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Abstract: The concentric layers of ooids from the modern environment are mostly aragonite and
those from the ancient are mostly calcite and Mg-calcite. Dolomitic ooids are rare and are usually
formed via the replacement of aragonite or calcite. Here, dolomitic ooids were found in the Pliocene
Shizigou Formation in the Qaidam Basin, Northern Tibet Plateau. This paper focuses on whether
the dolomitic ooids is a primary precipitate. Optical microscope and scanning electron microscope
observation, combined with X-ray diffraction and cathodoluminescence analyses, indicate that the
primary mineral of the ooid cortices is poorly ordered dolomite. Extracellular polymeric substances
and pyrite were found in the ooids, indicating that the microbe participation was involved in the
formation of the ooids. Firstly, the ooids grow on the offshore lake floor. Due to the involvement of
sulfate-reducing bacteria and dissolved silica, the nanominerals were precipitated on extracellular
polymeric substances. Then, the ooids were transported to strong hydrodynamic surf zones, where
the random nanominerals were abraded to form flattened plates as a new polished layer. In addition,
a comparison between the carbon and oxygen isotopic compositions and minerals of ooids from
different periods indicate that the Pliocene lakes had a lower salinity and were more humid than
Pleistocene lakes. Therefore, ooids may be an effective proxy for reflecting the climatic change and
uplift history of the Tibet Plateau.

Keywords: ooids; salt lake; sulfate-reducing bacteria; Pleistocene; Qaidam Basin

1. Introduction

Ooids are spherical or ellipsoidal grains with concentric layers of carbonate, which
accrete around a nucleus composed of a material such as a lithoclast, bioclast, or siliciclastic
grain [1]. Ooids are found in both ancient and modern sedimentary environments [2–5].
However, whether the formation of ooids is an inorganic or organic process has been de-
bated over several centuries. The widely accepted theory is that the formation is attributed
to a physicochemical process, which emphasizes the formation of inorganic carbonates
through direct chemical precipitation from water [6,7]. Recently, by applying new technolo-
gies and integrative approaches, it has been suggested that microbes play a key role in the
formation of ooids [8–12]. Metabolic activities can change the water chemical condition,
leading to carbonate mineral formation [8,9]. Although the origin of ooids is controversial,
they contain abundant geochemical and petrographic information. Thus, ooids can be
used as paleoclimatic and paleoceanographic proxies that reflect the water temperature,
chemistry, redox state, salinity, and carbonate saturation state of their environment [13–16].
The mineral compositions of ooids may undergo variations through geological history [17].
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Aragonitic layers dominate in modern ooids, whereas the concentric layers of ancient ooids
are mostly composed of calcite and Mg-calcite [17,18]. The primary mineral of ooids may
further provide a more accurate clue to understand paleo-water chemistry [17]. In order
to reconstruct the paleoenvironmental conditions, the identification of an ooid’s primary
mineral is necessary.

Here, we report the first discovery of dolomitic ooids in the Pliocene Shizigou For-
mation from the Qaidam Basin. Combining X-ray diffraction data, scanning electron
microscope (SEM) observations, and carbon and oxygen isotopic compositions of the ooids,
the primary mineral of the ooids was identified to be dolomite, and its origin is discussed.
The Qaidam Basin lies in the northeastern Tibetan Plateau, which deposits thick layer of
Cenozoic lake sediments and has recorded tectonic and climatic changes since the Pale-
ocene epoch [19]. Previous studies have focused on geochemical, magnetic, mineral, grain
size, and paleontology to study the climatic changes of the Qaidam Basin [19–23]. The
climatic change and uplift history of the Qaidam Basin could have led to the oscillations
of minerals by controlling the depositional environment [20]. Aragonitic ooids were often
formed in the Pleistocene [23,24], but ooids are less reported in the Pliocene. In this study,
we discovered dolomitic ooids in the Pliocene Shizigou Formation, which are different
from the ooids formed in the Pleistocene. By discussing the origin of dolomitic ooids and
comparing them with the ooids developed in the Pleistocene, it can be determined whether
the ooids can reflect the climatic change and uplift history of the Tibet Plateau.

2. Study Area

The Qaidam Basin, located on the northeastern Tibetan Plateau (Figure 1a), is a large
intermountain basin (~700 km × 300 km) [25]. It is surrounded by the Kunlun Mountains
to the south, the Qilian Mountains to the north, and the Altyn Mountains to the northwest
(Figure 1b). The basin sits at an elevation of 2800–3300 m and is a vast arid region [25]. The
basin’s annual evaporation is over 20 times greater than its annual precipitation [21]. The
mean annual temperature is about 0–5 ◦C [23]. The Qaidam Basin is the largest Cenozoic
sedimentary basin within the Tibetan plateau [26]. Its formation was closely related to the
India–Asia collision. The Cenozoic tectonic evolution history of the Qaidam Basin under-
went three stages: the strike-slip basin stage (60–46 Ma), the foreland basin development
(46–2.4 Ma), and the intermontane basin stage (2.45–0 Ma) [27]. The Cenozoic strata in the
Qaidam Basin exceed a thickness of 12,000 m [19], and were deposited mainly in a fluvial-
lacustrine environment that includes alluvial fans and fluvial, delta and lake sediments [28].
This Cenozoic stratigraphy can be divided into the following seven formations: the Lulehe
Formation (E1+2), the Xiaganchaigou Formation (E3), the Shangganchaigou Formation (N1),
the Xiayoushashan Formation (N2

1), the Shangyoushashan Formation (N2
2), the Shizigou

Formation (N2
3), and the Qigequan Formation (Q1) [19,29]. This study area lies on the

Yahu Anticline, located in the central Qaidam Basin (Figure 1b). At this study location,
the Shizigou Formation (5.2 Ma to 2.6 Ma) is dominated by marginal lakes and mud-flat
environments with fluvial contribution [30]. The Qigequan Formation is dominated by
evaporite lithofacies [30]. A well, Z1, was drilled in this area and a sample (Z1-15) was
collected from the Shizigou Formation at a depth of 1500 m (Figure 2).
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Figure 1. Location of the study area. (a) location of the Qaidam Basin; (b) location of the sample in
the Qaidam Basin. Satellite image taken from Google Earth.
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Figure 2. Sedimentological and petrophysical characteristics of the well Z1.

3. Materials and Methods

The sample Z1-15 was divided into three parts (A1, A2 and A3) for different analyses.
Sample A1 was used for optical microscope and cathodoluminescence observations. Two
polished thin sections were prepared from sample A1. One section was stained with
Alizarin Red S and K ferricyanide and was imaged under a polarization microscope
with a photo-collecting system (Zeiss Axioscope A1 APOL). The other section was used
for cathodoluminescence (CL) analyses using an Olympus microscope equipped with a
CL8200-MKSCLinstrument. To acquire more microinformation about the sample, sample
A2 was used for SEM observation. Two polished thin sections and one fresh section were
prepared for SEM. One thin section was prepared via Ar ion milling (685.C, Hitachi High-
Tech) with an accelerating voltage of 5 kV and a milling time of 0.5 h. The other thin
section and the fresh section were coated with carbon to render them conductive. Three
sections were mounted on aluminium stubs and imaged using a Zeiss MERLIN Compact
field emission scanning electron microscope (FESEM) with an X-ray energy dispersive
spectrometer (EDS) (Xflash/30, Bruker). Lower accelerating voltages (1 kV) with working
distances of approximately 5mm were used on the thin section milled by Ar ion. The other
thin section and the fresh section were observed using the higher accelerating voltages of
5 kv, 10 kv, or 15 kv, and working distances of about 8 mm. Both secondary electron (SE)
and angle-selective backscatter (ASB) images were acquired. The ooid size and cortical
thickness were obtained from SEM micrograph images using the ImageJ software.

Sample A3 was crushed into 200 mesh powders by using an agate mortar for carbon
and oxygen stable isotope analyses and whole-rock minerals. A minor amount of powders
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reacted with 100% orthophosphate at a temperature of 90◦C to obtain CO2. The carbon
and oxygen isotope compositions of CO2 were analyzed using a Thermo Fisher Delta
V-GasBench II mass spectrometer. Carbon and oxygen isotope compositions of samples
were expressed with respect to the Vienna PeeDee Belemnite (V-PDB) standards. Replicate
measurements of the standard were 0.06‰ for δ13C and 0.08‰ for δ18O. Whole-rock
minerals were analyzed using a Rigaku Ultima IV X-ray diffraction (XRD) analyzer with
Cu-Kα radiation, a voltage of 40kV, and a current of 40 mA. The quartz (d101 = 3.343 Å)
was used as an inter-standard to correct the peak. The ratio of the intensity of the (015)
reflection to the (110) reflection (R) was used for estimating the degree of cation ordering in
the dolomite [31]. The Mg content of the dolomite was calculated by using the method of a
diagram of MgCO3 % vs. d104, which was constructed by Fang and Xu [32].

4. Results
4.1. Mineralogy

The XRD patterns show that the sample is constituted of dolomite and calcite
(Figures 3 and S1). The (104) plane d-spacing (d104) in the calcite of the sample is 3.029 Å.
According to the method for calculating the Mg content of the calcite [32,33], the value of
MgCO3 is only 1.9 mol%. Generally, calcites containing >4 mol% MgCO3 are considered to
be high-magnesium calcite, and, conversely, those containing <4 mol% MgCO3 are called
low-magnesium calcite [34]. A linear relationship exists between the increase Mg2+ content
and the decrease in the (104) d-spacing (larger 2θ value) in calcites [35]. Figure 3 shows
that the (104) reflection in the sample (Figure 3c) is located between optical-grade calcite
(Figure 3d) and high-magnesium calcite (Figure 3b). Thus, the calcite in the sample is
considered to be low-magnesium calcite.

The (015) reflection is the most intense “ordering” reflection (indicating alternating
layers of Mg and Ca) observed out of all the dolomite XRD patterns (Figure 3a) [36].
The (015) reflection displays decreasing intensity alongside disorder [31]. The ordered,
stoichiometric dolomite shows nearly equal intensities between the two reflections (R = 1)
in the XRD patterns (Figure 3a). The (015) reflection in this sample has a weak intensity
(Figure 3c). The ordering state of the dolomite in this sample is 0.11, which means it is
poorly ordered. The d104 of the dolomite of the sample is 2.912 Å. The Mg content of the
dolomite was calculated by using the diagram of MgCO3 % vs. d104 [32]. When the d104
is 2.912 Å, the content of Mg ranges from 40 mol% to 55 mol% and is constrained by the
lowest and highest cation ordering state. Combined with the order parameter of 0.11, the
Mg content of the dolomite in the sample is about 50.5 mol%.

4.2. Characteristics of Ooids and Stable Isotopic Compositions

The sample consists of gray-white, well-sorted ooids (Figure 4a,b). The thin-section
observation indicates that the sample is constituted of dolomitic ooids with calcite cement,
and micritic ooids that are commonly dark and nearly opaque (Figure 4c,d). The calcite
is red in the thin section, whereas the dolomitic ooids have no color (Figure 4d). All of
the ooids display spherical or ovoid shapes (Figure 4c,d). The thin-section observation
shows that the ooids have concentric or radial-concentric cortices (Figure 4c), whereas
the dolomitic ooids display concentric cortices by observing the CL and ASB images
(Figures 4e,f and 5a). The ooids mainly consist of micritic dolomite (Figures 5a,b and S2),
whereas euhedral dolomite crystals develop on the surface of the ooids (Figure 5c,d). The
minerals in the nucleus are mostly micritic dolomite with a minor clay mineral (kaolinite)
and pyrite (Figures 5a,e,f and S2), and some are quartz or albite (Figures 5b and S2). The
CL observation indicates that the calcite cement displays a light-orange luminescence and
that the ooids show concentric dark and orange luminescence (Figure 4e,f). A total of
402 ooids were counted to identify grain sizes in the sample. The size of the ooids in
the sample ranges from 144.7 µm to 1076 µm with a mean value of 431.3 µm, and with
a majority of the ooids being a size from 244 µm to 544 µm (Figure 6a). The thickness of
the cortices is from 41.4 µm to 312.7 µm with a mean value of 125 µm, and most have a
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thickness distributed from 71 µm to 161 µm (Figure 6b). The sample has a δ13CVPDB value
of −0.7‰ and a δ18OVPDB value of −5.4‰.
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Figure 4. Hand sample Z1-15 and photomicrographs of the sample. (a) Photograph of the hand
sample Z1-15, which consists of well sorted ooids; (b) stereoscopic photograph of the thin section
of gray-white ooids; (c,d) cross-polarized-light images of the ooids show spherical or ovoid shapes
ooids; (e,f) CL images reveal concentric dark and orange luminescence for ooids and light orange for
calcite cement.
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Figure 5. Scanning electron micrographs of the sample. (a,b) ASB images show concentric mi-
critic dolomitic layer, micritic dolomitic and quartz nucleus, and pyrite in nucleus and cortices;
(c) SE image shows that planar-e (euhedral) dolomite crystals were developed on the surface of
ooids and in the pores; (d) SE image shows inner micritic dolomite with a plate pattern and outer
euhedral dolomite crystal with a rhombic shape; (e) SE image shows minor kaolinite in the nucleus;
(f) SE image shows that pyrites developed in the micritic dolomitic cortices.
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5. Discussion
5.1. Primary Mineral of Ooids

The cortex layers of ooids from the modern marine environment are mostly composed
of aragonite, and sometimes, they consist of high-Mg calcite in the marine hypersaline
environment [37–39]. In contrast to marine ooids, the cortex layers of lacustrine ooids are
generally aragonite [1]. As aragonite and high-magnesium calcite belong to the metastable
mineral groups, they are almost completely transformed into low-magnesium calcite under
the influence of diagenesis, therefor, ancient ooids are characterized by having calcite
and low-magnesium calcite [1,17]. Dolomitic ooids are also found in ancient eras, such
as the Neoproterozoic, the Paleoproterozoic, the Cambrian, etc. [40–42]. Dolomitic ooids
are most commonly formed via the replacement of aragonite or calcite, and retain some
information about the original mineral characteristics and textures [17]. In the Qaidam
Basin, the dolomitic ooids was found in the Pleistocene and shows the dolomite replacement
of the aragonite, indicating that the primary minerals of the cortex layers of ooids are
aragonite [24]. If the Ca-Mg carbonate is ordered, then it is dolomite; otherwise, it is not
dolomite [43]. From the XRD patterns, it was identified that the Ca-Mg carbonate of this
study was ordered, even though the ordering state of the dolomite is low. Our studied
ooids consisted of nonplanar micritic dolomite and outward planar-e (euhedral) dolomite
crystals (Figure 5c,d). The SEM images of the ooids do not show aragonite and its textures
in the cortex layers of the ooids (Figure 5a,b). A few calcite found in the ooids’ cortices
occurred in some destroyed ooids, implying that the calcite was filled in during the later
diagenesis, such as with the calcite cement in the sample, meaning that calcite is not the
original mineral (Figure 4f). These features indicate that the primary minerals of the ooid
cortices may be dolomite. The dolomite developed on the surface ooids and in the pores,
presenting coarse euhedral crystals, which indicate that these dolomites were formed after
the ooids were deposited.

Dolomite cannot be directly precipitated from modern seawater, and it is difficult
synthesize in the laboratory under Earth surface conditions, which, due to hydration effects,
hinder Mg2+ into the crystal lattice of the dolomite [44–46]. In contrast, recent studies show
that dolomites can form at low temperatures through microbial-organic mediation with
sulfide, silica, and clay minerals, which is supported by both laboratory experiments and
field observations [47–55]. Sulfate-reducing bacteria play an important role in dolomite
formation [47]. Sulfate reduction is an important redox process that assists in the conversion
of SO4

2− to HS−. Dolomite occurs alongside the pyrite formed by sulfate-reducing bacteria
in modern lakes [56,57]. The ASB images show the presence of micritic dolomite mixed
with pyrites in the sample (Figure 5a,b). The elemental mapping of the ooids shows that
nutritional elements such as P and Fe were detected, indicating that microbial remnants
are present in the ooids (Figure 7). These findings indicate that the formation of dolomite
is associated with sulfate-reducing bacteria. The CL properties of carbonate minerals
reflect the spatial distribution of Fe and Mn ions [58]. In carbonate mineral, Mn2+ is the
most important activator of CL, whereas Fe2+ is a quencher [59,60]. The CL images of
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the dolomitic ooids in the sample show a dark luminescence, which reflects more Fe2+

or low Mn2+ distributed in the ooids (Figure 4e,f). Combined with the Fe elemental
mapping and the occurrence of the pyrite, more Fe2+ contents should lead to the ooids
having a dark luminescence. This result also proves that micritic dolomite was formed
through a reducing condition. Microbial sulfate reduction can produce dissolved sulfide in
water, which enhances the Mg2+ incorporation into the calcitic structure and result in the
precipitation of dolomite [51]. In addition, dissolved silica in water can also promote Mg2+

incorporation into the Ca-Mg carbonates, promoting dolomite nucleation and growth [55].
The elemental mapping of the ooids shows amounts of Si in the core (Figure 7). Thus,
dissolved silica may be another important factor that enhances dolomite formation, with
the exception of the microbial sulfate reduction. Dolomite formed at room temperature
is often disordered dolomite or protodolomite [36,51,61]. When the sediments are buried,
the protodolomite is converted into ordered dolomite due to increasing temperature and
pressure [36]. During an early burial, dolomite crystals formed on the surface ooids and in
the pores (Figure 5d). With the dissolved silica and sulfide concentration drawn down in
the pore water, the Mg2+ cannot enter into the calcitic structure, which leads to dolomite
growth ceasing and calcitic cement occurring (Figure 5a).
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5.2. Origin of Ooids

The mechanisms of ooid formation have been attributed to inorganic (physicochem-
ical progress) or organic (biological progress) origins [1]. Based on the genesis of the
dolomite above, it was found that dolomite is formed through microbial mediation. There-
fore, the origin of ooids could be related to microorganisms. A biologically mediated
process for ooid formation follows two processes: (1) a biologically induced mechanism
(active mineralization) induces mineral precipitation though the microbial interaction with
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the environment; and (2) a biologically influenced mechanism (passive mineralization)
provides mucilaginous material or extracellular polymeric substances (EPS) that act as a
template for mineral precipitation [1]. SE images show that EPS was found in the cortex
layers of ooids and nanodolomites mixed with EPS (Figure 8a). Through observations of
the thin section milled by Ar ion, pyrites and EPS appear in the same area (Figure 8b).
All together, these findings provide evidence that the formation of ooids is attributed
to the biologically mediated mechanism. If the formation of ooids is entirely attributed
to an organic process, they would grow in a quiet water environment with radial cor-
tices [1]. Although some ooids present radial-concentric cortices, as seen in the thin section
(Figure 4c), the dolomitic ooids display concentric cortices, as seen in the CL and ASB
images (Figures 4e and 5a). Scanning electron microscopy analyses of ooid cortices reveal
dolomite with plate morphologies, and nanograins along the edges of the plate (Figure 8c,d).
SE images of etched ooids show concentric laminations and nanograins aligned parallel to
the laminae due to the nanocrystal dolomite aggregate running along lamellae directions
(Figure 8e,f). These textural features indicate that the ooid cortices underwent textural
changes. At the early stages of ooid accretion, the ooid cortices consisted of dolomitic
nanograins with a random pattern (Figure 8g). The mutual impact of the ooids allows
the nanograins to flatten and combine with each other to form plates that are oriented
parallel to the laminae (Figure 8d,h). Therefore, ooid growth needs a strong hydrodynamic
environment such as the surf zone, as this environment provides the force necessary for
inter-grain collision.

The formation of ooids generally requires alternating agitated and resting stages [1,6].
These two stages often occur in the surf zone controlled by waves [1,6]. The textural
characteristics of ooid cortices indicate that ooids are formed in a strong hydrodynamic
environment, but microbial activity such as that of sulfate-reducing bacteria requires calm
waters. Therefore, the surf zone of beaches with strong hydrodynamics does not meet
the condition for ooid formation. Instead, the ooids could grow on the offshore lake floor
away from the turbulent surf zones, where the sulfate-reducing bacteria and dissolved
silica lead to nanograin mineral formation and the EPS matrix serves as the nucleation
template for nanomineral precipitation. When the lake level draws down in the dry season,
the ooids are transported from the calm microbially stabilized areas to surf zones, where
the newly formed random nanograin minerals on the ooids are abraded to form flattened
plates as a new polished layer. The sediment transport is repeated periodically until the
ooids exceed a threshold size. This model of the ooid formation also occur in the marine
environment and is named the “conveyor belt” model [11,62], which may be developed on
windward beaches.

5.3. Implications for the Paleoenvironment

Although the lacustrine dolomites of the Quaternary age are found to span a wide
range of geochemical and hydrological conditions, nearly all are from saline lakes [56]. The
presence of dolomite ooids in this study suggests that the paleolake from the Pliocene may
be a salt lake. However, the ooids formed in Pleistocene salt lakes in the Qaidam Basin
consisted of aragonite and were cemented by halite and gypsum [24]. The occurrence of
halite crystals, as the most common evaporative minerals, indicates that the Pleistocene
lakes have a higher salinity than Pliocene lakes. Therefore, the shifting of ooid minerals
from dolomite to aragonite may reflect the variation of the climate. The carbon and oxygen
isotopic compositions of aragonitic ooids from the Pleistocene are similar to those of ooids
from the Bahamas and New Zealand [63,64]. However, the carbon and oxygen isotopic
compositions of our sample, which come from the boundary of the salt lake and belong to
a brackish lake, are different from previously found compositions and present lower values
(Figure 9). Variations of carbonate δ13C and δ18O are mainly attributed to the evaporation
in the Qaidam Basin [25]. The evaporation of lake water was strengthened by climate
drying, which results in the increase in the of δ13C and δ18O values of carbonates [65,66].
Differences in the mineral composition and isotopic composition indicate that the Pliocene
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lakes have a lower salinity and are more humid than Pleistocene lakes. Fang and Xu [67]
also indicated that the oscillatory appearance in the types of sedimentary carbonate can be
used to interpret paleoenvironmental changes. Differences in the silicate weathering can
lead to variation in the input of silica into the lake [68]. Strong silicate weathering produces
more silica in the lake and enhances the dolomite precipitation; conversely, weak silica
weathering precipitates calcite or aragonite [68]. Therefore, the change from dolomite ooids
in the Pliocene to aragonite ooids in the Pleistocene might also be due to dissolved silica
concentration changes in the lake.
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Figure 8. SE images of the ooids taken by scanning electron micrographs. (a) EPS occurs in the ooid
cortices, where dolomite is within the EPS with a nanograin pattern; (b) all together, dolomite, EPS,
and pyrite occur in the same area; (c) SEM image shows stacked dolomitic layers; (d) layer consists
of dolomitic plates, which present deformation due to collision; (e) SEM image shows concentric
laminations; (f) nanograins aligned parallel to the laminae, and the euhedral dolomite crystal was
developed between layers; (g) dispersed nanograins and embryonic form of the plate; (h) dolomitic
plate morphologies and nanograins along the edges of the plate.
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Figure 9. Scatter plot of carbon versus oxygen isotopic compositions of ooids (modified from
Sun et al. [24]). Carbon and oxygen isotopic data of the Bahamas ooids, the New Zealand ooids
and the Pleistocene ooids in the Qaidam Basin are from Rankey et al. [64], Duguid et al. [63] and
Sun et al. [24], respectively.

Climate change and tectonic activity in the Qaidam Basin can control the oscillations
of authigenic minerals, such as various evaporite and clay minerals [20]. During the
Pliocene–Quaternary, two intense main uplifts in the Qaidam Basin occurred at 5.3–4.5 Ma
and ~3.6 Ma [19,69,70]. At 5.3 Ma, the climate is already dry, but the aridification is not
serious [21]. The appearance of Pediastrum in the Yahu Anticline, which occurs frequently
in freshwater environments, indicates relatively wet conditions during this period [21].
Heermance et al. [30] indicated that the lake in the central Qaidam Basin is a freshwater
lake at 4.2 Ma. Thus, the lake water gradually changes from fresh water to brackish
water during the Pliocene. It is consistent with the lake water conditions indicated by the
carbon and oxygen isotopes of ooids in this study. During this period, the Qaidam Basin
experienced a relatively high temperature [20], which enhanced the silicate weathering and
provided more dissolved silica to be inputted into the lake [68]. When the water reached the
chemical conditions that can precipitate dolomite, the dolomite ooids were formed due to
the participation of sulfate-reducing bacteria and dissolved silica. A drought event occurred
at 3.6 Ma owing to both global cooling and the Tibetan Plateau uplift [19,20], which caused
a long-term stepwise drying of the Qaidam Basin after the late Pliocene [21]. A widespread
distribution of evaporative minerals such as calcite, aragonite, and gypsum occurred during
this period reflecting an abrupt change in the paleolacustrine chemistry [20]. Notably,
during the Mid-Pleistocene Climate Transition event, global cooling led to the global
ice volume increasing by ~15% [71], which resulted in decreasing strength of silicate
weathering and, ultimately, less dissolved silica [68]. Reduced silica input into the lake
resulted in aragonite precipitation in the lake water and the formation of aragonite ooids.
The change in the climate led to the variation in the microbial activity and dissolved silica
concentrations in the water, which could catalyze dolomite growth [55,67]. The variations in
the mineral compositions and isotopes of ooids in the Pliocene and Pleistocene correspond
to the different uplift stages of the Qaidam Basin. Therefore, ooids can be used as an
indicator of climatic change and uplift history for the Tibet Plateau.

6. Conclusions

(1) The ooids formed in the Pliocene Shizigou Formation in the Qaidam Basin mainly
consist of micritic dolomite that is poorly ordered. The nuclear minerals are mostly
micritic dolomite with a minor clay mineral and pyrite. The thin-section and SEM
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observations combined with CL indicate that the primary mineral of the ooid cortices
is dolomite. The micritic dolomite was formed through a reducing condition, and
its formation was related to the presence of sulfate-reducing bacteria and dissolved
silica. The euhedral dolomite crystals were formed in the pore water after the ooids
were deposited.

(2) The formation of the dolomitic ooids in the Shizigou Formation occurred according to
the “conveyor belt” model. The ooids grew on the offshore lake floor, where nanomin-
erals were precipitated on the EPS due to the involvement of sulfate-reducing bacteria
and other microbes. Then, the ooids were reformed under strong hydrodynamic surf
zones, where the random nanograin minerals were abraded to form flattened plates
as a new polished layer. The sediment transport was repeated periodically until the
ooids exceeded a threshold size.

(3) Ooids from the different uplift stages of the Qaidam Basin (in the Pliocene and Pleis-
tocene) have variations in mineral compositions and the carbon and oxygen isotopes.
The minerals of the ooid cortices changed from Pliocene dolomite to Pleistocene arag-
onite. The δ13C and δ18O values of the Pleistocene carbonates are higher than those of
the Pliocene. These differences indicate that the Pliocene lakes had a lower salinity
and were more humid than Pleistocene lakes. Ooids may be an effective proxy for
reflecting the climatic change and uplift history of the Tibet Plateau.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12121586/s1, Figure S1: X-ray diffraction patterns of the
sample; Figure S2: EDS spectra for minerals corresponding to those of Figure 5.
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