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Abstract: Brownfield areas are important targets of exploration; however, the extensive drilling
present in these areas has not fully exploited their prospective potential. The appropriate use of drill
hole cores in these areas can play an important role in deep exploration. We present a case study of
iron oxide-copper-gold (IOCG) Furnas Southeast deposit, located in the Carajás Mineral Province,
Brazil. This deposit has disseminated chalcopyrite, bornite and gold mineralization associated with
a silicic (Si), potassic (K), calcic (Na), sodic-calcic (Na-Ca) hydrothermal alteration, and intense
iron metasomatism with massive magnetite (Fe) alteration. Petrophysical hand-held equipment
measurements were carried out on drill core samples with the purpose of studying the potential
roles that magnetic susceptibility properties can play in high-grade mineralization. The results
indicate that the geological complexity of the IOCG deposit is readily reflected in the extensive
variation of the measurements. The statistical analysis shows how the detailed characterization of
this physical property carried out for this mineral association could effectively define and describe
ore, and the magnetic susceptibility footprints of hydrothermal alteration zones. Furthermore, we
were able to perform a magnetic susceptibility 3D modeling of diamagnetic, paramagnetic, and
ferrimagnetic responses strictly correlated with known orebody. Thus, petrophysical analyses can
form a quantitative geological criterion for ore delineation.

Keywords: petrophysics; magnetic susceptibility footprints; magnetite hydrothermal alterations; iron
oxide-copper-gold (IOCG) mineralization; Carajás Mineral Province

1. Introduction

Target exploration in brownfield areas increases the probability of discovering new
orebodies due to the extension of the geological fertile environment and an advantageously
built infrastructure. The petrophysical measurements of extensive drill hole cores can
improve deposit modeling and deep exploration.

The application of magnetic data to mineral exploration, petrophysics, petrology
and geological interpretation is addressed in the literature [1–3]. Smith [4] provided a
generic description of the geophysical characteristics of an iron oxide-copper-gold (IOCG)
deposit. Furthermore, Sandrin and Elming [5] and Sandrin et al. [6] gave a more detailed
description of the physical properties, petrology, and geophysics for IOCG. Recently, many
petrophysical studies have been carried out to tackle the difficulties encountered in the
modeling of magnetic data, such as remanence, demagnetization, and the effect of low
magnetic latitudes. Austin et al. [7] used a constrained modeling of petrophysical data
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on IOCG deposits in Australia. Clark [8] reviewed the magnetic effects of hydrothermal
alteration on porphyry copper and IOCG systems. Fabris et al. [9] integrated geophysical,
geochemical, and spectral methods to map the Punt Hill IOCG system. Sun and Li [10,11]
inverted geophysical data with petrophysical constrains. Melo et al. [12] and Melo [13]
applied physical property values to geophysical inversions to obtain a 3D geology charac-
terization and differentiation of Cristalino iron oxide-copper-gold deposit in Carajás, Brazil.
Costa et al. [14] used machine learning methods to predict a lithological map in the Carajás
Cinzento lineament. Melo et al. [15] discussed the hidden potential of Carajás by explor-
ing the geophysical characteristics of the Cristalino deposit. Recently, Martins et al. [16]
applied geophysical and geological data to machine learning target generation in Carajás
Mineral Province.

However, there is a lack of petrophysical studies that characterize the multiple hy-
drothermal alteration zones of IOCG mineralization to perform a 3D modeling. Moreover,
there are few detailed studies that correlate statistical characteristics of magnetic suscepti-
bility measurements with core samples and geology description.

At the Furnas Southeast deposit, which is the IOCG system studied in this research,
multiple alterations are related to sigmoidal thrust shear zones that imprint variations of
magnetic properties on the rocks within and surrounding the deposit. Structural stretch-
ing lineation controls the main ore shoots. Mineralization is represented by copper sul-
fides and gold, which is spatially and genetically associated with iron oxide. Copper-
gold-disseminated mineralization was produced by biotite-garnet-grunerite-magnetite
hydrothermal alterations with chalcopyrite and bornite high-grade ores, associated with
the presence of magnetite.

Regardless, the complexity and spatial variability of hydrothermal alteration and
mineralization makes it difficult to define a simple geological and geophysical exploration
model. Therefore, due to different hydrothermal alterations and types impinging on
mineralization and host rocks, a strong magnetization and magnetite content point toward
one of the most important physical properties of the deposit as a possible tool for creating a
geophysical exploration model—magnetic susceptibility.

To access data on the many geological entities that comprise the Furnas Southeast
deposit, a careful procedure was designed that encompasses five broad phases. These
phases state the agenda of the paper and the order in which it will be presented. The first
phase is a brief review of IOCG deposits, description of the geological setting of Carajás, and
hydrothermal alteration and mineralization assemblage of the studied deposit. The second
phase is to devise a deposit magnetic anomaly and test the induced magnetization inversion.
The third phase addresses extensive magnetic susceptibility measurements carried out on
drill core samples from the deposit using a handheld magnetic susceptibility meter. The
fourth phase is devoted to an extensive statistical analysis of these measurements. The
aim is to characterize the magnetic susceptibility footprints for the prospect of copper-
gold deposits, especially investigating the relationship between high-grade mineralization
and magnetite content and distinguishing between the different magnetic susceptibility
footprints of the hydrothermal alteration zones. The fifth phase sought to identify a careful
geological matching of the findings and how they could help to understand the spatial
distribution and behavior of geological entities in this deposit. A 3D model of these
measurements separated the magnetic susceptibility spatial distribution associated with
magnetite (Fe) hydrothermal alteration mineralization from the other various hydrothermal
alteration types and host rocks.

As a conclusion, measurements and statistical analyses defined the magnetic suscep-
tibility hydrothermal alteration footprints, followed by their careful space positioning in
a 3D modeling. The aim was to produce the best possible spatial model depicting the
variation of this physical property, and to define a susceptibility model for the local IOCG
mineralization and its hydrothermal alterations.

Therefore, by having a set of prospective drill holes with a similar mineral association
to the tested drill hole and its core samples, this approach is a simple and inexpensive way
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to thoroughly understand the magnetic footprints of these geological entities using mea-
surements, spatial positioning, and modeling. This can certainly improve the exploration
of brownfield prospect/deposit minerals, as well as helping magnetic data inversion and
modeling as prior information constrains in greenfield targets and magnetic geological drill
cores description to deposit evaluation.

2. Geological Setting
2.1. Iron Oxide-Copper-Gold (IOCG) Deposits

All major IOCG deposits are rich in copper, gold and iron oxides and were originally
defined as a unique type of deposit after the discovery and study of the Olympic Dam in
the Gawler Craton, Southern Australia [17–19].

Williams et al. [20] present a discussion of possible IOCG origins based on the dis-
tribution of space related to time and geology. From an economic perspective, the most
significant IOCG deposits are those in the coastal batholithic belt in Chile and Peru (Jurassic-
Cretaceous extended continental margin arc); within the Gawler Craton and Cloncurry
districts in Australia (late Paleoproterozoic to Mesoproterozoic, debated intracratonic or
distal subduction-related settings); and in the Carajás province in Brazil (Archean, Amazon
craton). Groves et al. [21] describe IOCG deposits from throughout Earth’s history, the
implications for origin and lithospheric setting, and the distinction from other epigenetic
iron oxide deposits. Barton [22] addresses a comprehensive petrologic and geochemical
characterization of iron oxide(-Cu-Au-REE-P-Ag-U-Co) systems. Logan et al. [23] discuss
the relationship between IOCG and iron oxide-apatite (IOA) deposits with debatable de-
posit classification. A new IOCG categorization framework is proposed by Skirrow [24]
based on tectonic and geological settings, mineralogy of oxide-sulfide occurrences, and ore
geochemical properties.

Mougeot et al. [25] address the IOCG classification of the epigenetic copper deposits
in the Carajás Province. Monteiro et al. [26] describe the spatial and temporal zoning of
hydrothermal alteration and the mineralization in the Sossego IOCG deposit in Carajás
Province. Xavier et al. [27] 2012 summarize the iron oxide-copper-gold systems of the
Carajás Mineral Province. Campo-Rodrigues et al. [28] and Huang et al. [29] revealed new
insights into Salobo and Alemão deposits in Carajás Province regarding magnetite and
copper mineralization.

Recent hydrothermal alteration models for IOCG mineralization present characteris-
tics, exploration vectors and alteration facies associated with iron oxide and alkali-calcic
(IOAA) systems [30–32].

Due to the presence of iron oxides in the main types of IOCG deposits, an under-
standing of magnetic susceptibility behavior can improve the knowledge of this important
mineralization. This study discusses the magnetic susceptibility response related to the
geology of the Furnas Southeast deposit associated with magnetite. In the next section, we
focus on regional geology, lithostratigraphy units and deposit geology.

2.2. Furnas Deposit Geological Setting

Carajás is known as an economically important metallogenic province where numer-
ous types of mineral deposits have been found. In addition to IOCG mineralization, there
are many types of deposits, such as banded iron formations, gold, manganese, mafic-
ultramafic layered intrusions hosting platinum group elements, nickel laterite, and nickel
sulfide deposits. In geotectonic terms, the Carajás Province is located within the Central
Brazilian Shield at the southeastern portion of the Central Amazonian Province. The
Transamazonian Province (Maroni-Itacaiúnas) borders it to the north and the Araguaia Belt
borders it to the east [33].

The lithostratigraphy in the Carajás Mineral Province is complex. It consists mostly
of Precambrian rocks that are overlain by younger sediments (Figure 1, [34,35]). The local
lithostratigraphy is represented by several Precambrian units (Xingu, Pium and Luanga
Complexes; Plaquê and Cateté Suites), Neoarchean metasedimentary and meta-volcano-
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sedimentary sequences (Itacaiúnas Supergroup), Proterozoic anorogenic granitoids (granitic
plutons with Lower/Middle Proterozoic ages), and Phanerozoic cover units [29,30].
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Figure 1. Geological map of the Carajás Mineral Province with the location of the Furnas deposit
and the main Cu, Au, Fe, Mn, Ni, and Pt group element (PGE) deposits. (a) Location of the Carajás
Geological Map in the regional setting. (b) Carajás Province map with the Carajás domain (CD)
and Rio Maria domain (RMD). The Bacajá domain (BD) is located north of the Carajás domain.
(c) Map of Brazil with the location of Carajás Province (in black) and the Amazon Craton (in gray)
(Modified from DOCEGEO [35]; Araújo and Maia [36]; Barros and Barbey [37]; Vasquez et al. [38];
and Xavier et al. [27]).
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The Furnas Southeast deposit is located along the west-northwest trending Cinzento
transcurrent system, which is approximately 200 km long. The Cinzento lineament can be
observed in the total magnetic intensity (TMI) map (Figure 2; magnetic data are discussed
further). We can observe several anomalies along the Cinzento lineament that allow us to
use a magnetic method and its physical property source as a mapping tool.
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Figure 2. Total magnetic intensity of Carajás Mineral Province with the location of the Furnas deposit
along the Cinzento lineament, mines, deposits, granites, and main faults.

The deposit is hosted in rocks correlated with the metamorphosed volcano-sedimentary
types of the Grão Pará Group, which belongs to the Itacaiúnas Supergroup (2.76 Ga) and
Águas Claras Formation (Wirth et al. [39]; Figures 1 and 3). Furnas deposit rocks can be
correlated with supracrustal rocks from the Igarapé Salobo Group observed at the nearby
Salobo Cu-Au deposit ([40,41]; light green areas in Figure 1). Interpretation of protolith
rocks is difficult because of the intense metasomatic alterations that, in general, progress
from high to low temperatures.
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Figure 4. Geological section with the host rocks, hydrothermal alteration zones and mineralized
zones. High-grade orebodies with values higher than 0.6% copper (modified from Vale S.A. [42]).
Location of the section in Figure 3.

In the study area (3 km by 3 km), quartzites and schists host the deposit (Figure 3).
The quartzites might be correlated with the Águas Claras Formation (yellow color in
Figure 1). The aluminous schist contains andalusite-kyanite-sillimanite-staurolite and has
been described as resulting from the deformation and metamorphism of aluminous pelitic
sediments that are most likely correlated with the Águas Claras Formation. The amphibole
schist is interpreted as the result of the deformation and metamorphism of volcanic rocks,
most likely with protoliths being the Parauapebas Formation with the dashed light green
legend in Figure 1. These are banded iron formations correlated to the Carajás Formation
of Grão-Pará Group, as shown with dashed black lines in Figure 3 (dark brown color in
Figure 1).

In the eastern portion, the anorogenic Cigano granite (Figure 3), aged 1.8 Ga [39], is
described as an isotropic monzogranitic rock with portions of moderate primary foliation
(red color in Figure 1). Cigano granite rocks are leucocratic with a gray-pinkish color,
coarse-to-medium grain, and a monzogranitic composition with amphibole and biotite.

In the Furnas Southeast deposit, mineralization is situated along a shear zone that
defines a contact between an amphibolitic schist (metavolcanic mylonitic rocks) to the north
(hanging wall) and aluminous schist (metasedimentary mylonitic rocks) to the south (foot-
wall; Figures 3 and 4). The Cinzento shear zone was intruded by the anorogenic Cigano
granite (1.8 Ga A-type granite, red legend in Figure 1) to the east and continues northwest-
ward towards the Salobo deposit ([39]; Figures 1 and 2). The region is metamorphosed
from greenschist to amphibolite facies and has a deep lateritic weathering profile.

2.3. Hydrothermal Alteration and Mineralization

This section aims to describe the hydrothermal alteration and mineralization of Furnas
Southeast Deposit. First, we present the approach used to reach the results. Second, a
geological section that summarizes the alteration and mineralization shape is shown. Third,
an overview of mineral assemblage and mineralization type is discussed. Finally, we detail
the alteration zones.

Hydrothermal alteration characterizations were determined based on the drill cores
macroscopic observations supported by petrographic studies and the presence of magnetite
was first tested using a handheld magnet. Magnetic susceptibility measurements were
subsequently acquired to show magnetic properties of the various lithologies and alteration
zones and will be widely discussed in the next sections.
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A cross section through the high-grade orebody with values higher than 0.6% copper
displays the geology in the profile (Figure 4). The hydrothermal alteration zones have
a lenticular shape and thicknesses of 20 to 600 m. The deposit is poorly exposed to a
deep laterite profile about 60 m thick that reinforces the importance of using geophysical
methods due to the lack of outcrops.

The copper-gold disseminated mineralization in the Furnas Southeast deposit has
a biotite(K)-garnet(Ca)-amphibole(Na-Ca)-magnetite(Fe) hydrothermal alteration assem-
blage. While the hydrothermal alteration and mineralization type and intensity vary
throughout the orebodies, a consistently strong alteration and mineralization paragenetic
sequence can be identified.

A biotite-garnet-amphibole-magnetite hydrothermal assemblage shows a high-tempe-
rature alteration, whereas the subsequent low-temperature alteration shows a biotite-
chlorite-tourmaline-carbonate-quartz-epidote-albite-hematite-magnetite assemblage. The
high-grade mineralization itself is associated with magnetite-, chalcopyrite- (Figure 5a) and
bornite-rich (Figure 5b) late-stage veins and breccias, paragenetically equivalent to the high-
temperature assemblage. The hydrothermal alteration zones extension is approximately
9 km along the entire Furnas deposit. The study area is in the southeast portion of the
deposit and is dominated by high-temperature alterations with the abundant presence
of ferrimagnetic behavior due to large amounts of magnetite, which enable the use of
magnetic susceptibility as an exploration tool.
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Sodic (Na), silicic (Si), potassic (K), calcic (Ca), sodic-calcic (Na-Ca) and massive
magnetite (Fe) alterations host the mineralization with the dominant alteration minerals
and textures described below.

Sodic (Na) alteration is the earliest alteration type of observed alteration. Sodic (Na)
alteration is associated with albite veins in the Furnas Southeast deposit. However, this
alteration is best observed in the Furnas Northwest deposit, outside of the study area,
where host rocks consist of Furnas granite. With that, we do not investigate, in detail, this
alteration type in this study.

A silicic alteration (Si) type is widely distributed over the deposit area that can com-
pletely transform the host rock. The silica saturation is uncommon in the Carajás IOCG
Deposits and is likely related to intense hydrothermal alteration over deformed sedimentary
rocks (quartzites) from Águas Claras Formation. The silica-rich alteration forms lenticular
zones. Narrow bands of sericite and quartz characterize the silicic alteration (Si) type. The
silicic alteration may also contain chalcopyrite and rarely bornite. Importantly, magnetite is
absent. This type of alteration has a diamagnetic response.

The potassic (K) alteration type is common near the brittle-ductile and brittle de-
formed rocks. Mineralized bodies are commonly associated with potassic (K) zones that
are essentially composed of biotite with a schistose texture and locally within tectonic-
hydrothermal breccias cemented with biotite. In addition, the potassic (K) zone has a
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significant association with garnet (Ca), magnetite (Fe) and silica (Si) alteration minerals.
Despite the paramagnetic predominance, we expect ferrimagnetic responses due to the
presence of magnetite.

The calcic (Ca) alteration type is concurrent with or subsequent to potassic (K) alter-
ation. Calcic (Ca) alteration exhibits coarse-grained calcic garnet proximal to the mineral-
ized zones with fine-grained calcic garnets found more distal. It typically overprints the
potassic (K) alteration. The mineral assemblage includes calcic garnet-grunerite (Ca). The
alteration occurs in association with bands of silicic alteration (Si). The garnet-grunerite
calcic (Ca) alteration vary from isotropic to anisotropic textures, and from ductile to brittle-
ductile deformations. This alteration can also occur in association with the presence of
magnetite (Ca-Fe). We hypothesize that the calcic (Ca) alteration is predominantly para-
magnetic due to garnet-grunerite responses, but it altered ferrimagnetic behavior in the
magnetite assemblage (Ca-Fe). This alteration is associated with high Cu-Au grades.

The magnetite presence is directly associated with high-grade copper and gold miner-
alization. This stage of high iron metasomatism forms massive magnetite, and the Fe-rich
fluid flow was structurally controlled. The magnetite alteration (Fe) type overprints the
sodic-calcic (Na-Ca) alteration type and forms bands with the garnet-grunerite-magnetite
assemblage (Ca-Fe). There is also a strong association with the brecciated silicification. We
expected a strong ferrimagnetic response to the massive magnetite alteration (Fe).

The sodic-calcic (Na-Ca) alteration type is dominated by amphiboles (predominance
of actinolite) and has variable amounts of quartz, tourmaline, and albite. We expect a para-
magnetic behavior due to the dominance of silicates in this alteration zone. Chalcopyrite
and bornite are found locally. This alteration type often occurs after the silicic (Si), potassic
(K), and magnetite (Fe) alteration types. However, magnetite infiltrations appear with an
expected ferrimagnetic response in the sodic-calcic (Na-Ca) alteration, which is dominated
by the amphiboles (Na-Ca-Fe). In general, sulfidation occurs in association with these
amphibole-magnetite assemblages (Na-Ca-Fe).

Subsequently, some final alteration types occur and are not discussed in detail in this
study. The first is a new potassic (K) alteration process with biotitization that is followed
by a strong chloritization (Chl) process, which partially or completely alters the rocks of
the area, affecting local areas of hydrothermal breccias with mineralized chlorite-hematite-
magnetite. The other late alterations are related to carbonation and silicification. Calcite
occurs in association with quartz-hematite-magnetite-pyrite-chalcopyrite-epidote-albite-
biotite-tourmaline veinlets.

The knowledge of minerals present in hydrothermal alteration zones is crucial for
determining the correlation between the measured magnetic susceptibility and the dia-
magnetic, paramagnetic, and ferrimagnetic properties of the minerals. With that, the
predominant mineralogical description in this section is key to the correct interpretation of
mineralization magnetic susceptibility footprints.

3. Materials and Methods

As an indirect method, magnetometry is dependent on the source size, geometry,
depth, latitude position, remanence, self-demagnetization, and anisotropy. To show the
limitations of using indirect methods, we performed processing and inversion of airborne
magnetic data. Magnetic data was acquired by a helicopter flown over the rugged terrain of
the study area, and data collection finished in 2012. The acquisition used a sensor mounted
on a boom. Draped survey flights were conducted at a nominal terrain clearance of 80 m
above ground. The survey line spacing was 200 m, and the line direction was held at N
30◦ E. The ambient field has an inclination of −7.3◦, a declination of −20.1◦, and a field
strength of 25,300 nT.

In this context of indirect methods limitation, the use of direct methods as magnetic
susceptibility measurements can be more reliable. In this study, we performed almost
eighteen thousand (17,789) magnetic susceptibility measurements along 17,739 m of drill
cores from 69 drill holes (Figure 6). All the measurements were conducted on split drill
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cores that were at least 40 mm thick to ensure a good contact area with the sensor. At
least two measurements were performed at each point of the core samples to validate the
value. We used the data measured with a susceptibility meter KT-10, with a sensitivity
of 1 × 10−6 SI and range from −0.999 × 10−3 to 9999 × 10−3 SI, for statistical analyses
and modeling. The data measured with susceptibility meter KT-9, with a sensitivity of
1 × 10−5 SI and range from 9.9 × 10−3 to 999.9 × 10−3 SI, were used separately and only
for modeling.
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Figure 6. Drill hole location map. Measurement schematics: Lower sensitivity magnetic susceptibility
(MS) measurements (KT-9) in green; higher sensitivity MS measurements (KT-10) in yellow; drill
holes without MS measurements in white; and low-grade orebody projections at an elevation of
190 m in red. The geological section location (see Figure 4) is indicated in the map, and the numbers
of drill holes, 48 and 125 used in this study, are indicated.

We established a quality-control procedure for all magnetic susceptibility measure-
ments taken with hand-held instruments. We used statistical quality control to validate
the duplicate measurements at each point; delete unmeaning and extreme values; evaluate
outliers and wipe out noise and spikes. Due to the large variation between the sensitivities
and the detection limits of the two susceptibility meters (KT9 and KT10), we separately
analyzed and interpreted their specific databases. This was carried out because joined
databases show means and histograms that do not represent the lithotypes and hydrother-
mal alteration zones.

Statistical analysis consisted of frequency diagrams of magnetic susceptibility values in
uniform classes, and as such, characterized the susceptibility footprints for each lithotype
and for each hydrothermal alteration zone. They indicated the susceptibility of data
distribution and its populations, symmetries and dispersions.
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The geochemical assays of iron, copper and gold from the drill cores were performed
in the samples collected every 1 m. The analytical methods included a fire assay for gold
(in g/t) and multi-acid/ICP-MS (inductively coupled plasma-mass spectrometry) for iron
and copper (in percentage; Vale S.A. [42]).

In a flowchart of steps, Figure 7 summarizes the methods and materials used in
this study.
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4. Results
4.1. Geophysical Magnetometry Data

This section aims to describe the magnetic anomaly response and challenges in devel-
oping research at a low magnetic latitude with the presence of strong remanent magneti-
zation. The magnetite is locally abundant in the hydrothermal alteration zone and has a
strong magnetization that forms a high magnetic anomaly response in magnetic surveys.
High-resolution airborne magnetic data were used to map the mineralization area and are
discussed in this section.

4.1.1. Magnetic Anomaly

The TMI data show a high magnetic anomaly with a northwest-southeast direction
(Figure 8a). The magnetic data delineate two main high-grade orebodies in the northwest
and southeast portions of the study area (Figure 8b). The northwest high-grade orebody
anomaly resembles a typical middle northern magnetic latitude anomaly: Positive values
at its southern portion and large negative values at its northern portion. In contrast, the
southeast orebody resembles the expected magnetic anomaly typical for magnetic equato-
rial regions, marked by negative values at its central portion and low positive values at



Minerals 2022, 12, 1581 11 of 28

both the southern and northern portions (Figure 8a). The predominance of middle latitude
behavior is related to strong remanent magnetization and self-demagnetization, as stated
by Leão-Santos et al. [43]. In this study, we focused our research on the northwest anomaly.
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Figure 8. (a) The observed total-field magnetic data of the Furnas Southeast deposit. Total magnetic
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high-grade >0.6% copper (black lines) and low-grade between 0.2% and 0.6% copper (white lines)
orebodies with a total horizontal gradient of the anomalous magnetic field. Units in nT/m.

The first- and second-order partial derivatives of TMI data in the X, Y, and Z directions
can be combined in several ways for further magnetic data analysis. Modern methods for
edge detection and depth to source estimation rely on horizontal and vertical derivatives.
Total horizontal gradient shows the lateral limits of the anomaly sources and is one of the
products that best delineates magnetic-related ore bodies (Figure 8b).

4.1.2. Induced Magnetization Inversion

In this study, we performed a 3D inversion of Furnas Southeast magnetic data with
the algorithm presented by Li and Oldenburg [44] to assess the performance of the induced
magnetization in the absence of site-specific geologic constraints, and thus understand the
problems of this approach. This algorithm does not consider the challenge of magnetic
response being displaced from source regions affected by strong remanent magnetization
and self-demagnetization.

The method recovers a 3D distribution of the magnetic susceptibility. To perform the
inversion, we used a mesh with cells of 25 m width in the x and y directions and thicknesses
ranging from 12.5 m near the surface to 25 m in the vertical direction down to a depth of
780 m. To take into consideration any regional component that may be present in the data,
padding cells were assembled to expand the mesh beyond the data area in all directions.
We used 15,573 data stations to achieve a total of 261,919 cells in the final model.

The data inversion results were compared to the high magnetic susceptibility model in
this study, which will be further explained (Figure 9). The results show a small coincidence
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at the northwestern deep part of the area, a very low response at the center, and a non-
coincident shifted response at the southwest part of the deposit. However, the results
partially correlate with the known magnetic body. The lack and non-correspondence
between the recovered 3D model of the effective susceptibility and the known magnetite-
related body source (Figure 9) corroborate the discussed limitations of using induced
magnetization 3D inverse physical property modeling for the Furnas Southeast Deposit.
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traces. Views from northwest to southeast.

The significant remanence and self-demagnetization present in the Furnas deposit [38]
and the resultant deviation of the magnetization direction severely limit the use of the com-
mon magnetic interpretation process and procedures that assume that the magnetization
at the interpretation site has the same direction and sense as the current inducing field.
Another incorrect assumption is that the magnetization is constant (at least in part) at the
site. As such, magnetic data inversion techniques, even in localized and isolated magnetic
anomalies, pose a great problem in terms of its real geological meaning (see discussions on
the 3D inverse physical property modeling (susceptibility) for the local Furnas Southeast
Deposit in Leão-Santos et al. [43]).

4.2. Hydrothermal Alteration Zones Magnetic Susceptibility

The hydrothermal alteration emplacing the orebodies is structurally controlled. Thus,
the resulting deposit consists of several bodies of sigmoidal shape. The hydrothermal
fluids pulse injections form magnetite (Fe) alteration zones by metasomatism with multiple
magnetic source bodies that acquired remanent magnetization at different times and have
different magnetization directions.

Magnetic susceptibility measurements were used to characterize the magnetic foot-
print of the Furnas Southeast IOCG deposit due to the lowest influence of remanent mag-
netization. Statistical analyses of the measured data are correlated to drill core lithotypes
observations. Two drill holes (numbered 48 and 125) were selected to show characteristic
magnetic susceptibility footprints because they best represent the lithotypes and their min-
eralization. Their individual core logs (Figures 10 and 11) were used to correlate magnetic
susceptibility to the lithotypes and hydrothermal alteration zones.

Samples from the drill hole 125 show a strong correlation between lithotypes, al-
terations, and magnetic susceptibility (Figure 10). Magnetic zones (Fe) with high-grade
mineralization are well-defined between a depth of 310 m and 380 m by their high magnetic
susceptibility values (red box in Figure 10). This magnetic footprint is the main high-grade
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mineralization zone in the deposit. Above this magnetite (Fe) zone, there is a zone with no
magnetic susceptibility response between the depths of 205 m and 270 m, which correspond
to silicic altered (Si) rocks with Cu and Au grades related to sulfide veins. This behavior
can be observed in a depth range of 380 to 440 m in another mineralized silicification zone
(Si) with Cu (Figure 10).

Similar behavior with no magnetic response in the silicic zone was also found in the
data for drill hole 48 from the depths of 230 m to 400 m (Figure 11, big red box). Locally,
this silicification zone hosts a very high grade (9% copper) vein-type mineralization, shown
at a 240 m depth, and highlighted with a magenta arrow. Red arrows show non-magnetic
hydrothermal alteration zones cutting host rocks. From the depths of 169 m to 211 m, the
low magnetic susceptibility and high-grade iron footprints of the banded iron formation
host rock are shown in small red boxes. The host rocks, amphibolitic schist (hanging wall)
and aluminous schist (footwall) are shown in red bars (Figure 11).
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Figure 10. Sampling on the drill hole 125 log with the IOCG mineralization footprints: Hydrothermal
alterations, magnetic susceptibility in SI × 10−3, iron-grade geochemical assays in percentage, copper
grade in percentage, gold in grams per ton, and density in grams per cubic centimeter. The red box
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Figure 11. Sampling on the drill hole 48 log with the amphibolitic schist on top and an aluminous
schist at the base (red bars) hosting the mineralized zone. Small red box: 169 m to 211 m depth, banded
iron formation footprints with low magnetic susceptibility and high iron grade. Big red box: 230 m to
400 m depth, mineralized zone dominated by silicification. Red arrows: Non-magnetic hydrothermal
alteration zones cutting host rocks. Magenta arrow: High-grade (9% copper) silicification vein type
mineralization. No positive gold assay values were obtained below the legend.
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The drill hole logs, as shown in Figures 10 and 11, were used to correlate the geology
with the magnetic susceptibility statistical analyses, as described in this section. First, we
briefly discuss host rocks and non-magnetic hydrothermal alteration zones, and finally
focus on the main magnetic hydrothermal alteration zones. The understanding of the main
mineralized magnetic susceptibility footprints can help magnetic investigations to achieve
a successful exploration targeting.

4.2.1. Host Rocks

The magnetic susceptibilities medians of the main host rock lithotypes are aluminous
schists (1.8 × 10−3 SI; Figure 12), amphibolitic schist (8 × 10−3 SI; Figure A1, Appendix A),
banded iron formation (25 × 10−3 SI; Figure 13), monzogranite (0.8 × 10−3 SI; Figure A2,
Appendix A), and quartzite (0.6 × 10−3 SI; Figure A3, Appendix A).
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Figure 12. Aluminous schist. (a) Statistics and histograms of the magnetic susceptibility measure-
ments. (b) Core samples picture.
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Figure 13. Banded iron formation. (a) Statistics and histogram of the magnetic susceptibility mea-
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In the histogram of schist host rock susceptibilities, we can see that the distribution is
a log normal distribution (Figures 12 and A1). The observed median value of 1.8 x 10−3 SI
for the aluminous schists correlates well with the typical magnetic susceptibility values for
schists, which are around 1.5 × 10−3 SI [45]. Drill hole 48 shows an amphibolitic schist at
the top and aluminous schist at the base of the mineralized zone (Figure 11).

The banded iron formations mainly occur in the southeast portion of the studied area.
Statistical analysis of the magnetic susceptibility measurements for these rocks presents a
bimodal distribution with high values reflecting the ferrimagnetic behavior of the bands
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with magnetite, which peaks at 104.8 × 10−3 SI, whereas the lower values reflect the
diamagnetic behavior of the silica bands, which peak at 0.72 × 10−3 SI (Figure 13).

On drill hole 48, the non-mineralized banded iron formation footprint with predom-
inant hematite and high iron geochemistry values can be observed between depths of
169 and 211 m (Figure 11 in small red box). A susceptibility response associated with the
punctual presence of magnetite can be observed at the beginning of this interval (Figure 11).

4.2.2. Hydrothermal Alteration Zones Footprints

Garnet, amphibole, biotite, and chlorite are the main silicate alteration phases. These
minerals have a paramagnetic behavior caused by the presence of Fe2+, Fe3+ or Mn3+. In
general, the predominance of these paramagnetic minerals in the hydrothermal alteration
zones, keeps the median susceptibility values between 4 × 10−3 SI and 7 × 10−3 SI, and the
mean between 23 × 10−3 SI and 77 × 10−3 SI. The non-magnetic hydrothermal alterations
are divided in five zones: Garnet-grunerite (Ca) with median 7.07 × 10−3 SI (Figure 14),
amphibole (Na-Ca) with median 4.64 × 10−3 SI (Figure A4, Appendix A), potassic (K)
with median 4.99 × 10−3 SI (Figure 15), chloritization (Chl) with median 5.23 × 10−3 SI
(Figure A5, Appendix A), and silicification (Si) with median 0.60 × 10−3 SI (Figure 16).
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Figure 15. Potassic (K) hydrothermal alteration zone. (a) Statistics and histograms of the magnetic
susceptibility measurements. (b) Core samples picture.
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However, within the hydrothermal alteration zones, we observe a trend of higher sus-
ceptibility values compared to host rocks, especially in the garnet-grunerite (Ca) and potas-
sic (K) zones. Within these, the maximum values reach 3717 × 10−3 SI and 5113 × 10−3 SI,
respectively, and likely reflect magnetite precipitated during the hydrothermal Ca-Fe- and
K-Fe-typical alterations of IOAA systems (Figures 14 and 15). The only exception is the
silicic alteration. Some silicates can appear as ferrimagnetic because of impurities such
as magnetite. In complex hydrothermal environments, these impurities become common.
These minerals start to show remanence and exhibit hysteresis. Biotite can be both paramag-
netic (if non-altered) or ferrimagnetic (if altered). In addition, magnetite commonly occurs
between the biotite and chlorite sheets planar voids (Figures 15 and A5, Appendix A), as
well as in fractures associated with this type of alteration. Together, these phenomena
account for the higher observed susceptibilities within the altered rocks.

The garnet-grunerite (Ca) and amphibole (Na-Ca) hydrothermal alteration zones have
a close relationship with the low-to-medium grade mineralized zones. This can be seen
in drill hole 125, between the depths from 83 m to 115 m (garnet-grunerite Ca), 137 m
to 142 m (amphibole Na-Ca), and 316 m to 320 m (garnet-grunerite Ca) (Figure 10). This
can also be seen in drill hole 48, between the depths from 211 m to 231 m and 400 m
to 411 m (garnet-grunerite Ca) (Figure 11). The magnetic footprint of the mineralized
garnet-grunerite (Ca) and amphibole (Na-Ca) hydrothermal alteration zones show low
susceptibility values. In drill hole 48, between the depths from 49 m to 63 m and 510 m
to 530 m (Figure 11, highlighted by red arrows), we can observe non-magnetic amphibole
and garnet-grunerite (Ca) hydrothermal alteration zones cutting host rocks, respectively
(Figure 11).

The potassic (K) and chloritization (Chl) hydrothermal alteration zones’ footprints are
the presence of a biotite and chlorite, respectively, which may or may not be associated
with mineralization. In drill hole 125 (Figure 10), we can see that the depths from 70 m to
75 m the potassic (K) zone have no mineralization, and the depths from 435 m to 449 m
have medium-high-grade mineralization.

The only magnetic susceptibility behavior exception in the hydrothermal alteration
zones is the silicification (Si) type. The silicification is an overprint, unrelated to the main
stage of magnetite (Fe)-related Cu-Au mineralization. This uncommon Carajás IOCG
behavior is likely associated with quartzite host rocks hydrothermally altered in shear
zones. Since quartz is diamagnetic, it is expected to have negative values, as observed,
with a minimum of −0.04 × 10−3 SI. The histogram for the silicic alteration type shows
a typical log normal distribution with a median value of 0.6 × 10−3 SI, a mean value of
2.51 × 10−3 SI and a maximum value of 357 × 10−3 SI (Figure 16).

The presence of paramagnetic minerals and instrumental limitations to measure nega-
tive values justifies the low positive susceptibility values. In the drill cores, an abundance of
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silicification is closely related to the low- to high-grade mineralization (Figures 10 and 11).
However, in many places, it can also be associated with extremely high-grade mineraliza-
tion with up to a 9% copper content (Figure 11 highlights a 241 m depth with a magenta
arrow) due to the presence of veins and breccias (see the picture in Figure 16).

4.2.3. Magnetic Hydrothermal Alteration Zones Footprints

Massive magnetite (Fe), garnet-grunerite-magnetite (Ca-Fe) and amphibole-magnetite
(Na-Ca-Fe) hydrothermal alteration zones.

Magnetite is the most abundant ferrimagnetic mineral in the hydrothermal alter-
ation zones and has high susceptibility values. The median magnetic susceptibility
values decrease from the massive magnetite (Fe) alteration zone with 855 × 10−3 SI
(Figure 17ab) to the garnet-grunerite-magnetite (Ca-Fe) alteration zone with 395 × 10−3 SI
(Figure 17cd) and the amphibole-magnetite (Na-Ca-Fe) alteration zone with 269 × 10−3 SI
(Figure 17ef). Among the magnetite-rich (Fe) alteration zones, the mean susceptibility
values are 1896 × 10−3 for the massive magnetite (Fe) zone (Figure 17a), 1446 × 10−3 for
the amphibole-magnetite (Na-Ca-Fe) zone (Figure 17e), and 1280 × 10−3 for the garnet-
grunerite-magnetite (Ca-Fe) zone (Figure 17c). Both the median and mean are consistent
with the observations for the drill core samples, which shows that the massive magnetite
(Fe) hydrothermal alteration zone has a higher magnetite content than the garnet-grunerite-
magnetite (Ca-Fe) and amphibole-magnetite (Na-Ca-Fe) zones (Figure 10).

In the massive magnetite (Fe) alteration zone histogram, there is a susceptibility
population centered at high values around 800 × 10−3 SI, which is near the median of
855 × 10−3 SI and represents the predominance of magnetite (Figure 17a).

In the garnet-grunerite-magnetite (Ca-Fe) alteration zone histogram, the distribution
becomes more complex. It shows two populations of susceptibility values. The highest
valued population represents the massive magnetite footprint. The lower-value population
has a significant concentration of paramagnetic minerals, such as grunerite and garnet
(Figure 17c).

The amphibole-magnetite (Na-Ca-Fe) alteration zone histogram indicates that the
values are very widely distributed, which is a result of the greater amphibole type mineral
presence and high values associated with magnetite presence (Figure 17e).

This variation from high to intermediate and low values was observed in the drill cores,
where the garnet-grunerite (Ca) and amphibole (Na-Ca) alteration zones are constantly
altered by the inputs of magnetite, producing a great fluctuation in the susceptibility
measurements (Figure 10).

The garnet-grunerite-magnetite (Ca-Fe) alteration occurs with a greater abundance
relative to the amphibole-magnetite (Na-Ca-Fe) alteration zones. In addition, the garnet-
grunerite-magnetite (Ca-Fe) alteration has higher a correlation with the massive magnetite
(Fe) zone (Figure 10).

Descriptively, differentiating banded iron formation from the magnetite (Fe) hydrother-
mal alteration zone along the drill core observations becomes more difficult when magnetite
and silicic banding is present. However, when comparing the susceptibility values, this
difference is easily noticeable. Between the depths from 310 m to 380 m in drill hole
125 (Figure 10), the magnetite (Fe) hydrothermal alteration zone is marked by a high
increase in the values of magnetic susceptibility, iron, copper, gold and density, when
compared to the banded iron formation in drill hole 48 between the depths from 169 m to
211 m (Figure 11). Banded iron formations are not mineralized and normally show low
values for susceptibility, iron content and density when compared to the magnetite (Fe)
hydrothermal alteration zone. This difference can be observed when looking at the median
values, which is 182 × 10−3 SI for the banded iron formation (Figure 13) and 855 × 10−3 SI
for the massive magnetite (Fe) hydrothermal alteration zone (Figure 17a). The median
value of the banded iron formation is low, even when compared to the medians of the
garnet-grunerite-magnetite (Ca-Fe) (395 × 10−3 SI; Figure 17c) and amphibole-magnetite
(Na-Ca-Fe) (269 × 10−3 SI; Figure 17e) hydrothermal alteration zones.
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4.2.4. Multiple Hydrothermal Alteration Zones Magnetic Susceptibility Footprints

Table 1 summarizes the magnetic susceptibility values correlated with lithotypes and
their mineralogy. High median values (between 25 and 855 × 10−3 SI) address lithotypes
bearing ferrimagnetic minerals; in this case, magnetite. The highest values are associated
with massive magnetite (Fe) in the hydrothermal alteration zones (855 × 10−3 SI). We
observe additional high values in the garnet-grunerite-magnetite (Ca-Fe)- and amphibole-
magnetite (Na-Ca-Fe)-altered rocks (395 and 269 × 10−3 SI, respectively). High values
are observed in some unaltered rocks, such as the banded iron formations (25 × 10−3 SI).
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The intermediate median values (between 1.8 and 8.8 × 10−3 SI) are representative of
the garnet-grunerite (Ca), amphibole (Na-Ca), chlorite (Chl) and biotite (K) hydrothermal
alteration zones, likely due to the more paramagnetic presence of minerals, as opposed
to ferrimagnetic magnetite. In addition, the amphibolitic and aluminous schist lithotypes
(host rocks) also have intermediate values. The lowest median values (between 0.6 and
0.8 × 10−3 SI), negative in minimum values (−0.04 × 10−3 SI), are correlated with granite
and quartzite lithotypes, as well as the silicic alteration type. This was interpreted to be
caused by paramagnetic and diamagnetic minerals abundance (Table 1).

Table 1. Magnetic susceptibility (SI × 10−3) statistics associated with mineralogy, lithotypes and
hydrothermal alteration zones. The predominant associated minerals are in the same color of
magnetic mineral classes and their representative magnetic susceptibility values. Med: Median, Min:
Minimum, Max: Maximum.

Lithotypes Alteration Type Mineralogy (Petrography) Med Min Max
Massive magnetite

hydrothermal alteration Magnetite (Fe) Magnetite ± amphibole (grunerite, actinolite,
hornblende = hastingsite) ± quartz 855 0.72 9251

Garnet-grunerite-magnetite
hydrothermal alteration

Calcic-magnetite
(Ca-Fe)

Garnet (almandine), amphibole (grunerite),
magnetite ± biotite ± chlorite 395 0.32 9418

Amphibole-magnetite
hydrothermal alteration

Sodic-calcic-magnetite
(Na-Ca-Fe)

Amphibole (actinolite),
magnetite ± garnet ± quartz ± biotite ± chlorite 269 0.93 9296

Fe
rr

im
ag

ne
ti

c

Banded iron formation Host rock Magnetite, silica 25.7 0.03 779
Garnet-grunerite

hydrothermal alteration Calcic (Ca) Garnet (almandine), amphibole
(grunerite) ± quartz ± chlorite ± biotite 7 0.38 3717

Amphibole
hydrothermal alteration Sodic-calcic (Na-Ca) Amphibole

(actinolite) ± quartz ± biotite ± chlorite 4.64 0.51 1618

Chlorite alteration Chloritization (Chl) Chlorite 5.23 0.61 1488
Biotite

hydrothermal alteration Potassic (K) Biotite, quartz, plagioclase, phengite ± garnet 4.9 0.12 5113

Amphibolitic schist Host rock Amphibole (grunerite),
quartz ± hornblende = hastingsite 8.84 0.27 4026Pa

ra
m

ag
ne

ti
c

Aluminous schist Host rock Quartz, biotite, sericite, andalusite, staurolite,
silimanite ± garnet ± chlorite 1.8 −0.003 155

Monzogranite Host rock Quartz, plagioclase, microcline, biotite, chlorite
(±pegmatites, granophyres) 0.83 0.19 99

Quartzite Host rock Quartz ± sericite 0.6 −0.03 2.9

D
ia

m
a-

gn
et

ic

Silicification Silicic (Si) Silica, sericite 0.6 −0.04 357

4.3. Magnetic Susceptibility Footprints Interpretation

The complexity of IOCG deposits in the Carajás region poses a challenge to establishing
a geophysics exploration model due to the structural control, multiple hydrothermal
alteration zones, ore texture, depth of formation, remanence, demagnetization, and low
magnetic latitude.

The existence of extensive drill cores from the geological evaluation program encour-
aged attempts to find another model for this IOCG deposit based exclusively on direct
magnetic susceptibility measurements and their footprints.

As such, we designed a thorough process as an alternative approach to obtaining a ge-
ological 3D physical property model for the Furnas Southeast Deposit. First, we performed
extensive measurements, and an efficient method was established. Second, the statistical
analyses presented above provided all the foundations for a spatial characterization of the
deposit based solely on this property statistical footprint.

With the understanding of mineral predominant content that is associated with mag-
netic susceptibility measurements, we compared all lithotypes and hydrothermal alteration
zones with magnetic susceptibility in a box plot to define the three main ferrimagnetic,
paramagnetic, and diamagnetic footprints. A synthesis shows the magnetic susceptibility
behavior of the various rocks and alteration types (Figure 18).
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Figure 18. Box plot log of magnetic susceptibility (SI) versus lithotypes with values from the higher
sensitivity susceptibility meter (KT-10). The ferrimagnetic, paramagnetic, and diamagnetic min-
erals dominances is represented in red, green, and blue rectangles, respectively. K = potassic,
Al = aluminous, Am = amphibolitic, Si = silicification, Chl = chloritization, Fe = ferric, Ca = calcic,
Na = sodic, BIF = banded iron formation.

The study of the range of the three main ferrimagnetic, paramagnetic, and diamag-
netic footprints, together with the spatial position of the measurements on drill holes, is
important for the next phase of the research that is the three-dimensional modeling of
the deposit.

4.4. Magnetic Susceptibility 3D Modeling

The careful positioning in space of the determinations gathered was able to produce the
best possible spatial model for this physical property of the local IOCG mineralization and
their hydrothermal alterations. Its spatial distribution and behavior can help to understand
the geological entities for this local mineralization.

We divided the georeferenced measurements subspace into 5 m cubic cells and in-
terpolated using a 3D kriging algorithm [46]. The deposit strike direction is N 60◦ W
(300◦ Azimuth). The transverse direction is where most of the used samples are gathered.
To address these different sample density directions, a weighting function was used to
normalize this effect.

To define the best cut-off, we calculated the average of the ferrimagnetic hydrothermal
alterations medians with a final value of 506 × 10−3 SI (855 + 395 + 269 = 1519/3 = 506).
Using this, we defined the physical 3D model, including host rocks and hydrothermal
alteration zones with predominant diamagnetic and paramagnetic minerals footprints
values lower than 500 × 10−3 SI from the high-sensitivity equipment (KT-10) and values
lower than 60 × 10−3 SI for those measured with the low-sensitivity equipment (KT-9)
(Figure 19). In the magnetic susceptibility 3D model, including hydrothermal alteration
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zones with predominant ferrimagnetic mineral footprints, the values are greater than
500 × 10−3 SI from the high-sensitivity equipment (KT-10) and greater than 60 × 10−3 SI
for those measured with the low-sensitivity equipment (KT-9) (Figure 19). These values
were selected from the statistical analyses, as previously mentioned. The two envelope
surfaces of different equipment bound susceptibilities values higher than the threshold
values for both cases. They complement each other because of the different distributions
of the drill holes used in the measurements (Figure 6). It is important to emphasize that
the susceptibility model reflects only the northwestern portion of the study area, which is
where the studied drill holes are located (Figure 6).
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This susceptibility model versus ore concentration, when seen in detail, shows the 
direct correlation between the magnetite (Fe) hydrothermal alteration zones, represented 
by high magnetic susceptibility values (envelope of the values greater than 500 × 10−3 SI) 
(Figure 20a), and high-grade orebodies with values higher than 0.6% copper (Figure 20b). 
However, the Si alteration is represented by low magnetic susceptibility values and wraps 
the magnetic Fe alteration. The continuation of interpolation in depth can suggest the 
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Figure 19. The 3D magnetic susceptibility models interpolated using a 3D kriging algorithm [46].
The red model includes hydrothermal alteration zones with predominant ferrimagnetic minerals
footprints values greater than 500 × 10−3 SI from the high-sensitivity equipment (KT-10) and values
greater than 60 × 10−3 SI for those measured with the low-sensitivity equipment (KT-9). The green
model includes host rocks and hydrothermal alteration zones with predominant diamagnetic and
paramagnetic minerals footprints with values lower than that cited above. The 3D kriging with 5 m
cubic cells. Drill holes in black traces and topography in the gray surface. (a) Top view from SW to
NE. (b) View from E to W. (c) View from SE to NW. (d) View from NW to SE.

This susceptibility model versus ore concentration, when seen in detail, shows the
direct correlation between the magnetite (Fe) hydrothermal alteration zones, represented
by high magnetic susceptibility values (envelope of the values greater than 500 × 10−3 SI)
(Figure 20a), and high-grade orebodies with values higher than 0.6% copper (Figure 20b).
However, the Si alteration is represented by low magnetic susceptibility values and wraps
the magnetic Fe alteration. The continuation of interpolation in depth can suggest the
main interpreted trend of ore (Figure 20a). A dip difference can be observed between the
sections, also on the right (Figure 20b) of the mineralized zones that crop out at the hill
crest, whereas in the model (Figure 20a), the magnetic zone projects the surface downslope
to the SW. These differences can be explained due to the absence of measurements on the
weathered lateritic profile and interpolation algorithm trend.
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Figure 20. Good correlation between (a) magnetic susceptibility model represented with magnetic
susceptibility measured on drill cores (black line profiles along drill hole lines). (b) High-grade
orebodies with values higher than 0.6% copper (dashed black lines) represented in the geological
section with the host rocks, hydrothermal alteration zones and mineralized zones (Modified from
Vale S.A. [42]). The location of sections is shown in Figures 3 and 6.

The 3D magnetic susceptibility model’s strike and dip shows a good fit with the
ore-grade 3D model from extensive drilling. Comparison of the susceptibility model with
low-grade (0.2 to 0.6% Cu; Figure 21a) and the high-grade (threshold limit >0.6% Cu;
Figure 21b) ore model from 69 drill holes (Vale S.A. [42]) shows this excellent correlation.
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It is interesting to note that the efficient quality control of measured data discussed
herein is crucial for the correct analysis of measured magnetic susceptibilities and interpo-
lation of a reliable 3D model, as thoroughly discussed in this paper.

5. Conclusions

The comprehensive petrophysical characterization and geological-geophysical inter-
pretations presented in this study are useful for: (i) Characterizing magnetic susceptibility
footprints of ore zones and hydrothermal alteration zones, as long as the magnetite plays
an important role in the mineralization formation and constitution process; (ii) quantitative
assistance in the correlation and geological interpretation of mineralized lithotypes; (iii)
quantitative support in sections interpretation for the generation of geological and ore
models; (iv) improving and validating the use of magnetic surveys as well as mineral
prospecting techniques and geophysical equipment; (v) providing for the constrained
inversion of magnetic data, excellent prior information applied to grassroots and greenfield
exploration programs; and (iv) appropriate use of extensive drill cores available in new
brownfield explorations.

In the Furnas Southeast deposit, the massive magnetite (Fe), garnet-grunerite-magnetite
(Ca-Fe) and amphibole-magnetite (Na-Ca-Fe) hydrothermal alteration zones are the most
important due to their direct relationship with chalcopyrite and bornite sulfides (mineral-
ization high-grade with values higher than 0.6% copper). The statistical analyses indicate a
strong contrast between magnetic and non-magnetic hydrothermal alteration zones. The
obtained results enable predominant diamagnetic (median 0.0006 to 0.00083 SI) and param-
agnetic (median 0.0018 to 0.0088 SI) footprints to be separated from ferrimagnetic (median
0.269 to 0.855 SI) footprints to construct a 3D model with their distributions, which traces
the well-known boundaries of the studied mineralization. This study approach is a very
important and non-expensive method to support IOCG deposits brownfield and greenfield
exploration programs.
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Appendix A

In this appendix, we complement this study with the statistics, histograms, and
description of host rocks and hydrothermal alteration zones not presented in the paper.

Appendix A.1 Host Rocks

Amphibolitic schists were found to have higher susceptibility values in comparison
to aluminous schist. The median was of 8.8 × 10−3 SI and the mean value of 36 × 10−3 SI
(Figure A1). The large number of samples in these schists (3119) reflects the large extension
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drilled in the amphibolitic schist to intercept the mineralized targets (2085 samples), which
is the cap host rock.

The monzogranite rocks are affected by albite hydrothermal alteration. These rocks
have low-magnetic-susceptibility values, which likely reflect the predominance of para-
magnetic minerals in the rock, such as feldspar, plagioclase, and biotite, and diamagnetic
minerals such as quartz. The median value is 0.83 × 10−3 SI, and the mean value is
3.5 × 10−3 SI, (Figure A2). The small number of samples (61) is a result of the low occur-
rence of these rocks in the Furnas Southeast deposit.

The quartzite shows low magnetic susceptibility values. For quartzite, the minimum
value of −0.039 × 10−3 SI (Figure A3), is due to the diamagnetic characteristics of the quartz,
which include weak susceptibility and negative values in its purest form. The statistical
analysis of quartzite samples shows a low median value and mean of 0.66 × 10−3 SI
(Figure A3). These values are high for pure quartzite. However, negative values probably
do not occur in abundance due the elevated presence of paramagnetic minerals, such as
sericite, and equipment limitations.
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Appendix A.2 Hydrothermal Alteration Zones

The amphibole (Na-Ca) hydrothermal alteration zone has a median of 4.64 × 10−3 SI
and an average of 23 × 10−3 SI (Figure A4). The picture in Figure A4 shows a chalcopyrite
mineralized sample with 1.4% of copper grade.

The chlorite (Chl) hydrothermal alteration zone may or may not be associated with
mineralization. This alteration has low susceptibility values, with a median of 5 × 10−3 SI
(Figure A5). The variation from low and intermediate values is interpreted to be the result
of magnetite precipitation along fractures or between sheets of chlorite (Chl-Fe). The
hydrothermal process of chloritization (Chl) is strong. It partially or completely alters the
rocks of the area.
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