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Abstract: Modeling the spatial dependence structure of metal grades in the presence of soft bound-
aries between geological domains is challenging in any mineral resource estimation strategy. The aim
of this work was to propose a structural model adapted to this type of geological boundary, based
on a multivariate Matérn model that fits the observed direct (within domain) and cross (between
domains) correlation structures of metal grades. The methodology was applied to a case study of an
iron deposit located in southern Cameroon. Cross-validation scores show that accounting for the
grade correlation across domain boundaries improved the traditional workflow, where the grade
was estimated in each domain separately. The scores were significantly better when we also ensured
that the mean grade was locally invariant from one domain to another to reflect the grade continuity
across the domain boundary.

Keywords: geological domaining; spatial dependence structure; soft boundaries; multivariate
Matérn covariance

1. Introduction

The partitioning of a mineral deposit into several geological domains makes it possible
to incorporate the control that geological information (lithology, mineralization, alteration,
and structures, among others) exerts on quantitative variables of interest [1–9]. Hereinafter,
the use of geological domains will focus on mineral resource (specifically, metal grade)
estimation, although domaining is also useful for geotechnical and geometallurgical mod-
eling to estimate variables such as rock quality designation, rock mass rating, work index,
or metallurgical recoveries. Geological domaining often incorporates a boundary analy-
sis, which results in either ‘soft’ or ‘hard’ boundaries, depending on whether the metal
grades vary continuously across the domain boundaries or not [10–14]. Once the nature
of the boundary between the different geological domains has been determined, spatial
correlation models must be constructed accordingly and used for grade estimation and/or
simulations [10,11,15]. Boundary analysis is therefore an essential stage in exploratory data
analysis to diagnose the nature of the geological boundaries. Ignoring the presence of a
hard boundary can have a major impact on the grade estimation, in particular, ore/waste
dilution, over-smoothing, or local biases in the estimated mineral resources [11,16,17].
Furthermore, depending on whether the interpretation of the boundary analysis leads to a
soft or a hard boundary, the spatial correlation model can be very different.

In practice, several tools contribute to diagnosing the nature of a geological bound-
ary [13,14,18]. The hard boundary is defined as an abrupt or sudden variation of a quan-
titative variable (in our case, a metal grade) when moving from one domain to another.
The accepted industry workflow then recommends carrying out a geostatistical analysis
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in each domain independently of the others. In this way, the error variance as well as
other cross-validation scores are often improved compared to analyzing the deposit as a
whole [5,10,19–22]. However, in practice, the transition between two domains is not always
abrupt, and a metal grade can evolve continuously across a domain boundary, leading
to a soft boundary [1,17,18]. In such a case, accounting for the grade continuity or for
its spatial correlation across a boundary may considerably improve the precision of the
estimation [2,5].

How to optimally perform the estimation of mineral resources when the boundaries
between geological domains are soft remains an open problem. An intuitive and construc-
tive way is to use a linear coregionalization model to estimate the grades using data from
adjacent geological domains [10]. Thus, data can be taken on either side of a boundary
to perform the estimation at non-sampled points in a given geological domain. Other
authors [1,2,5,17] propose dilating the geological domain to include samples from adjacent
domains up to a given radius from the boundary of the domain of interest. Another way
to better capture the behavior of metal grades across soft boundaries is to jointly esti-
mate [5,23,24] or simulate [6,25,26] the grade and the domain indicators representing the
geological information. When applied to real case studies, all these approaches have shown
to provide better results than those obtained by classic (independent) domain estimations
assuming hard boundaries, or those that do not take domains into account, with a mean
squared error that could be reduced by 15% to 30% near the domain boundaries [5,10,17,25].

Although there is a measurable grade correlation across domain boundaries, the
statistical and structural properties (e.g., the correlation ranges or the variogram sills and
shapes) may differ from one domain to another, indicating a non-stationary behavior. From
a modeling point of view, one can distinguish two types of non-stationarity within any data
set: non-stationarity in terms of the mean (first-order non-stationarity) and non-stationarity
in terms of spatial correlation structure (second-order non-stationarity), for which the mean
value and the covariance or the variogram vary when moving from one geological domain
to another, although they can remain constant (stationary) inside each single geological
domain. For example, the non-stationary covariance class proposed in [7] could allow
the model to adapt to spatial variations in the correlation structure by setting a different
correlation range of the grade in each geological domain, while accounting for correlations
between different domains.

An alternative is to view the non-stationary covariance modeling problem as a multi-
variate problem, where it is of interest to define a direct covariance for the grade within each
geological domain and cross-covariances between domains, e.g., through the well-known
linear model of coregionalization [10] or the so-called multivariate Matérn model [27,28].
The latter model has proven to be more versatile than the traditional linear coregionaliza-
tion model, as it allows different correlation ranges, sills, and shapes for the direct (within
each domain) and cross (between domains) covariances, while keeping the number of
parameters as small as possible [29].

In this context, the aim of this work was to study the impact on mineral resource
estimation based on a multivariate Matérn model to account for soft geological boundaries.
The outline of this paper is as follows: Section 2 describes the methodology adopted in
terms of boundary analysis and modeling. In Section 3, a case study is carried out, and
conclusions are presented in Section 4.

2. Methodology
2.1. Boundary Analysis

Before any study intended to estimate, simulate, or characterize in-situ resources of
a mining project on the basis of sampling information collected during exploration, it is
important to contextualize each quantitative variable of interest in relation to the geological
data (lithology, mineralization, alteration, structures, among others). This helps to build the
best possible spatial correlation models for future estimations. Putting each variable in its
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geological context, one obtains a set of sub-databases that can then undergo independent
and/or joint analyses [2,30–32].

Quite often in mineral resource estimation, the boundary between geological domains
is soft. This implies a gradual or progressive transition of the metal grades from one domain
to another. It is therefore essential to build coregionalization models capable of handling
such a behavior [10,11,33–35].

Two characteristics are essential to determine the spatial behavior of a quantitative
variable (here, a metal grade) when crossing a geological boundary. They are the variations
of its average value (first-order moment) as a function of the distance from the boundary,
and the existence of cross-correlations (second-order moment) across the boundary. In
this respect, several exploratory and structural analysis tools have been developed in the
literature to study these characteristics:

• correlograms [36] makes it possible to measure the spatial cross-correlations between
the grades measured in two different domains;

• cross-to-direct variogram ratios [13] measure the variations in the average grade near
the boundary of a geological domain;

• pseudo cross-variograms [17] can also measure the difference in the average grade
when crossing the boundary between two different domains;

• lagged scatter plots [14] compare grades taken in two different domains separated by
a given distance, allowing the identification of both variations in the average grade
and cross-correlations across the boundary.

2.2. Structural Analysis and Modeling

Direct and cross-covariance and/or variogram models make it possible, on the one
hand, to characterize the structural behavior of the grade in one geological domain and,
on the other hand, to evaluate the correlation that exists between grades taken into dif-
ferent domains. Rather than a global stationary model intended to characterize the spa-
tial dependence structure over the entire mineral deposit under study, a non-stationary
model would better capture local structural variations and cross-correlations between
geological domains.

Consider a mineralization whose behavior varies from one direction to another
(anisotropy), and from one point to another as well (non-stationarity). It would be difficult
to infer such a behavior from a set of sparse sampling data, and therefore to construct a
global covariance model reflecting this behavior. Therefore, the idea of partitioning the
field of study into n domains on the basis of geology offers the possibility of issuing the
hypothesis of at least local stationarity within each domain and non-stationarity across
domains. Based on this, it is possible to formulate a globally non-stationary model. A
way to build such a global model is to adapt the model given in [37] that proposes a
non-stationary covariance expression for which the scale factor can vary in space (in the
present case, one would restrict this general model so that the scale factor is constant in
each geological domain, but different between one domain and another). Applied to a
Matérn covariance function with variance σ2 and shape factor ν [38], this provides a model
where the covariance between the grade measured at location x belonging to domain i
(associated with a scale factor αi > 0) and the grade measured at location x + h belonging to
domain j (associated with a scale factor αj > 0) is of the form

∀h ∈ R3, ∀i, j ∈ {1, . . . , n}, Cij(h) = M
(
h; αij, ν, σij

)
(1)

with

αij
−2 =

αi
−2 + αj

−2

2
(2)

σij = σ2

(
αij

2

αi αj

) 3
2

(3)
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and

M(h; α, ν, σ) = σ2 21−ν

Γ(ν)
(α ‖h‖)νKν(α‖h‖) (4)

where Γ stands for the gamma function, Kν for the modified Bessel function of the second
kind of order ν, and ‖·‖ for the Euclidean norm. However, such a model is restrictive,
insofar as the sills of Cii and Cjj are the same (σ2), while the sill σij and the scale factor αij of
Cij are fully characterized by the sill and scale factors of Cii and Cjj.

Another way to account for direct and cross correlations simultaneously is to use a
multivariate Matérn model, as proposed in [27]. The latter is more flexible in the modeling
of the cross-structure, insofar as the direct (in each domain) and cross (between domains)
covariances can have different scale factors, sills and shapes, without the aforementioned
restrictions on the scale factors and sills of the direct and cross-structures. The idea is
therefore to define an n × n matrix-valued covariance function C(h), whose (i,j)-th entry Cij
is the direct (if i = j) or cross (if i 6= j) covariance of the grades between domains i and j, of
the following form:

∀h ∈ R3, C(h) = C0 δ(h) + M(h; α, ν, C1) (5)

where C0 is a positive semidefinite matrix of size n × n, δ(h) is a pure nugget effect model,
and M(h; α, ν, C1) is a multivariate Matérn covariance with matrix-valued parameters α
(scale factors), ν (shape factors), and C1 (sills):

∀h ∈ R3, M(h; α, ν, C1) = C1
21−ν

Γ(ν)
(α ‖h‖)νKν(α ‖h‖) (6)

with all the matrix operations (power, product, ratio, etc.) being elementwise. A wealth of
sufficient conditions on (α,ν, C1) for this model to be a valid matrix-valued covariance are
given in [39].

In particular, taking all the shape factors equal to 0.5 leads to a multivariate
exponential model:

∀h ∈ R3, C(h) = C0 δ(h) + C1 exp
(
−3‖h‖

a

)
(7)

where a = 3/α (practical ranges) and all the matrix products, exponentials, and ratios are
taken elementwise. In this way, one obtains a globally non-stationary model where the
structural parameters (practical ranges a(i,j), sills C1(i,j), and nugget effects C0(i,j)) vary
from one geological domain to another.

The isotropic models in Equations (6) and (7) can be further generalized to anisotropic
models by a rotation and scaling of the spatial coordinates (geometric anisotropy) [40].

2.3. Mean Value Modeling

As usual in geostatistical modeling, the mean value of the grade is assumed to be
unknown, which allows this mean to vary globally while being locally constant (at the scale
of the moving neighborhood used for estimation). However, it is important to specify the
relationship between the mean value in a given domain and that of another domain, which
depends on the nature of the domain boundary:

• no relationship (the mean values are different and unrelated) in case of a hard bound-
ary, to reflect an abrupt change of the average grade when crossing the boundary;

• equality (same mean values) in case of a soft boundary, to reflect the continuity of the
grade across the boundary.

The latter option amounts to using a variant of ordinary cokriging, called cokriging
with related mean values [41], when estimating the grades in domains with soft boundaries.
One novelty is the combination of this cokriging variant with the multivariate Matérn
covariance (Equation (6)), which is more flexible and parsimonious than the classical linear
model of coregionalization, to describe the spatial correlation structure.
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3. Case Study: Nkout Center Iron Ore Deposit
3.1. Presentation of the Deposit and Exploratory Data Analysis

The Nkout area (southern Cameroon) has been the subject of particular interest from
mining companies and geoscience researchers because of its economic potential for iron
mining. Several scientific works that were carried out there led to the delimitation of a
deposit whose iron grades and tonnage justify an economically viable exploitation. Overall,
the deposit lays on an Archean to Proterozoic cratonic basement that forms the northern
part of the northern extension of the Congo craton and includes the Ntem complex, the
Dja series, and the Nyong. The Nkout iron zone is located in the Ntem complex. Recent
geological studies showed that this area (Nkout) is an oxide iron formation comprising
fresh magnetite banded iron formation (BIF) at depth, which weathers and oxidizes towards
the surface-forming caps of enriched hematite/martite–goethite ores [42–46].

The Nkout iron deposit is made up of three prospects, namely Nkout East, Nkout
Center, and Nkout West. The interest of the present study relates to Nkout Center, an iron
deposit formed of itabirites (oxidized facies of rich magnetite of the BIF type) [45]. The
mineralization of Nkout Center consists of cycles of finely laminated, crystalline to mas-
sively banded magnetite grading into coarsely crystalline, sheared magnetite aggregates
contained within a coarse-grained quartz–feldspath matrix often containing amphibole and
garnet. The magnetite ore horizons are bound by strongly foliated quartz–biotite amphibole
gneiss and metasediment. The mineral species, compositions, mineral associations, and
liberation have been studied using automated mineralogy (QEMSCAN) combined with
whole rock geochemistry and mineralogical techniques [42].

The available data for this study consist of 329 regularly spaced vertical diamond
drill holes in the Nkout Center area, with an average drill core recovery of 42%. The iron
grades have been assayed utilizing an industry-standard QA/QC program and composited
after assaying at a length of 3 m. The histogram of iron grade data (Figure 1) shows a
bimodal distribution. The first mode (the smallest) represents low grades (0–20%), while
the second mode represents high grades. The mean iron grade (48.08%) belongs to the zone
represented by the second mode.
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Figure 1. Histogram of composited iron grades.

The analysis of iron grade data (quantitative assay) in relation with the lithology
(visual log) suggests that the dataset can be partitioned according to lithological types.
Specifically, eight domains (denoted D1 to D8) corresponding to a unique lithology or to
similar lithological types were constructed (Table 1).
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Table 1. Geological domain definition.

Domain Description Code

Domain 1 Superficial iron-rich laterite and saprolite D1
Domain 2 Coarse-banded magnetite BIF D2
Domain 3 Fine-banded magnetite BIF D3
Domain 4 Undifferentiated rocks D4
Domain 5 Oxidized rocks (itabirites, hematite–magnetite BIF) D5
Domain 6 Granitic intrusions, pegmatite D6
Domain 7 Basal metasedimentary rocks D7
Domain 8 Gneiss rocks, amphibolite, schist, quartzite D8

Table 2 summarizes the main statistical characteristics of the iron grade in each domain
and globally. The last three domains (D6, D7, and D8) are ignored in the rest of the analysis
because they are waste domains (with a mean iron grade below 15%), and the focus is given
to D1 to D5 corresponding to economic ore. Figure 2 presents a plan view of the spatial
distribution of these lithological domains and the associated iron grades.

Table 2. Statistics of iron grade per geological domain.

Domain D1 D2 D3 D4 D5 D6 D7 D8 Total

Number of data 886 3022 2985 91 484 287 1378 1520 10,653
Proportion 8% 28% 28% 1% 5% 3% 13% 14% 100%
Minimum 1.69 0.78 3.8 3.96 3.6 0.38 0.38 0.6 0.38
Maximum 66.11 62.69 71.61 65.10 49.73 58.46 60.43 57.63 71.61

Mean 43.07 33.92 44.16 41.55 31.1 12.13 14.56 7.56 48.08
Median 47.23 36.06 44.13 43.53 34.52 7.60 9.84 3.71 44.5

St. deviation 13.90 8.42 13.34 14.12 9.23 12.78 12.45 8.59 10.51
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Figure 2. 3D representation (with local coordinates) of (a) ore domains (D1 to D5), (b) iron grade data
in these domains. The waste domains (D6 to D8) are mostly located at depth and are not represented.

Lagged scatter plots, as well as plots of the average grade as a function of the distance
to the geological domain boundaries, were used to perform boundary analysis of the iron
grade data in the ore domains (D1 to D5). Their analysis (Figures 3 and 4) suggested that
the boundaries between D1–D2, D1–D3, D1–D4, D2–D3, D2–D4, D2–D5 and D3–D4 are
soft, with an average iron grade that does not vary or varies little across the boundaries,
while D5 has a hard boundary (strong changes in the average iron grade) with D1 and, to a
lesser extent, D3 and D4. Overall, D5 seems to be a separate domain and we can construct
a group D1–D2–D3–D4 that will be considered jointly and D5 which will be the subject of
an individual analysis. This decision will be corroborated during the structural analysis
stage (next section), which will reveal that the spatial correlation of the iron grade in D5 is
much poorer than in D1 to D4.



Minerals 2022, 12, 1599 7 of 16Minerals 2022, 12, x  8 of 18 
 

 

 

Figure 3. Omnidirectional lagged scatter plots. The coordinates of the green points are the iron 

grades at data points located in two different domains at a distance of less than 40 m, hence being 

close to the domain boundaries. The red point represents the gravity center of the scatter plot. The 

identity line is represented in black, and the correlation coefficient r is indicated for all scatter plots. 

Figure 3. Omnidirectional lagged scatter plots. The coordinates of the green points are the iron grades
at data points located in two different domains at a distance of less than 40 m, hence being close to
the domain boundaries. The red point represents the gravity center of the scatter plot. The identity
line is represented in black, and the correlation coefficient r is indicated for all scatter plots.

Finally, it appears that the data from the central Nkout iron deposit present a combina-
tion of several types of boundaries. This leads to two modeling approaches:

• Separate local models: the aim is to characterize the spatial variability within each
lithological domain.

• Use a global model to describe the joint behavior of the group D1–D2–D3–D4 with
the approach described in Sections 2.2 and 2.3. Such a model would make it possible
to account for variations in the spatial correlation structure of the iron grade when
moving from one domain to another.
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Figure 4. Average iron grade as a function of the signed distance to the domain boundaries. The red
and blue curves represent the average grade in two different geological domains, and the dashed line
stands for the boundaries between both domains.

3.2. Geostatistical Modeling

To study the spatial dependence structure of iron grades, the nonergodic experimental
direct (within each domain) and cross (between domains) covariances [47] were calculated
along the horizontal and vertical directions, recognized as the main anisotropy directions,
for a horizontal lag multiple of 95 m, a vertical lag multiple of 15 m, and a lag tolerance of
half the lag. At first sight, the nuggets, sills, and correlation ranges differ with the domain
under consideration, with D2 having smaller ranges than the other domains (Figure 5). A
nugget + exponential covariance model with a geometric anisotropy was used for fitting
each direct or cross covariance for the iron grades in D1 to D4, leading to the parameters of
a multivariate exponential model (Equation (7)) indicated in Table 3.
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Figure 5. Experimental (crosses) and modeled (solid lines) direct and cross-covariances for iron
grade data in D1 to D5, calculated along the horizontal (black) and vertical (blue) directions. The
cross-covariances between D5 and the other domains are identically zero and are not represented.

Table 3. Parameters of fitted multivariate exponential model (D1 to D4).

Index of
First

Domain (i)

Index of
Second

Domain (j)

Nugget
Effect C0(i,j)

Sill C1(i,j) of
Exponential

Structure

Horizontal
Range (m) of
Exponential

Structure

Vertical Range
(m) of

Exponential
Structure

1 1 85 108.5 500 166.7
1 2 0 36.88 500 166.7
1 3 0 94.45 500 166.7
1 4 0 32.13 500 166.7
2 2 0 79.33 300 100
2 3 0 46.98 500 166.7
2 4 0 27.22 500 166.7
3 3 43 135.68 500 166.7
3 4 0 57.93 500 166.7
4 4 25 172.70 500 166.7
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The matrix C0 is positive semidefinite, which ensures the mathematical validity of the
nugget effect component. As for the exponential component, it is a multivariate Matérn
model (Equation (6)) with the shape factors matrix (ν) equal to 0.5 times an all-ones matrix
and complies with the sufficient condition given in [39] (Theorem 3A):

• ν is conditionally negative semidefinite;
• ν a2 (elementwise product and power) is conditionally negative semidefinite;
• C1 a3νν+3/2 exp(−ν)/Γ(ν) (elementwise products, powers, exponentials, and ratios) is

positive semidefinite.

Recall that a real symmetric matrix A of size n × n is positive semidefinite if its
eigenvalues are nonnegative, and is conditionally negative semidefinite if the symmetric
matrix B with entries B(i,j) = A(i,n) + A(n,j) − A(i,j) − A(n,n) is positive semidefinite [48].

Concerning the last domain (D5), a nugget + exponential covariance model with a
geometric anisotropy is also used for fitting the experimental covariance, leading to the
model parameters indicated in Table 4.

Table 4. Parameters of fitted univariate exponential model (D5).

Nugget
Effect C0

Sill C1 of Exponential
Structure

Horizontal Range (m)
of Exponential Structure

Vertical Range (m)
of Exponential

Structure

23.3 61.9 50 70

3.3. Cross-Validation

Leave-one-out cross-validation was performed to assess the adequacy of the proposed
model to the available data for D1–D4. Three approaches are analyzed comparatively:

1. The first approach (hereinafter, approach 1) is a cokriging using the multivariate
Matérn model and the additional conditions that the mean values in D1, D2, D3,
and D4 are locally the same (but unknown) due to the soft domain boundaries, as
explained in Section 2.3. This amounts to a model with stationarity in the first-order
moment (the mean value) and non-stationarity in the second-order moment (the
covariance, which varies with the domain).

2. The second approach (approach 2) uses the same covariance model but gets rid of the
previous restriction on the mean values; it is a classical ordinary cokriging where the
means are unknown and have no relationships between each other.

3. The last approach (approach 3) consists of ordinary kriging performed in each domain
separately, i.e., it also gets rid of the cross-covariances as if the domain boundaries
were hard.

For each approach, a moving neighborhood of half-size 500 m along the horizontal
directions and 200 m along the vertical direction, containing up to 40 data points, was
used. When estimating the iron grade of a given domain, classical ordinary cokriging
(approach 2) needs data of all the domains for the left-hand side matrix of the cokriging
system to be non-singular; however, this inconvenience can be bypassed by removing the
grade variables for which no data are available. For instance, when estimating the grade of
D1, if no data of D4 are found in the neighborhood, then it suffices to cokrige the grades of
D1–D3 (trivariate cokriging), instead of that of D1–D4 (quadrivariate cokriging). There is
no such inconvenience with ordinary kriging (approach 3) or with cokriging with related
means (approach 1), which only require the moving neighborhood to contain at least one
data point to yield a non-singular cokriging system.

Figure 6 shows examples of scatter plots between true and estimated iron grades for
approach 1, while Tables 5 and 6 present a summary of the cross-validation scores for all
three approaches. Overall, the scores differ from one approach to another, the differences
being stronger for the subset of data located close to a domain boundary (Table 6) than for
the full set of data (Table 5), as was expected. Approach 1 turns out to be the most accurate.
When ignoring the equality relationship between the mean values in the neighborhood of
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the domain boundaries, the scores significantly deteriorate in D1, D2, and D4 and slightly
deteriorate in D3, as observed when comparing approaches 1 and 2: in the subset of data
close to a domain boundary (Table 6), the mean absolute error (MAE) increases 7% in D1
and D2, 2% in D3, and 125% in D4, while the root mean squared error (RMSE) increases
27%, 16%, 4%, and 140%, respectively. When also ignoring the cross-correlations of the iron
grades across the domain boundaries, there is an extra loss of accuracy, although of small
magnitude (between 1% and 2% increase in RMSE for D1 and D4), as seen when comparing
approaches 2 and 3.
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gravity center (red dot) lies on the identity line, showing that estimates are globally unbiased.
Furthermore, the scatter plots fluctuate around the identity line, indicating that the estimates are
conditionally unbiased.

Table 5. Cross-validation scores for the estimation errors in D1 to D4 (full data set).

Approach Statistics Domain 1 Domain 2 Domain 3 Domain 4

Approach 1

Number of data 886 3022 2985 91
Mean 0.192 −0.147 0.000 −0.952
MAE 5.733 3.787 3.917 6.976
RMSE 7.691 5.984 5.762 10.017

Approach 2

Number of data 886 3022 2985 91
Mean error −0.057 −0.106 −0.012 3.940

MAE 5.838 3.808 3.934 10.301
RMSE 8.155 6.067 5.819 15.980

Approach 3

Number of data 886 3022 2985 91
Mean −0.019 −0.106 −0.011 3.828
MAE 5.848 3.810 3.940 10.332
RMSE 8.192 6.070 5.828 16.117

3.4. Block Models

Block model estimates of iron grade were constructed for each of the approaches
under consideration based on the available drill hole data and on a layout of the lithological
domains interpreted by mining geologists (Figure 7a). The same cokriging neighborhood
as in Section 3.3 was used. Each of the block models is a three-dimensional representation
of the spatial distribution of the iron grade in the study area (Figure 7b–d).
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Table 6. Cross-validation scores for the estimation errors in D1 to D4 (subset of data distant no more
than 6 m to a geological boundary).

Approach Statistics Domain 1 Domain 2 Domain 3 Domain 4

Approach 1

Number of data 282 264 563 33
Mean 0.920 −0.007 0.086 −1.243
MAE 4.496 3.477 4.505 6.754
RMSE 5.909 5.849 6.444 8.970

Approach 2

Number of data 282 264 563 33
Mean error 0.724 0.386 0.109 9.195

MAE 4.804 3.719 4.589 15.211
RMSE 7.526 6.772 6.675 21.523

Approach 3

Number of data 282 264 563 33
Mean 0.832 0.390 0.124 8.987
MAE 4.831 3.744 4.615 15.336
RMSE 7.617 6.815 6.712 21.893
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Figure 7. (a) Interpreted geological model showing the domain layouts; (b) estimated iron grade as
per approach 1; (c) estimated iron grade as per approach 2; (d) estimated iron grade as per approach 3.
Differences between the last three models near domain boundaries are clearly perceptible in the
sectors enclosed in the black ellipses. The total estimated volume is 259,900,000 m3.

Although the theoretical principle underlying the three approaches represented by
these figures are different, the block models and the total amount of iron resources are
similar (the mean iron grades are 35.00%, 35.09%, and 35.10%, respectively), the differences
being noticeable locally in the vicinity of the domain boundaries: approach 1 leads to
a block model with smoother grade transitions than approaches 2 and 3, for which the
transitions are sharper and the grade model looks more ‘fragmented’, with ‘hard’ geological
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boundaries; this difference stems from a better use of the sampling data of adjacent domains
when estimating the grade within a given domain.

3.5. Discussion

The presented case study highlights two topics that, in our opinion, deserve some
discussion. The first one relates to the use of stationary or non-stationary models to
represent a regionalized variable such as a metal grade in a mineral deposit, and the second
one relates to the benefits or lack of benefits of using cokriging instead of kriging.

As pointed out by numerous authors [14,40,49–51], stationarity is a property of the
stochastic model (i.e., of the abstract representation of the regionalized variable by a
random field), rather than of the regionalized variable itself, and cannot be refuted in
general. That is, stationarity is a model decision rather than a model assumption, a decision
that, in practice, considerably eases the statistical inference of the model parameters and is
motivated by the spatial homogeneity of the data. In mineral resource estimation, however,
data homogeneity is questionable when the data behavior strongly depends on the ore
type or the rock type, and geological domaining is a commonly accepted practice to deal
with heterogeneities.

Our approach builds on usual domaining practice and weakens the stationarity de-
cision regarding both the first- and second-order moments. On the one hand, with the
implementation of cokriging in a moving neighborhood, the mean iron grade is locally
constant, but it can vary between one neighborhood and another one. On the other hand,
the covariance function is constant within each geological domain, but its range and sill
can change between one domain and another one. Said another way, one assumes (or
rather, one decides) local stationarity for the mean value and ‘piecewise’ stationarity for the
covariance function, which makes the spatial structure identification problem approachable
with simple multivariate tools and without utilizing fully non-stationary models. For the
latter models, the reader is referred to [35,51–54] and references therein for an overview
of different alternatives; note that most of these assume that the variance (covariance at
the origin) is constant in space, while our approach can accommodate the case when the
variance changes between one geological domain and another one.

Regarding the second topic of discussion, in view of the somehow weak cross-
correlations between grades measured in different geological domains (0.49 between D1
and D3, 0.55 between D2 and D3, and less than 0.30 in the other cases, see Figure 3), one can
wonder whether cokriging outperforms kriging and is worth the effort. The cross-validation
results presented in Section 3.3 proves that there is a significant improvement in the borders
of D1, D2, and D4, and a slight improvement for D3. A close look at Table 6 shows that
most of the improvement originates from the related mean values (approaches 1 vs. 2),
rather than from the cross-covariances (approaches 2 vs. 3). So, even in the case of weak
spatial correlations between geological domains, we advocate for the use of cokriging, as it
allows accounting for the continuity of the mean grade across soft geological boundaries; a
feature that, regrettably, is omitted too often in mineral resource estimation [55].

4. Concluding Remarks

Accounting for geology, the dataset at Nkout Center deposit in southern Cameroon
has been divided into several subsets, each corresponding to a particular lithological type
or a combination of similar lithological types. A boundary analysis based on lagged scatter
plots suggested the coexistence of hard and soft boundaries between lithological domains,
with a preponderance of soft boundaries between four out of the five domains of interest.
The direct covariances, designed to measure the spatial dependence structure within each
domain, revealed dissimilarities in ranges, sills, and nugget effects across the domains.
This motivated the modeling of the direct and cross-covariances to represent the joint
grade behavior in the different domains, accounting for the correlations across domain
boundaries. It should be noted that the only variable under study is the iron grade, but the
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partitioning into domains leads to different, purely heterotopic, covariates, each associated
with a single domain.

In the presence of geological domaining, the simplest idea, widely adopted by prac-
titioners, is to consider each domain individually for geostatistical estimation. However,
when the domain boundaries are soft, the spatial correlation model to be built must inte-
grate the local variations within domains and the cross-correlations between domains. The
proposed approach takes advantage of the flexibility of the multivariate Matérn covariance
model, allowing the ranges, sills, and nugget effects to vary from one domain to another,
while minimizing the number of parameters in the coregionalization model. This yields
a locally stationary, but globally non-stationary behavior. Cokriging also allows one to
account for the fact that there are almost no variations in mean grade when crossing the
boundaries of the domains selected to be part of the defined ore group (D1–D2–D3–D4).

The cross-validation scores show that accounting for the grade correlation across
boundaries improves the traditional workflow where the estimation is held in each domain
separately. The scores are even better when one also ensures that the mean grade is locally
invariant from one domain to another.

In conclusion, accounting for the nature of the boundaries between geological domains
is essential when estimating mineral resources, and including an iterative boundary analysis
before moving on to the spatial analysis step can have a real impact in all mineral estimation
domain workflows. In the case of soft boundaries, the assumptions related to both the
moment of order 1 (mean value) and the moments of order 2 (direct and cross-covariances)
are decisive.

Although cokriging is optimal in terms of being unbiased and minimizing the variance
of the estimation error, it generally oversmoothes the reality. As a result, the block model
does not reproduce the behavior of the true grades as described by the defined structural
model. It would therefore be useful to continue this work by simulating the grades; one
can also advocate for simulating the geological domains to account for the uncertainty in
their boundaries.
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