3:1 solutoin ratio [37].

The bioconcentration factor (BCF) and translocation factor (TF) were calculated con-
sidering the Cu soil content (pseudo-total Cu), roots, and leaves. The BCF was calculated
to evaluate plant capacity for Cu phytoextraction from the soil, as the ratio of Cl or Cs (Cu
concentration in the plant tissue, i.e., Cl- leaves or Cr- roots), denoted as Cp, and Csoil (Cu
concentration in soil).

BCF =
Cp

CSoil

When the BCF for leaves was < 1, the species were categorized as excluders. The
plants were considered accumulators when the coefficient values were between 1 and 10,
and hyperaccumulators had a coefficient BCF > 10 [12,38].

The translocation factor was calculated to evaluate the hyperaccumulation potential
through root-to-shoot Cu transfer, as the ratio between Cl (Cu concentration in the leaves)
and CR (Cu concentration in the roots).

TF =
Cl
CR
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2.5. Determination of Cu Concentrations and Quality Procedures

The Cu concentrations from all studied matrices (Cu fractionation in the solid phase,
roots, and leaves) were determined by atomic absorption spectroscopy (AANALYST
400 AA, PerkinElmer, Waltham, MA, USA). The calibration solutions were prepared by
diluting certified standard solutions, and certified reference materials from NIST (SRM
1547 and 2709a) were used in triplicate to guarantee quality control procedures. The Cu
recovery values were, on average, 97% ± 11%.

2.6. Mineralogical Characterization

The mineralogical characterization used to observe possible shifts in the mineral
phases resulting from plant activities was also assessed by X-ray diffraction (XRD, (Rigaku
MiniFlex benchtop, Tokyo, Japan)). Thus, XRD analysis was performed using bulk and
rhizosphere soil samples. Subsamples were ground in an agate mill for XRD analysis
and sieved through a mesh size of 0.5 mm. These samples did not receive chemical
treatment to avoid the dissolution of some mineral phases, for example, carbonates. The
diffractograms were obtained using a Rigaku Miniflex II device with CuKα radiation from
randomly oriented samples, at intervals of 3–50◦, a 2θ step size of 0.02◦, and counting time
of 1 s step−1.

2.7. Statistical Analysis

The differences between rhizosphere and bulk soils, as well as among the plant
species, were tested using analysis of variance (ANOVA) with two factors (factor 1: bulk
vs. rhizosphere; factor 2: plant species), followed by Tukey’s test (p < 0.05), to distinguish
differences among mean values.

3. Results and Discussions
3.1. Plant Species Effects on Cooper Geochemistry in the Bulk and Rhizospheric Soils

The pH values differed significantly between plant species (Figure 2a). However,
except for Hymenaeae courbaril L., no significant differences were observed between the rhi-
zosphere and bulk soils (Figure 2a). In the rhizosphere, the greatest pH value was observed
for Combretum aff. Pisoniodes Taub (5.3 ± 0.3), and the lowest was observed for Hymenaeae
courbaril L. (4.9 ± 0.1). No significant differences in the pH values of the rhizosphere were
observed between Croton blanchetianus Baill (5.2 ± 0.1), Bauhinia ungulate L. (5.0 ± 0.2), and
Combretum leprosum Mart (4.9 ± 0.3; Figure 2a).

In contrast to the pH, the OM content differed significantly between the bulk soil and
rhizosphere (Figure 2b). The OM content in the rhizosphere was significantly greater in
all plant species. Regarding the OM contents in the rhizosphere between plant species,
greater abundances were observed in the Croton blanchetianus Baill (19.5 ± 2.4%), followed
by Combretum leprosum Mart (18.3 ± 6.7%), Bauhinia ungulate L. (14.5 ± 5.4%), Hymenaeae
courbaril L. (12.1 ± 0.7%), and the lower contents were observed in the Combretum aff.
pisoniodes Taub (6.4 ± 1.3%; Figure 2b).

Several studies have reported acidification in the rhizosphere compared to bulk soils
due to organic acid exudation from roots [39–41]. In this sense, the organic acid exudation
(e.g., acetic, citric, malic, and oxalic) from roots can be corroborated by the significantly
greater OM content (Figure 2b) in the rhizosphere for all studied plant species [42,43].
Indeed, previous studies have reported higher OM contents within the rhizosphere than in
bulk soils due to root exudates, higher microbial activity, and decaying roots [32,44].
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Figure 2. Observed soil pH values (a) and content of organic matter (b) in the rhizosphere and bulk
soil, under the influence of the growth in the five spontaneous plant species in abandoned mine
soil. Means followed by the lowercase letters differ between plant species, while means followed by
uppercase letters differ between rhizosphere and bulk soils. Test significant at the level of 5% (Tukey).

However, the absence of significant differences between the pH values of the rhizo-
sphere and bulk soils can be explained by the presence of carbonates from the weathering
of malachite that is present on mining wastes mixed with the soil [29]. The weathering of
carbonates (e.g., malachite) can act as a buffer for acidification promoted by organic acid
exudation from roots in the rhizosphere [45]. However, the pH values from the rhizosphere
indicate strongly acidic (5.1–5.5) to very strongly acidic (4.5–5.0; Figure 2a) conditions for
the studied plant species [46]. In acidified soils, Cu solubility, mobility, and bioavailability
are enhanced because they favor desorption [47,48].

In contrast, the higher OM content within the rhizosphere may play a key role in Cu
bioavailability. OM compounds increased the cation exchange capacity and Cu adsorption.
In addition, organic compounds may establish strong interactions with metals by forming
inner-sphere complexes, which decrease their mobility, toxicity, and bioavailability [49,50].

The Cu solid-phase fractionation showed that, on average, Cu in the rhizosphere was
principally associated with OM fractions (i.e., CuOM: 39%) for all studied plant species,
followed by Cu associated with residual fractions (i.e., CuRES: 29%), carbonates (i.e.,
CuCAR: 17%), pyrite (CuS: 7%), and Cu associated with amorphous iron oxides (CuAM:
3%; Figure 3). Additionally, on average, the CuCAR, CuAM, and CuEX (i.e., exchangeable
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or soluble) contents in the rhizosphere were significantly lower, representing 17%, 3%, and
3% of the pseudo total Cu in comparison with bulk soils, where CuCAR, CuAM, and CuEX
represented 25%, 9%, and 11% of the pseudo total Cu, respectively (Figure 3).
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all studied plant species. CuEX: exchangeable or soluble, CuCAR: Cu associated with carbonates,
CuOM: Cu associated with organic matter, CuAM: Cu associated with amorphous iron oxides, CuOX:
Cu associated with crystalline iron oxides, CuS: Cu associated with sulfides, and CuRES: residual Cu.

These results indicate the potential for root activity to modify Cu dynamics in aban-
doned mine soils. For example, the lower CuCAR values in the rhizosphere result from root
respiration, which favors an increase in pCO2 in the rhizosphere soil, and thus promotes
the formation of H2CO3, which induces the dissolution of carbonates [45]. Similarly, the
lower Cu values associated with amorphous oxides (CuAM) in the rhizosphere can be
associated with organic–ligand complexes, which favor the dissolution of amorphous iron
oxides [51]. Previous studies have reported that organic acids (e.g., acetic, citric, malic,
and oxalic) exudates by roots are efficient in forming organic–ligand complexes with Fe3+

present in the structure of amorphous iron oxides, favoring its solubilization and, con-
sequently, mineral dissolution [52–54]. Metal–organic ligand complexes may also react
with Cu-forming complexes and increase their solubility in the rhizosphere [55,56]. This
mechanism is supported by the higher values of Cu associated with organic phases (i.e.,
CuOM) in the rhizosphere, which represented 39% of the pseudo total Cu, whereas in bulk
soil it represented 24% (Figure 3). Indeed, the lower CuEX value in the rhizospheric soil,
representing 3% of the pseudo total Cu compared to bulk soil (11%; Figure 3), indicates a
potential Cu control throughout plant uptake.

The XRD diffractograms support the effect of root exudates, promoting the dissolution
of minerals (Figure 4). The mineralogical assemblage of bulk soils is composed of mica,
malachite, pseudo-malachite, quartz, and orthoclase (Figure 4). The mineralogical compo-
sition of the rhizosphere of all the studied plant species was similar to that of bulk soils
(Figure 4). However, there was a substantial decrease in the intensity of mineral peaks in the
rhizosphere soils, which is associated with a loss of crystallinity or mineral dissolution, ex-
cept quartz, which presents a high resistance to weathering processes [57–59]. Additionally,
our results indicate that the intensity of mineral-phase alterations in the rhizosphere varied
between species (Figure 4). Indeed, several studies have reported that root-induced min-
eral dissolution varies between plant species due to the intensity of acidification, exudate
release, interaction with microorganisms, cations, and anion uptake [60–63].
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3.2. Cooper Content in Plants Tissues and their Potential to Phytoremediation

This variability between plant species regarding mineral dissolution and Cu dynamics
reflects the Cu content in the roots and leaves (Figure 5). Combretum leprosum Mart was the
species with the highest Cu content in leaves (34 ± 16 mg kg−1), whereas Combretum aff.
pisoniodes Taub had the lowest content (18 ± 5 mg kg−1), followed by Croton blanchetianus
Bail (19 ± 5 mg kg−1), and Bauhinia ungulate L. (19 ± 6 mg kg−1; Figure 5). The mean Cu
content in the Hymenaeae courbaril L. leaves was 21 ± 6 mg kg−1 (Figure 5). In general, the
Cu concentrations in the leaves of the studied species were lower than the concentration
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generally observed in Cu hyperaccumulator plants (>300 mg kg−1) [64]. However, on aver-
age, the Cu concentrations in the leaves are within the expected range for plants that grow
in non-contaminated soils [65] and are directly reflected in the low BCF values (Table 1).
Consequently, all studied plants may be classified as excluder species, as phytoextractor
species require BCF values greater than 1 [14,66].
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Table 1. Total mean Cu content, rhizosphere pseudo total Cu content, TF, and BCF values in within
leaf and root tissue.

Plant Specie

Total Cu
Content

(mg kg−1)
Pseudo

Total Cu *
(mg kg−1)

BCF
Leaves

BCF
Roots TF

Leaves Roots

Bauhinia ungulate L. 19 183 642 0.030 0.285 0.104
Combretum aff. pisoniodes Taub 18 249 401 0.045 0.621 0.072

Combretum leprosum Mart 34 182 877 0.039 0.208 0.187
Croton blanchetianus Bail 19 168 868 0.021 0.193 0.113
Hymenaeae courbaril L. 21 136 355 0.059 0.384 0.154

* Pseudo-total Cu content in the rhizosphere. BFC: bioaccumulation factor; TF: translocation factor.

In contrast, the mean Cu content in the root system was significantly greater than
that in the leaves (Figure 5). In the root system, a higher Cu content was observed in the
Combretum aff. pisoniodes Taub (249 ± 119 mg kg−1) and lower contents in the Hymenaeae
courbaril L. (36 ± 66 mg kg−1; Figure 5). No significant differences were observed between
Bauhinia ungulate L. (183 ± 76 mg kg−1), Combretum leprosum Mart (182 ± 66 mg kg−1), and
Croton blanchetianus Bail (168 ± 52 mg kg−1; Figure 5).

The BCF values in the roots of all the studied plants (Table 1) were also lower than the
BCF threshold for Cu hyperaccumulators [64]. The TF values were lower than 1, indicating
a lower potential for Cu hyperaccumulation in the harvestable tissues. However, the higher
Cu concentration in its roots compared to Cu content in the leaves indicates a low root-to-
shoot translocation (i.e., low TF) and a potential for controlling Cu bioavailability through
Cu immobilization in the roots [67]. In this sense, Cu exclusion in the roots (Table 1)
and the lower Cu bioavailability (i.e., CuEX, CuCAR, and CuAM) in the rhizosphere
(Figure 3) compared to the bulk soils characterize these plants as possible species for Cu
phytostabilization in abandoned mine soils [68]. Previous studies have reported that an
ideal plant, capable of controlling metal availability, should present fast root growth with
the ability to remove and potentially toxic metals from bulk soils and accumulate high
concentrations within its roots [69,70]. Accordingly, Combretum aff. pisoniodes Taub is
the studied species with a higher potential for controlling Cu bioavailability due to its
significantly higher Cu content in the roots (Figure 5).
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Finally, the low Cu translocation from root to shoot (TF; Table 1) can be a plant
strategy to preserve younger and physiologically more active tissues (i.e., leaves), avoid
Cu toxicity [71], and allow random plant growth on Cu-rich soils of an abandoned mine.
This exclusion strategy combined with the plant capacity to decrease Cu availability in the
rhizosphere compared to bulk soils reveals their potential for reforestation programs.

4. Conclusions

The studied plants from the Caatinga biome were able to promote significant mineral
phase and Cu dynamic changes in their rhizospheres. Furthermore, the ability to induce
mineral dissolution, mainly mediated by root exudates, indicates that the root system
presents the potential to accumulate Cu. This accumulation demonstrates potential control
in the rhizosphere, decreasing the exchangeable/soluble Cu in the rhizosphere compared
to that of bulk soils. Consequently, Combretum aff. pisoniodes Taub is a species with great
potential for phytoremediation programs to decrease Cu bioavailability (e.g., phytostabi-
lization). In contrast, the low Cu content in the leaves of all studied plants indicates a low
potential for phytoextraction. Therefore, our findings indicate potential plants from the
Caatinga biome that is capable of growth in the Cu-contaminated soil of abandoned mines,
which may be used for reforestation programs.
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