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Abstract: The southwestern South China Block is one of the most important Sn polymetallic ore
districts in the world, of which the Dulong Sn-Zn polymetallic deposit, closely related to Late
Cretaceous granitic magmatism, contains 0.4 Mt Sn, 5.0 Mt Zn, 0.2 Mt Pb, and 7 Kt In, and is one
of the largest Sn-Zn polymetallic deposits in this region. In this paper, on the basis of a 3D model
of ore bodies established by the cut-off grade of the main ore-forming elements, the In grades were
estimated by the ordinary Kriging method and the In-rich cells were extracted. The 3D models of
strata, faults, granites, and granite porphyries in the mining area were established and assigned the
attributes to the cells, which built buffer zones representing the influence space of the geological
factors. The weight of evidence and artificial neural network methods were used to quantitatively
evaluate the contribution of each geological factor to mineralization. The results show that the
Neoproterozoic Xinzhai Formation (Pt3x), fault (F1), and Silurian granites (S3L) have considerable
control effects on the occurrence of In-rich ore bodies. The metallogenic predictions according to the
spatial coupling relationship of each geological factor in 3D space were carried out, and then the 3D-
space-prospecting target areas of In-rich ore bodies were delineated. In addition, the early geological
maps and data information of the mining area were comprehensively integrated in 3D space. The
feasibility of 3D quantitative metallogenic prediction based on the deposit model was explored by
comparing the two methods, and then, the 3D-space prospecting target area was delineated. The
ROC curve evaluation shows that the results of two methods have indicative value for prospecting.
The modeling results may support its use for future deep prospecting and exploitation of the Dulong
and other similar deposits.

Keywords: 3D deposit model; weight of evidence method; neural network method; metallogenic
prediction; the Dulong Sn-Zn polymetallic deposit; SW China

1. Introduction

Indium (In) is widely used in the aerospace, radio, electronic, and medical industries
and is defined as a “critical mineral” by many economically developed countries and
regions around the world. The types of skarn and massive sulfide deposits are the main
sources of indium, which account for 29% and 28% of global indium resources, respectively,
followed by epithermal and sedimentary Pb-Zn deposits, which account for 19.9% and
18.0% of the global indium resources, respectively [1,2]. The representative skarn In-rich
deposits in the world include Dulong and Dachang in China, Ayawilca in Peru, and
Tellerhauser and Pohla-Globenstein in Germany. Massive sulfide In-rich deposits include
Kidd Creek, Geco/Manitouwadge, and Heath Steele in Canada; and Gaiskoye, Podolskoye,
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and Sibaiskoye in Russia. Indium mainly forms in Zn and Cu sulfide ores. The main In-rich
sulfide is sphalerite, which accounts for 95% of global indium resources [3].

The Dulong Sn-Zn polymetallic deposit is located in the outer contact zone of the
southwest side of the Cretaceous granite. The mining area is about 8 km long from north
to south and 1.5 km wide from east to west. The Dulong mining area has proven reserves
of 0.4 Mt of Sn, 5 Mt of Zn, 0.2 Mt of Pb, 7 Kt of In, and 3 Kt of Cd, and it is also rich
in Ag, Cu, Ga, and Ge. The development and utilization values of the mineral resources
are high, and the mining area has considerable prospecting potential [4]. Indium exists
in the Dulong Sn-Zn polymetallic deposit as associated elements of polymetallic sulfide
ores, and its main carrier mineral is marmatite, with a small amount in chalcopyrite. The
In-rich ore bodies occur as stratified or stratiform-like in skarn, and the ore-bearing skarn is
mainly composed of diopside, tremolite, chlorite, epidote, and actinolite, whose occurrence
regularity are as follows: (a) The skarn and In-rich ore bodies are stratified, stratiform-like
or lenticular restricted in the Neoproterozoic Xinzhai Formation and are consistent with
the stratigraphic occurrence; (b) Occurs in the contact zone between marble and clastic
rocks and often forms multilayered skarn and In-rich ore bodies in the area where these
two types of rocks interact; (c) Occurs in the upper and lower plates of the fault (F1); (d)
The upper part of the Cretaceous granite ridge uplift is the site of concentrated occurrence
of the skarn and In-rich ore bodies. At present, the average drilling depth of the mine area
is about 312 m, and the risks of deep exploration are gradually increasing. Therefore, a
comprehensive analysis of the existing geological data and an exploration of the valuable
prospecting space in the deep and peripheral parts of the mine area are necessary in order
to improve the success rate of prospecting.

The deposit’s 3D geological model mainly includes models of ore bodies, strata, faults,
and magmatic rocks. The 3D ore body model is widely used to resource reserve estima-
tions [5–13]. 3D geological models can intuitively show the spatial forms of geological
bodies and reflect the spatial position relationships between geological bodies, with varying
degree of success [14–18]. Traditional 2D metallogenic prediction methods include the
weight of evidence, information value, neural network, logistic regression, and fractal
analysis methods. These 2D metallogenic prediction methods have played an important
role in regional metallogenic prediction, but are difficult in one given deposit [19–22].
Based on the establishment of the deposit model, this study reveals the control effects of
strata, faults, and granites on In-rich ore bodies using 3D weight of evidence and 3D neural
network methods. Additionally, a 3D quantitative metallogenic prediction was carried
out to explore the mining area’s deep and peripheral prospecting targets. The results can
provide clues for the same types of ore deposits.

2. Geological Background and Deposit Model
2.1. Geological Background

The Dulong Sn-Zn polymetallic deposit is located in the joint part of the Cathaysia,
Yangtze, Indochina, and North Viet blocks (Figure 1a). The main outcrop strata are Neo-
proterozoic, Cambrian, and Devonian. The Neoproterozoic Xinzhai Formation is the main
ore-bearing stratum of the Dulong Sn-Zn polymetallic deposit (Figures 1b and 2a). The
upper part of the Neoproterozoic Xinzhai Formation is composed of gray-green quartz-
mica schist, calcite marble, and skarn lenticles. The middle part is a composite lithological
section that composes of quartz-mica schist, marble, skarn, granulite, and a small amount
of gneiss with frequent changes in the lithofacies, complex rock assemblage, and skarn
geological bodies appearing in groups and zones. This is the main occurrence horizon of
the mining area’s Sn-Zn industrial ores. The lower part consists of marble lens and dark
gray biotite-plagioclase gneiss, biotite plagioclase hornblende gneiss, and granite gneiss, in
addition to plagioclase granulite with a small amount of garnet skarn and siliceous marble
lenticle.
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mudstones; 3—Devonian carbonate rocks; 4—Upper Cambrian dolomite and limestone; 5—Middle 
Cambrian dolomite and phyllite; 6—Upper Proterozoic marble and schist; 7—Lower Proterozoic 
schist and granulite; 8—Cretaceous granite; 9—Silurian gneiss granite; 10—fault; 11—deposit; 12—
3D geological modeling area. 

The well-developed south-north strike faults, which mainly interlayer dislocation 
faults with multistage activity characteristics, were observed with the same occurrence as 
strata in the mining area. Among them, the largest is the F0 fault that comprises the eastern 

Figure 1. Geotectonic location and regional geological map (modified using Ref. [23]). (a) The
geotectonic location of the Dulong Sn-Zn polymetallic deposit; (b) The regional geological map of the
Dulong Sn-Zn polymetallic deposit. 1—Triassic mudstone and tuff; 2—Permian siliceous rocks and
mudstones; 3—Devonian carbonate rocks; 4—Upper Cambrian dolomite and limestone; 5—Middle
Cambrian dolomite and phyllite; 6—Upper Proterozoic marble and schist; 7—Lower Proterozoic
schist and granulite; 8—Cretaceous granite; 9—Silurian gneiss granite; 10—fault; 11—deposit; 12—3D
geological modeling area.

The well-developed south-north strike faults, which mainly interlayer dislocation
faults with multistage activity characteristics, were observed with the same occurrence as
strata in the mining area. Among them, the largest is the F0 fault that comprises the eastern
boundary of the ore bodies. Moreover, the F1 fault is located in the middle of the mining



Minerals 2022, 12, 1591 4 of 16

area, and its hanging wall and footwall have ore bodies. The F2 fault is located parallel to
F0 and F1 in the mining area’s western section. The F3 fault strike is NE-SW, staggered to
the north-south fault, and has the characteristics of late activity (Figure 2b).

The Cretaceous granites have an outcrop area of about 153 km2. The granites can
be roughly divided into three sub-stages according to their evolutionary sequences [24].
The first sub-stage is gray-white porphyry-bearing medium-coarse-grained dimica granite,
accounting for 2/3 of the total outcrop area of the magmatic rock. The second sub-stage is
gray-white medium-fine-grained dimica granite, which intrudes into the first sub-stage
pluton in the shape of a rock cluster. The third sub-stage is gray-white granite porphyry,
which is interspersed in the early granite and metamorphic rock series in the shape of rock
branches and veins. The Silurian granite is medium-fine-grained, mostly metamorphic to
(eyeball-shaped) granite gneiss, and the zircon U-Pb ages are 427–436 Ma [25].

A series of dome-shaped metamorphic rocks are exposed around the Cretaceous
granite, which is called the “Laojunshan metamorphic core complex” [26,27], and the
metamorphic strata are mainly composed of the Neoproterozoic Xinzhai and Lower-Middle
Cambrian Formations, while the Upper Cambrian, Lower Ordovician, and Devonian
Formations also suffered from mild metamorphism. Metamorphism is dominated by
regional metamorphism, and strong migmatization occurs in the late stages.

2.2. Deposit Geology

The Dulong deposit is located in the southwest outer contact zone of the Laojunshan
granites. The stratigraphic trend is north-south, dips to the west, and the dip angle
is 10◦–35◦. The strata exposed in the mine area include the Middle Cambrian Longha
Formation, Tianpeng Formation and Neoproterozoic Xinzhai Formation, which are subject
to moderate metamorphism, and the Xinzhai Formation is the ore-bearing stratum of the
Sn-Zn polymetallic ore body. Normal faults are very well-developed in the mine area,
mainly as interstratified glide. The typical faults are F0, F1, F2, and F3, where F0 is the
eastern boundary of the ore body output; F1 has ore body output in both upper and
lower plates, which is closely related to the spatial location of the ore bodies; and F2 is
the boundary between the ore-bearing Xinzhai Formation and the Tianpeng Formation.
The exposed magmatic rocks in the mine area mainly include Silurian granite, Cretaceous
granite, and Cretaceous granite porphyry. Silurian granite is located in the lower plate
of fault F0, Cretaceous granite is exposed in the northern part of the mine area and the
burial depth gradually increases to the south, Cretaceous granite porphyry intrudes into
the aforementioned strata and granite in the form of veins, and there is no ore body output
inside the granite and granite porphyry. The alterations of the surrounding rocks in the
mine area mainly include marbleization, skarnization, silicification, etc. The types of skarns
mainly include chlorite skarn, epidote skarn, actinolite skarn, diopside skarn, tremolite
skarn, clinotetrahedrite skarn, and garnet skarn, among which chlorite skarn and actinolite
skarn have the best ore-bearing properties.

The ore bodies occur stratified, stratiform-like, or lenticular restricted in the Neopro-
terozoic Xinzhai Formation and are consistent with the stratigraphic occurrence. Metal
minerals mainly include marmatite, pyrite, chalcopyrite, cassiterite, pyrrhotite, and mag-
netite. Gangue minerals include diopside, chlorite, epidote, actinolite, clinozoisite, garnet,
tremolite, quartz, and calcite. Indium enters marmatite by coupled substitution as (Cu+ or
Ag+, In3+)↔(2Zn2+) and is mainly contained homogeneously in the marmatite [28].

2.3. Deposit Model

The Dulong Sn-Zn polymetallic deposit modeling area is 5.0 km wide from east to
west, 5.7 km long from north to south, and the surface elevation is 650–1768 m. The
minimum modeling elevation is −1000 m. The boundaries of the strata, magmatic rocks,
and ore bodies according to the geological survey and prospecting engineering data of the
mining area were determined using 3Dmine software, and the model of each geological
factor according to the occurrence of these boundaries was appropriately extrapolated
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(Figure 2a,b). The modeling strata include the Middle Cambrian Longha, Middle Cambrian
Tianpeng, and Neoproterozoic Xinzhai Formations. Our modeled magmatic rocks are
Cretaceous granite (K1H), Cretaceous granite porphyry (K2K), and Silurian granite (S3L).
Furthermore, our modeled faults are the F0, F1, and F2 NS-strike faults, and the F3 NE-
SW-strike fault. The ore bodies’ model with boundary grades of Zn 1.00%, Sn 0.15%,
and Cu 0.20% was established. It has been proven that if the cell division is too small,
it not only causes the geological phenomenon to be artificially divided, but also brings
inconvenience to the huge data processing work; if the cell division is too large, it makes
the morphological distribution of ore-bearing units unreliable. Taking into account the
strata, structure, granite, and ore-body occurrence and scale in the deposit model, as well
as the data processing capability of the computer, and taking a 20 m × 20 m × 20 m cube as
the unit block, the ore deposit modeling area was represented by 7,994,700 cells, of which
19,101 were ore-bearing cells (Figure 2a,b).
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Figure 2. Geology and In-rich ore bodies model in Dulong mining area. (a) Geological model of
mining area; (b) Faults and ore bodies model; (c) Indium-grade log–log plot of ore bodies; (d) Faults
and In-rich ore bodies model. ∈2l—Middle Cambrian Longha Formation; ∈2t—Middle Cambrian
Tianpeng Formation; Pt3x—Neoproterozoic Xinzhai Formation; K1H—Cretaceous granite; K2K—
Cretaceous granite porphyry; S3L—Silurian granite; F0-F3—Fault number.

The 3D spatial positioning for In-grade test data from drilling was carried out, and the
polymetallic ore body model by the ordinary Kriging method was estimated. Thus, the
In-grade attributes corresponding to 10,320 ore-bearing cells were obtained. In these cells,
the maximum, minimum, and mean values were 1780 g/t, 2 g/t, and 69 g/t, respectively.
The In-grade log–log plot of the ore bodies was obtained by fractal analysis (Figure 2c) and
calculated the grade boundary of the In-rich cells to be 60 g/t. The 3752 cells with indium
grades extracted were greater than 60 g/t, forming an In-rich ore model (Figure 2d).
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3. Prediction Method and Ore Control Factors
3.1. Weight of Evidence Method

Bonham Carter et al. (1988) and Agterberg (1989) first proposed the weight of evidence
method for multivariate statistics and the fusion of discrete data using probability and
Bayesian theory [19]. The posterior probability of determining the favorable area for
mineralization is obtained through the superposition and composite analysis of several
kinds of mineralization-related geological information. Each metallogenic factor is regarded
as an evidence factor of the metallogenic prospect, and the weight value of each evidence
factor represents its contribution to the metallogenic prediction [29]. The evidence weight
analysis needs to verify the conditional independence of different evidence and then
calculate the posterior probability of each basic unit divided into the study area. The value
represents the metallogenic probability, and the area where the posterior probability is
greater than the critical value is the metallogenic prospect area.

The modeling area is evenly divided into T units with the same volume, the number
of ore-bearing cells in the model is D, and P is the probability of any cell containing ore.

The formula of prior probability is:

Ppri = P(D) =
D
T

(1)

The priori probability (Opri) is:

Opri = O(D) =
P(D)

1− P(D)
=

D
T − D

(2)

where Opri is used to calculate the ratio of the prior probability of ore-bearing to non-ore-
bearing blocks in the attributes of each metallogenic geological factor.

The weight of any geological factor’s binary image is defined as:

W+ = ln
P(B/D)

P
(

B/D
) = ln

N(B ∩ D)/N(D)

(N(B)− N(B ∩ D))/(N(T)− N(D))
(3)

W− = ln
P
(

B/D
)

P
(

B/D
) = ln

(N(D)− N(B ∩ D))/N(D)

(N(T)− N(B)− N(D) + N(B ∩ D))/(N(T)− N(D))
(4)

In the formula, W+ represents that the weight value of each metallogenic geological
factor’s attribute exists within the prediction area, and W− represents that the weight value
of each metallogenic geological factor’s attribute does not exist within the prediction area.
If the weight value is 0, it means that the data in the prediction area is missing. B and B
represent the presence or absence of each metallogenic geological factor’s attributes in the
layer.

The correlation between geological factors and known ore-bearing units is represented
by contrast C:

C = W+ −W− (5)

The value of C being greater than 0 indicates that the attribute of the geological factor
is favorable for mineralization. This means it can participate in quantitative mineralization
prediction. A C value equal to 0 indicates that the attribute of this geological factor has
no guiding significance for metallogenic prediction, and a C value of less than 0 indicates
that the attribute of the geological factor is not conducive to mineralization and should be
discarded.

If the n evidence factors are conditionally independent from the ore-bearing unit
distribution, the logarithm of the posterior probability is:

ln
(

O
(

D
∣∣∣B1

k ∩ B2
k ∩ B3

k · · · Bn
k
))

=
n

∑
j=1

Wj
k + ln(O(D)) (6)
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The posterior probability Opos is expressed as:

Opos = exp

{
ln
(
Opri

)
+

n

∑
j=1

Wk
j

}
(7)

Wk
j =


W+ evidence factor
W− no evidence factor
0 missing data

(8)

The posterior probability is expressed as:

Ppos =
Opos(

1 + Opos
) (9)

The posterior probability of each favorable ore-forming factor was obtained through
the above calculation. The posterior probability value is between 0 and 1, and the higher
the value, the greater the possibility of bearing ore [30,31].

3.2. Artificial Neural Network Method

An artificial neural network (ANN) is a mathematical model composed of highly
nonlinear and linear operations and is established by simulating the thinking mode and
organizational form of the human brain. ANNs can automatically simulate the natural
relationships between variables when they are used to make prediction, carry out global
optimization searches, reduce manual interventions, and improve the accuracy of pre-
dictions [32,33]. Moreover, ANNs can be divided into feedforward and feedback neural
networks, as well as competitive learning networks. At present, the most widely used
multilayer perceptron and BP networks are feedforward neural networks.

The multilayer perceptron provided by the SPSS19 software is composed of several
perceptron layers and adjustable weight connections, generally including an input layer,
one or more hidden layers, and an occurrence layer. The input layer is used to store
predictive variables, the hidden layer contains nodes or cells that cannot be observed, and
the output layer contains output variables (Figure 3).
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3.3. Ore-Controlling Factors and Prediction Variable Selection

The Neoproterozoic Xinzhai Formation (Pt3x), faults (F0 and F1), Cretaceous granite
porphyries (K2K), Cretaceous granites (K1H), and Silurian granites (S3L) are geological
factors closely related to the ore bodies in the Dulong mining area. The search is from the
Xinzhai Formation floor to the interior of the strata, forming the distance attribute (Pt3x
distance). The Xinzhai Formation distance attribute ranges from 0 to 350 m and contains all
3752 In-rich cells (Figure 4a). The search is from the fault plane to both sides to determine
the distance attributes (F0 and F1 distances, Figure 4b,c). The F0 distance value contains
all In-rich cells in the range from 0 to 500 m, and the F1 distance value contains all In-rich
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cells in the range from 0 to 250 m. The search is from the granite porphyry vein to the
periphery to establish the distance attribute (K2K distance, Figure 4d). The K2K distance
value ranges from 0 to 750 m, which includes all indium-rich cells. The search is from the
granite roof to the outside of the contact zone to determine the distance attributes (K1H and
S3L distances) from the peripheral centroid point to the granite roof (Figure 4e,f). The K1H
distance ranges from 0 to 650 m, and the S3L distance ranges from 0 to 500 m, including all
In-rich cells. The 3D buffer zones were established according to the ore-bearing properties
of the peripheral space of each geological factor to represent the influenced space of the
strata, structure, and granite on mineralization (Figure 4).
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4. 3D Quantitative Metallogenic Prediction
4.1. Metallogenic Prediction by Weight of Evidence Method

The positive W+ and negative W− weights in the zoning intervals of each geological
factor were calculated according to the buffer zone of each geological variable, with 50 m
as the basic bandwidth (Table 1).
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Table 1. Statistical table of geological variable weight scores.

Geological
Variables

Distance
Interval

Number
of Ore

Blocks in
Zone

Number
of no Ore
Blocks in

Zone

Number of
Ore Blocks

Outside
Zone

Number of no
Ore Blocks

Outside Zone
W+ W− Contrast

C Sort

Xinzhai
formation

(Pt3x)

0~50 102 64,363 3650 7,926,585 1.2165 −0.0195 1.2359 39
50~100 802 66,550 2950 7,924,398 3.2452 −0.2321 3.4773 6
100~150 1355 64,918 2397 7,926,030 3.7945 −0.4399 4.2344 1
150~200 681 66,048 3071 7,924,900 3.0892 −0.1920 3.2812 9
200~250 557 67,496 3195 7,923,452 2.8665 −0.1522 3.0187 11
250~300 249 70,513 3503 7,920,435 2.0177 −0.0598 2.0775 21
300~350 6 73,400 3746 7,917,548 −1.7481 0.0076 −1.7558 58

Fault
(F0)

0~50 30 94,831 3722 7,896,117 −0.3949 0.0039 −0.3988 54
50~100 141 110,668 3611 7,880,280 0.9982 −0.0244 1.0226 41
100~150 274 113,660 3478 7,877,288 1.6359 −0.0615 1.6974 30
150~200 770 119,640 2982 7,871,308 2.6179 −0.2146 2.8325 13
200~250 837 125,076 2915 7,865,872 2.6569 −0.2366 2.8936 12
250~300 589 132,552 3163 7,858,396 2.2475 −0.1540 2.4015 18
300~350 334 138,231 3418 7,852,717 1.6382 −0.0758 1.7140 29
350~400 445 145,115 3307 7,845,833 1.8766 −0.1079 1.9845 23
400~450 303 150,811 3449 7,840,137 1.4537 −0.0652 1.5189 34
450~500 29 158,081 3723 7,832,867 -0.9398 0.0122 −0.9520 57

Fault
(F1)

0~50 886 82,661 2866 7,908,287 3.1280 −0.2590 3.3870 7
50~100 952 93,397 2800 7,897,551 3.0777 −0.2809 3.3586 8
100~150 1170 99,859 2582 7,891,089 3.2170 −0.3611 3.5782 4
150~200 664 107,693 3088 7,883,255 2.5750 −0.1812 2.7562 16
200~250 80 114,691 3672 7,876,257 0.3958 −0.0071 0.4029 48

Cretaceous
granite

porphyry
(K2K)

0~50 82 218,801 3670 7,772,147 −0.2254 0.0057 −0.2311 53
50~100 346 163,915 3406 7,827,033 1.5031 −0.0760 1.5791 32
100~150 475 172,750 3277 7,818,198 1.7675 −0.1135 1.8810 24
150~200 385 198,484 3367 7,792,464 1.4186 −0.0831 1.5017 36
200~250 333 221,363 3419 7,769,585 1.1644 −0.0648 1.2292 40
250~300 523 236,707 3229 7,754,241 1.5488 −0.1200 1.6688 31
300~350 450 230,613 3302 7,760,335 1.4245 −0.0985 1.5230 33
350~400 263 224,860 3489 7,766,088 0.9127 −0.0441 0.9568 42
400~450 182 226,482 3570 7,764,466 0.5374 −0.0210 0.5583 45
450~500 157 229,881 3595 7,761,067 0.3747 −0.0136 0.3883 49
500~550 190 229,624 3562 7,761,324 0.5666 −0.0228 0.5894 44
550~600 171 233,344 3581 7,757,604 0.4452 −0.0170 0.4622 47
600~650 94 233,387 3658 7,757,561 −0.1534 0.0043 −0.1577 52

Cretaceous
granite
(K1H)

0~50 43 177,989 3709 7,812,959 −0.6645 0.0110 −0.6755 55
50~100 108 186,994 3644 7,803,954 0.2071 −0.0055 0.2126 51
100~150 413 173,086 3339 7,817,862 1.6257 −0.0947 1.7204 28
150~200 317 162,447 3435 7,828,501 1.4246 −0.0677 1.4923 37
200~250 136 153,947 3616 7,837,001 0.6321 −0.0175 0.6495 43
250~300 246 147,643 3506 7,843,305 1.2666 −0.0492 1.3157 38
300~350 386 142,937 3366 7,848,011 1.7495 −0.0905 1.8400 26
350~400 382 137,890 3370 7,853,058 1.7750 −0.0900 1.8650 25
400~450 527 132,028 3225 7,858,920 2.1402 −0.1347 2.2749 20
450~500 550 124,884 3202 7,866,064 2.2386 −0.1428 2.3813 19
500~550 391 118,220 3361 7,872,728 1.9522 −0.0951 2.0473 22
550~600 229 112,180 3523 7,878,768 1.4696 −0.0488 1.5185 35
600~650 24 106,574 3728 7,884,374 −0.7348 0.0070 −0.7418 56



Minerals 2022, 12, 1591 10 of 16

Table 1. Cont.

Geological
Variables

Distance
Interval

Number
of Ore

Blocks in
Zone

Number
of no Ore
Blocks in

Zone

Number of
Ore Blocks

Outside
Zone

Number of no
Ore Blocks

Outside Zone
W+ W− Contrast

C Sort

Silurian
granite
(S3L)

0~50 32 40,709 3720 7,950,239 0.5153 −0.0035 0.5188 46
50~100 130 46,549 3622 7,944,399 1.7830 −0.0294 1.8125 27
100~150 263 44,562 3489 7,946,386 2.5313 −0.0671 2.5984 17
150~200 753 43,859 2999 7,947,089 3.5991 −0.2185 3.8176 3
200~250 846 43,842 2906 7,947,106 3.7159 −0.2500 3.9660 2
250~300 604 43,981 3148 7,946,967 3.3758 −0.1700 3.5458 5
300~350 319 44,444 3433 7,946,504 2.7270 −0.0833 2.8103 15
350~400 451 44,394 3301 7,946,554 3.0744 −0.1225 3.1969 10
400~450 323 44,459 3429 7,946,489 2.7391 −0.0844 2.8235 14
450~500 30 44,382 3722 7,946,566 0.3644 −0.0025 0.3668 50

The contrast C value represents the strength of correlation between ore-controlling
geological factors and mineralization [34]. The top 10 geological factors of contrast C values
in each zone are mainly the Xinzhai Formation (Pt3x), Silurian granites (S3L), and fault
F1. The ore bodies are strictly limited in the Xinzhai Formation (Pt3x), and the C value is
high, 100–200 m away from the stratum floor, which is conducive to mineralization. The
metamorphic zone that is 150–400 m away from the Silurian granite roof (S3L) has a high
C value, which is conducive to mineralization. The C value of the spatial range 0~150 m
away from the F1 fault plane is high, which is conducive to mineralization. The positive
weight W+ value of each geological factor’s zoning interval with a C value was assigned
greater than 0 to the cells in the zoning interval and calculated the posterior probability
Ppos value of each cell.

The ROC curve can be used to determine the best prediction boundary of the binary
classification and to evaluate the prediction ability. The optimal prediction boundary by
the “Youden index”, that is, sensitivity-(1-specificity), was determined, and the boundary
value corresponding to the maximum value of the index value is the optimal prediction
boundary.

A total of 3,086,482 posterior probability Ppos values were obtained through the cal-
culations, the minimum, maximum, and mean values were 0.0011, 0.9999, and 0.1035,
respectively, the variance was 0.0756, and the standard deviation was 0.2749. After taking
the Ppos value of the cell as the test variable and determining whether it belonged to the
In-rich cells as the state variable, our ROC curve analysis showed that the best prediction
boundary of the Ppos value for the In-rich ore bodies was 0.820. We obtained a total of
247,555 cells (Ppos > 0.820) according to the prediction boundary, of which 3665 cells be-
longed to In-rich cells. The high value of the posterior probability Ppos of the prediction
space was mainly distributed in the In-rich cells and the southwest of the mining area. The
deep space in the south and west of the mining area can be used as a prospecting target
space (Figure 5).
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4.2. Metallogenic Prediction by Artificial Neural Network Method

The In-rich attribute of the cell was taken as the dependent variable in the SPSS
software, and the distance attribute from the centroid point was taken to the floor surface
of the stratum, the fault plane, the granite porphyry, and the granite roof as the covariate.
Additionally, the multilayer perceptron was used to predict the mineralization by the
artificial neural network method.

The software evaluated the importance of each geological variable when performing
the artificial neural network metallogenic prediction (Figure 6). The results show that the
faults (F1, 0.349), the Xinzhai Formation (Pt3x, 0.286), and Silurian granites (S3L, 0.199), had
a greater impact on the metallogenic prediction.

Because the In-rich attributes of the cells are the categorical dependent variables (1
and 0 represent the In-rich and non-In-rich cells, respectively), the prediction result is
the pseudo-probability of the In-rich cell (the In-rich attribute is 1). A total of 379,647
pseudo-probability values were obtained through the calculations, with the minimum,
maximum and mean values of 0.000, 0.392, and 0.102, respectively, a variance of 0.000, and
a standard deviation of 0.016. Using ROC curve analysis and taking the pseudo-probability
as the test variable to determine whether it belonged to the In-rich cell as the state variable
suggested that the optimal prediction boundary of the pseudo-probability for the In-rich
ore bodies was 0.007. A total of 215,723 unit blocks (pseudo-probability > 0.007) were
obtained according to the prediction boundary, among which 3287 unit blocks belonged to
indium-rich unit blocks. The high pseudo-probability of In-rich ore bodies in the prediction
model was mainly distributed in the In-rich and the southwest cells of the mining area.
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The deep space in the southwest of the mining area can be used as a prospecting target
space (Figure 7).
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5. Discussion
5.1. Considerable Ore-Controlling Geological Factor

The weight of evidence method reflects the importance of geological factors in a given
zoning interval through the contrast C value. The artificial neural network method takes
the geological factors involved in the prediction as the dependent variable and evaluates
its importance. The Neoproterozoic Xinzhai Formation (Pt3x), fault F1, and Silurian granite
(S3L) are of great significance for metallogenic predictions based on the evaluation results
of this study regarding the importance of the two methods to geological factors.

The main ore bodies of the Dulong Sn-Zn polymetallic deposit are parallel to the strata
layers of the Neoproterozoic Xinzhai Formation (Pt3x), and they are prone to skarnization
and the formation of industrial ore bodies in the contact zone between carbonate and
clastic rocks. Therefore, the control effects of the fixed horizon and lithofacies combination
space are conducive to the selective metasomatism and mineralization of ore-bearing
hydrothermal fluids.

The hanging wall and footwall of the fault (F1) are the main spaces for ore-body
occurrence. Some studies have believed that the fault is an ore-conducting and ore-hosting
structure. Therefore, the F1 fault plane and the surrounding space are favorable for metal-
lization.

The results of the evidence weight and artificial neural network methods show that the
Silurian granite (S3L) is promising for prospecting, which may be related to the composite
of various geological interfaces in the mining area’s Cretaceous granite roof. The interface
surface is also the floor of the Xinzhai Formation and the plane of fault (F0). Above, the
control effect of the Xinzhai Formation on mineralization was described. The upper part
of the fault (F0) is the ore bodies’ occurrence space, and the lower part has no ore. The
fault plane acts as a geochemical barrier to the ore-forming fluids. The space above the
Cretaceous granite roof is favorable for mineralization.

In addition, the cassiterite U-Pb ages of the deposit are 82.0–96.6 Ma [35], which are
close to the ages of Cretaceous granites and granite porphyries (K1H and K2K). Hence, the
Cretaceous granites play a considerable role in mineralization. However, there are fewer
occurrences of ore bodies in contact zones of the Cretaceous granites and granite porphyries
(K1H and K2K). For example, the zoning statistical results of the evidence weight method
show that the contrast C value of the zoning interval of Cretaceous granite (K1H) 0–300 m
from the granite roof is not high (Table 1), while the most favorable space for mineralization
reflected by the contrast is the zoning interval of 400–550 m from the granite roof. Therefore,
the evidence and neural network methods mainly consider the spatial position relationship
between the geological factors and the ore bodies. The prospecting target areas delineated
by these two methods reflect the spatial coupling of various geological factors.

5.2. Comparison of Forecasting Methods

The area under the ROC curve (AUC) is a considerable evaluation index, and its
probability value is between 0.00 and 1.00. It can intuitively and quantitatively evaluate the
quality of the prediction model by combining it with the shape of the ROC curve. An AUC
= 0.50 indicates that the classifier is similar to a random guess with no predictive value,
while AUC = 1.0 indicates a perfect classifier [36].

According to the prediction results, the weight of evidence and artificial neural net-
work methods were gathered, the posterior probability Ppos and pseudo-probability values
are the test variables, and whether it belongs to the In-rich cell determines its use as the
state variable to draw the ROC curve (Figure 8). The results show that the AUC values of
the evidence weight and artificial neural network methods are 0.805 and 0.730, respectively.
However, the weight of evidence method’s prediction capability is better than that of the
artificial neural network method. It is speculated that the weight of evidence method car-
ried out detailed zoning for each geological factor’s buffer zone and excluded the influence
of low-contrast zoning on the metallogenic prediction. The prospecting space predicted by
the two methods was basically the same (Figures 6 and 7).
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5.3. Prospecting Target Area

The geological variables such as strata, structures, and granites in the evaluation range
were included by using the weight of evidence and artificial neural network methods. The
units with prospecting potential are mainly distributed in the southwest of the mining area
through calculation. Therefore, this area was delineated as the prospecting target area of
In-rich ore bodies (Figure 9).
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6. Conclusions

The results from evaluating ore-controlling geological factors by the weight of evidence
and artificial neural network methods show that the Neoproterozoic Xinzhai Formation
(Pt3x), fault (F1), and Silurian granites (S3L) have considerable control effects on the oc-
currence of In-rich ore bodies. The results of the ROC curve evaluation show that the
prediction space delineated by the weight of evidence (AUC = 0.805) and artificial neural
network methods (AUC = 0.730) has an indicative value for prospecting. The two target
delineation methods reflect the spatial coupling of ore-controlling factors. The prospecting
target areas obtained for In-rich ore bodies will be informative for future prospecting work
in the Dulong mining area.
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