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Abstract: Fully grouted bolts are widely used in engineering. In order to deeply understand the
load-transfer mechanism of a fully grouted bolt, it is necessary to analyze and study its mechanical
behavior under axial cyclic load. First of all, based on the idea of discretization and the force balance
analysis of each mass spring element, this study proposes a method for analyzing the force of
the bolt—the spring element method. Second, the load-transfer model of the fully grouted bolt is
established by using the spring element method, assuming that the bolt and the sidewall rock and
soil are connected by tangential linear springs. The analytical solutions for the displacement, axial
force, and shear-stress distribution of the bolt before and after the damage of the sidewall spring
are given. It is found that the analysis results of the analytical model proposed in this paper have a
great relationship with λ, which is the square root of the ratio of sidewall spring stiffness k′u to bolt
stiffness ku. Further analysis found that this model is more suitable for the two working conditions of
λ ≈ 0 and λ ≈ 1, and the relationship between sidewall spring stiffness k′u and pull-out stiffness K of
the bolt was established under these two working conditions. Finally, the rationality and accuracy of
the analytical model proposed in this study are verified by an analysis of two typical test cases under
the two working conditions of λ ≈ 0 and λ ≈ 1.

Keywords: axial cyclic load; fully grouted bolt; load-transfer model; ultimate pull-out force; pull-out
stiffness

1. Introduction

In recent years, geotechnical anchoring technology has developed rapidly, and bolts
are widely used in reinforcement projects, such as civil engineering and mining. Three
main types of anchoring technology are widely used at present: mechanical anchoring,
grouting, and friction anchoring. Among these, grouting anchoring is the most popular in
practice due to its ease of installation, relatively low cost, and versatility in applications [1].
Among the various types of bolts, fully grouted bolts are the most common in practical
applications. A fully grouted bolt is a bolt that is inserted and grouted in a borehole along
the entire length [2]. The bearing performance of fully grouted bolts mainly depends on
the type of steel bar, the grout material, and the lithology of the formation. Having a better
understanding of the bolt load-transfer mechanism can help to optimize the bolt profile
design, which can significantly improve the performance of the rock bolt-reinforcement
system [3].

Understanding the load-transfer mechanism of the bolt can be accomplished by using
methods such as field tests, numerical simulations, and theoretical analysis. In field testing
of bolts, much experimental research work has been carried out. Fujita [4] defined the
critical anchoring length of the bolt by systematically combing through and summarizing
the measurement data of pull-out tests of 30 geotechnical engineering bolts. Through
experimental analysis, Stillborg [5] found that the water–cement ratio, additives, and
buried length were the main factors affecting the bearing capacity of fully grouted bolts.

Minerals 2022, 12, 1566. https://doi.org/10.3390/min12121566 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12121566
https://doi.org/10.3390/min12121566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-6498-2758
https://doi.org/10.3390/min12121566
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12121566?type=check_update&version=1


Minerals 2022, 12, 1566 2 of 15

Su and Fragaszy [6] pointed out that the peak values of the shear stress and the axial force
in the anchoring section of the bolt do not appear at the same time, based on an analysis
of the measurement data of pull-out tests of 18 bolts. Heytt et al. [7] combined the results
of field and laboratory tests to systematically study the influencing factors of the bearing
capacity of the anchor cable. Kilic et al. [8] conducted a pull-out test study on threaded rebar
bolts embedded in basalt. According to the shear strength, uniaxial compressive strength,
bonding area, and setting time of the grouting material, as well as the anchoring length and
diameter of the bolt, the calculation formula of the pull-out load of the bolt was established.
Kim [9] carried out an experimental study on the anchorage mechanism and the properties
of creep and stress relaxation of tensile-type and pressure-type bolts in weathered rock
mass. Huang et al. [10] conducted a pull-out test study on the loading mechanism of the
bolt in homogeneous and locally debonded rock mass by using full-scale embedded optical
fiber self-monitoring intelligent bolts. The axial and shear-stress distribution curves of
the bolt under the two working conditions were obtained by actual measurement, and
the load-transfer characteristics of the bolt under each working condition were analyzed.
These research results have laid a good foundation for the theoretical analysis of fully
grouted bolts.

Much work has also been performed in relation to the theoretical analysis of the
load-transfer mechanism of fully grouted bolts. Phillips [11] and Farmer [12] proposed the
exponential function form of the shear-stress distribution at the bolt interface. Starting from
the displacement solution of Mindlin, scholars such as Wijk [13] deduced the details of the
solution of the axial force and shear stress distributed along the anchoring section of the bolt.
Aydan et al. [14] assumed that the rock mass, grout, bolt, and interface between them are
all in an elastic working state and established the solution of the drawing-load distribution
of the bolt. Li and Stillborg [15] proposed an analytical model for fully grouted rock
bolts under tensile load based on the shear stress distribution along the bolt, successfully
accounting for decoupling at the bolt–rock interface. Ren et al. [1] used the tri-linear shear–
slip model of the anchoring interface to establish an analytical solution of the axial force
and shear-stress distribution of the anchored section in the fully elastic, elastoplastic, and
fully plastic states. Ma et al. [3] used a nonlinear shear–slip model to conduct a preliminary
analysis of the load transfer and nonlinear characteristics of full-length bonded bolts under
pull-out load. Chen et al. [16] used a tri-linear model to consider the elastic, softening, and
debonding behaviors at the cable–grout interface, and proposed an analytical model for
fully grouted bolts under axial load conditions. Li et al. [17] proposed a novel constitutive
model to characterize the mechanical behavior of cable bolts under axial load and subjected
to different boundary conditions, including constant confining pressure and constant
normal stiffness. Jahangir et al. [18] proposed a new interface constitutive model for fully
grouted rock bolts and cable bolts based on pull-out test results. A database was created
combining published experimental data with in-house tests. In addition, many field tests
and theoretical research of fully grouted bolts have been conducted, which will not be
mentioned here.

However, in the previous research work, more attention was paid to the analysis
of mechanical behavioral characteristics of bolts under a single load, and less research
was conducted on the mechanical characteristics of bolts under axial cyclic load. In these
research works, the analysis results of the mechanical properties of bolts are the same
under the same load. However, this is seriously inconsistent with the actual situation.
In the same cycle of a bolt-pull test, the mechanical behavior of the bolt when unloaded
can be quite different from that when loaded, even with equal loads. During the loading
process in different cycles, under the same load, the mechanical behavior characteristics
of the bolt can also be quite different. Therefore, in order to more deeply understand the
load-transfer mechanism of fully grouted bolts, it is essential to analyze and study the
mechanical behavior of fully grouted bolts under axial cyclic load.

The purpose of this study was to analyze and study the mechanical behavioral charac-
teristics of fully grouted bolts under axial cyclic load by establishing a relationship between
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pull-out stiffness K, sidewall spring stiffness k′u, and cyclic load. In the following sections,
we propose a method for analyzing the force of bolts: the spring element method, which is
based on the idea of discretization and force balance analysis of each mass spring element.
It is assumed that the bolt and the sidewall rock and soil are connected by tangential linear
springs, and the load-transfer model of the fully grouted bolt is established by the spring
element method. It should be noted that the analytical results of this load-transfer model
have a great relationship with square root λ of the ratio of sidewall spring stiffness k′u to
bolt stiffness ku. Further analysis found that this model is more suitable for the two working
conditions of λ ≈ 0 and λ ≈ 1. Then, the relationship between k′u and K is established
under these two working conditions, and the variation characteristics of k′u under cyclic
load are analyzed. Finally, using two typical test cases under the two working conditions
of λ ≈ 0 and λ ≈ 1, the variation law of pull-out stiffness K and its change rate ∆P/∆s with
the test load and number of cycles is analyzed, and the analytical model proposed in this
study is discussed and verified.

2. Analysis of Bolt Force

As shown in Figure 1, a homogeneous free bar of equal cross-section, regardless of
body force, can be discretized into n mass-point spring elements with the same stiffness
k when no force is applied. The effect of this treatment is that each bar micro-segment is
equivalent to a combination of a spring and an infinitesimal mass point. In the free state,
its length is the same as that of the free bar micro-segment, and the external force on each
bar’s micro-segment is concentrated on the mass point of the corresponding spring element.
After the same tensile force P is applied at both ends, the bar is elongated by s, and the
elongation ∆si of each spring element is s/n. From Hooke’s law, we know that

∆si =
Pl

nEA
(1)

where E is the elastic modulus, A is the cross-sectional area, and l is the length of the bar.
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Figure 1. Schematic diagram of discretization of free rod.

Then, the stiffness of each spring element is

k =
nEA

l
(2)

In the same way, as shown in Figure 2, a homogeneous bolt of equal sections can also be
discretized into n spring elements with the same stiffness k when no force is applied. After
tensile force P is applied to the top of the bolt, the top of the bolt produces displacement s.
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Since the bolt is constrained by the sidewall, the elongation ∆si of each spring element is
not equal at this time, and

∆si =
Pi
k

(3)

where Pi is the spring tension of the ith spring element.
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Starting from the top of the bolt, the spring elements are numbered sequentially from
1 to n, and the displacements of the ith and i + 1st spring elements are related as follows:

si − si+1 = ∆si (4)

Figure 3 shows the force analysis diagram of the ith spring element. Spring element i
is subjected not only to pulling forces Pi and Pi−1 exerted by the adjacent spring elements,
but also to lateral resistance Fi provided by the sidewall. It can be seen that

Fi = Pi−1 − Pi (5)

Combining Equations (3) and (5), we obtain

∆si−1 − ∆si =
Fi
k

(6)
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Assuming n→∞, when i varies from 1 to n, the distribution patterns of displacement si,
spring tension Pi, and sidewall resistance Fi of the ith spring element can be approximated
as continuous distribution functions s(x), P(x), and F(x), respectively, along the bolt length,
where x is the length from the top of the bolt. Further, combined with Equation (4), the
first derivative of the displacement distribution function s(x) is s′(x) = lim

n→∞
−∆si
( l

n )
, and

the second derivative is s′′ (x) = lim
n→∞

(∆si−1−∆si)

( l
n )

2
. Then, Equations (3) and (6) can be,

respectively, transformed into

s′(x) = −P(x)
ku

(7)
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s′′ (x) =
F(x)

ku
(8)

In these formulas, ku is the stiffness of the bolt per unit length, namely, ku = kl/n = EA.

3. Establishment of Load-Transfer Model

Many scholars [19–21] have studied the mechanical properties of the bolt shear inter-
face, and it is believed that the change law is as follows: with increased shear displacement,
the shear stress increases almost linearly; when maximum shear stress τf is reached, as the
displacement increases, the shear stress decreases until the residual strength is reached.
Based on this law, it is assumed that the bolt and the rock–soil mass are connected by
tangential linear springs. The shear displacement between the bolt and the sidewall is
coordinated, and the lateral resistance provided by the sidewall to the bolt increases linearly
with the displacement of the spring element. When displacement s of the spring element
in a certain area is greater than st, the sidewall spring in this area is pulled off, and its
interface side resistance is directly reduced from the ultimate value Fm to the residual
friction resistance Fr and remains unchanged, as shown in Figure 4. From this, lateral
resistance can be divided into two stages: before and after the sidewall spring breaks,
as follows:

F(x) =
{

k′us(x) (0 < s ≤ st)
Fr (st < s ≤ s0)

(9)

where st is the ultimate displacement of the sidewall spring, and st =
Fm
k′u

.
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3.1. Before the Sidewall Spring Is Broken (0 < s ≤ st)

Substituting Equation (9) into Equation (8), the bolt-load transfer equation at this time
can be obtained as

s′′ (x)− k′u
ku

s(x) = 0 (10)

The general solution to the above equation is

s(x) = A1eλx + A2e−λx (11)

where A1 and A2 are the parameters to be sought, and λ =
√

k′u/ku.
It is known that the boundary conditions are

s(x)|x=0 = s0 (12)

s′(x)
∣∣
x=0 = −P0

ku
(13)
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s′(x)
∣∣
x=l = 0 (14)

where s0 and P0 are the displacement and pull-out force at the top of the bolt, respec-
tively. Substituting boundary condition Equations (12)–(14) into Equation (11), we obtain
A1 = P0

λku
· e−λl

eλl−e−λl ; A2 = P0
λku
· eλl

eλl−e−λl .
Then, the displacement distribution function of the bolt can be obtained as

s(x) =
P0

λku
· cos h[λ(l − x)]

sin h(λl)
(15)

Taking the derivative of x on both sides of Equation (15), and substituting s′(x) into
Equation (7), the axial force distribution function of the bolt can obtained as

P(x) = P0
sin h[λ(l − x)]

sin h(λl)
(16)

Substituting Equation (15) into Equation (9), we can obtain the shear-stress distribution
function of the bolt as

τ(x) =
P0λ

2πrb
· cos h[λ(l − x)]

sin h(λl)
(17)

where rb is the radius of the bolt.
At this time, the pull-out stiffness at the top of the bolt is

K =
P0

s0
=

P(0)
s(0)

= λku tan h(λl) (18)

By analyzing Equation (9), it can be known that the following approximate equation
exists at the top of the bolt:

P0 ≈ k′us0 (19)

Therefore, if this model is used for analysis, the most ideal case is that pull-out stiffness
K is approximately equal to sidewall spring stiffness k′u; that is, K ≈ k′u. Substituting it into
Equation (18), together with λ, we have

λ ≈ tan h(λl) (20)

Since bolt length l is generally much greater than 1, Equation (20) can only be estab-
lished when λ ≈ 0 and λ ≈ 1. Therefore, the model proposed in this paper is most suitable
for analysis in the two working conditions of λ ≈ 0 and λ ≈ 1. The calculation and analysis
of multiple projects verified that when λ is between 0 and 0.3 and between 0.8 and 1.2, the
model has better calculation results. When λ is between 0 and 0.3, it can be assigned to
the working condition λ ≈ 0, and when λ is between 0.8 and 1.2, it can be assigned to the
working condition λ ≈ 1.

3.2. After the Sidewall Spring Is Broken (st < s ≤ s0)

Assuming that the sidewall spring at a certain depth xt is just in the critical state of
being pulled off, the displacement of the spring element at that location is st, and it can be
known that sidewall springs within the depth of xt are all pulled off. Thus, the bolt can be
divided into sidewall spring-breaking areas and non-breaking areas. At this time, a new
boundary condition is added at xt as follows:

s(x)|x=xt
= st (21)

According to Equation (9), the load-transfer equations of the bolt at this time are

s′′ (x)− k′u
ku

s(x) = 0 (xt < x ≤ l) (22)
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s′′ (x)− Cu

ku
= 0 (0 ≤ x ≤ xt) (23)

The general solutions are

s(x) =

{
A1eλx + A2e−λx (xt < x ≤ l)
Fr

2ku
x2 + B1x + B2 (0 ≤ x ≤ xt)

(24)

In the formulas, A1, A2, B1, and B2 are all parameters to be determined.
Substituting the boundary conditions at this time into Equation (24), the coefficients

can be obtained as A1 = st
e−λl

eλ(l−xt)+e−λ(l−xt)
; A2 = st

eλl

eλ(l−xt)+e−λ(l−xt)
; B1 = − P0

ku
; B2 = s0.

Then, the displacement distribution function of the bolt can be obtained as

s(x) =

{
st

cos h[λ(l−x)]
cos h[λ(l−xt)]

(xt < x ≤ l)
Fr

2ku
x2 − P0

ku
x + s0 (0 ≤ x ≤ xt)

(25)

The axial force distribution function of the bolt is

P(x) =

{
λkust

sin h[λ(l−x)]
cos h[λ(l−xt)]

(xt < x ≤ l)
P0 − Frx (0 ≤ x ≤ xt)

(26)

The shear-stress distribution function of the bolt is

τ(x) =

{
Fm

2πrb
· cos h[λ(l−x)]

cos h[λ(l−xt)]
(xt < x ≤ l)

Fr
2πrb

(0 ≤ x ≤ xt)
(27)

At this time, the pull-out stiffness at the top of the bolt is

K =
P0

s0
(28)

According to the continuity of P(x) at x = xt, the pull-out force at the top of the bolt
can be obtained as

P0 = λkust tan h[λ(l − xt)] + Frxt (29)

Solving the above equation, xt can be obtained.
The first-order derivative of the pull-out force function P0(xt) at the top of the bolt

can be obtained as P′0(xt) = Fr − Fm

{
1− tan h2[λ(l − xt)]

}
. It can be found by observation

that when xt increases from 0 to l, since Fr < Fm, P′0(xt) first changes from a positive value to
0, and then to a negative value. Therefore, it can be known that P0(xt) is a convex function
and has a maximum value. If we let P′0(xt) = 0, the critical failure depth of the shear plane
under the ultimate drawing force P0max can be obtained as

xtj = l − 1
2λ

ln
1 +
√

1− α

1−
√

1− α
(30)

where α = Fr
Fm

.
At this time, the ultimate pull-out force is calculated as

P0max =
Fm

λ
tan h(

1
2

ln
1 +
√

1− α

1−
√

1− α
) + Fr

(
l − 1

2λ
ln

1 +
√

1− α

1−
√

1− α

)
(31)

4. Analysis of Variation Characteristics of Sidewall Spring Stiffness under Cyclic Load

Through many experimental observations, it was found that pull-out stiffness K at the
top of the bolt under cyclic load does not remain constant all the time, but changes with
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the change in the load. It can be seen from the foregoing analysis that when the bolt is
not damaged, pull-out stiffness K is approximately equal to sidewall spring stiffness k′u;
namely,

k′u ≈ K =
P0

s0
(32)

Therefore, sidewall spring stiffness k′u also changes constantly under cyclic load.
When the bolt is damaged, it can be known from Equation (28) that its pull-out stiffness

K can be directly calculated from the measured P0 and s0. However, pull-out stiffness K
at this time is also mainly affected by the pull-out properties of the undamaged segment.
From Equations (25) and (26), it can be known that the pull-out stiffness of the bolt at xt is

Kxt = λku tan h[λ(l − xt)] =
Fm

st
= k′u (33)

Combining Equations (29) and (33), the simplified calculation formula of xt at this
time can be obtained as

xt =
P0 − Fm

Fr
(34)

Since the residual friction resistance Fr of the damaged section of the bolt is relatively
small, for the convenience of calculation, the axial force of the bolt in the entire damaged
section can be approximated as P0. Assuming that the elongation of the bolt in the damaged
section is sf, we have

s0 = s f + st (35)

Equation (35) can be transformed into

P0

K
≈ P0

ku
+

P0

k′u
(36)

It can be obtained that the pull-out stiffness at the top of the bolt at this time is

K ≈ λku tan h[λ(l − xt)]

λ tan h[λ(l − xt)] + 1
≈ kuk′u

ku + k′u
(37)

After analyzing Equation (37), it is found that when λ ≈ 0, Equation (37) can be
approximated as K ≈ k′u, and when λ ≈ 1, Equation (37) can be approximated as

K ≈ k′u
2

(38)

Therefore, when the bolt is damaged, under the working condition of λ ≈ 0, the
sidewall spring stiffness is approximately equal to the pull-out stiffness at the top of the
bolt; namely, k′u ≈ K, and under the working condition of λ ≈ 1, the sidewall spring
stiffness is approximately twice the pull-out stiffness at the top of the bolt; namely,

k′u ≈ 2K = 2
P0

s0
(39)

Therefore, when the bolt is damaged, its sidewall spring stiffness k′u also changes
constantly under cyclic load.

Cai et al. [21] deduced an empirical formula for calculating sidewall spring stiffness k′u
by analyzing the stress state of the rock mass unit around the bolt, based on the force balance
conditions and approximate assumptions. When the grout has the same characteristics as
the rock soil, we have

k′u =
2πGg

ln( R
rb
)

(40)
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and when the properties of the grout and the rock soil are different, we have

k′u =
2πGgGr

Gg ln( R
rg
) + Gr ln( rg

rb
)

(41)

in which Gg is the shear modulus of the grout, Gr is the shear modulus of the rock soil, rg is
the radius of the borehole, and R is the influence radius of the bolt; that is, the radius of the
deformation zone.

From Equations (40) and (41), Cai et al. [21] assumed that k′u remained unchanged
during the bolt pull-out test. However, according to the previous analysis, sidewall spring
stiffness k′u is always changing under different loads and in different cycles. This as-
sumption obviously does not correspond to the actual situation. In addition, when using
Equations (40) and (41) to calculate, it is necessary to estimate the influence radius R of the
bolt in advance. If the estimation is inaccurate, there will often be a large error between the
calculation result and the actual situation. In comparison, the method of inversely analyzing
k′u by using measured pull-out stiffness K in this paper is more accurate and reasonable.

5. Field Test and Analysis
5.1. Case 1 (Working Condition of λ ≈ 0)

The compilation group on technical standards for testing and inspection of ground
anchors led a comprehensive large-scale bolt test with the main purpose of evaluating the
mechanical properties, length, and test methods of geotechnical bolts by various methods.
The test site, which was carefully selected, is located at the Haipurui construction site,
Jinxiu East Road, Pingshan New District, Shenzhen. There are single strata within the
length of the cable bolt, and all are residual sandy clayey soil. There are about 180 test
cable bolts of nine types: full grouting, partial grouting, pressure concentration, pressure
dispersion, tensile tension reaming, pressure reaming, secondary grouting, self-measuring
force, and ultra-long recyclable cable bolts. In this study, the test data of three fully grouted
bolts were selected for analysis and research. The test loading and unloading equipment
uses a high-precision automatic control system and real-time wireless data transmission
technology. The strain of grout was tested using distributed optical fibers.

It was known that the length of the three fully grouted bolts was 9, 12, and 15 m,
and other parameters were the same: bolt radius rb = 18 mm; elastic modulus of bolt
Eb = 195 GPa; drilling radius rg = 90 mm; mortar elastic modulus Eg = 20 GPa; mortar
Poisson’s ratio µg = 0.25; shear modulus of soil around the bolt Gr = 8 MPa. The test was
loaded in a graded multi-cycle manner. According to the criterion that creep rate ω must
not be greater than 2.0 mm, the measured ultimate pull-out force was 550, 770, and 900 kN
for the bolts with lengths of 9, 12, and 15 m, respectively. The formula for calculating creep
rate ω is

ω =
s2 − s1

lgt2 − lgt1
(42)

in which s1 and s2 are the displacement of the bolt head, measured at t1 and t2, respectively,
and the difference is the creep value; and t1 and t2 are the start and end times of the
logarithmic period of the calculation time, respectively. Through many experimental
observations, it was found that due to the influence of the loading system, the displacement
was not stable within the first 5 min after the load was applied. Therefore, in order to reflect
the creep characteristics of the bolt more precisely, when calculating creep rate ω, t1 should
not be less than 5 min, which was the value used in this test.

Figure 5 shows the variation law of pull-out stiffness K and its change rate ∆P/∆s with
the test load and number of cycles during the test. It can be seen from Figure 5a that within
each cycle of graded load, K gradually increased during loading and decreased during
unloading, and under the same load, the value of K was smaller during unloading than
loading. With an increase in the number of cycles, pull-out stiffness K under the same load
basically shows a gradual decreasing trend as well. It can be seen from Figure 5b that in
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each cycle of graded load, during the loading process, the pull-out stiffness change rate
∆P/∆s first increased sharply, then decreased sharply, then gradually became stable, and
finally decreased gradually. During the unloading process, ∆P/∆s increased sharply by
several times, even more than 10 times, then rapidly decreased to about the average value,
and finally decreased gradually. With an increase in the number of cycles, the multiple of
∆P/∆s during unloading also increased gradually, but the average value did not change
much. It can be seen from Figure 5 that with the change of load and the increase in number
of cycles, the pull-out stiffness of the bolt also changed regularly.
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Figure 5. Variation of K and ∆P/∆s with test load and number of cycles during the test (working
condition of λ ≈ 0). (a) Variation of pull-out stiffness K; (b) variation of pull-out stiffness change rate
∆P/∆s.

According to the parameters of this test, ku = 198.5 MN was calculated. Referring to
the assumption of Cai et al. [21], the influence radius of the bolt was taken as R = 35rb, and
the sidewall spring stiffness, calculated according to Equation (41), was k′u = 25.8 MPa. The
measured initial sidewall spring stiffnesses of the three bolts was 27.5, 28.1, and 19.9 MPa.
Although these are all close to the results calculated by Equation (41), each bolt was different.
If the same k′u was used for simulation and analysis, the difference in pull-out stiffness
among different bolts could not be seen. After analysis and calculation, the λ of the three
bolts was between 0 and 0.4, so the working condition of λ ≈ 0 could be approximated
for analysis.

Figures 6 and 7 show the comparison results of the measured axial force and shear-
stress distribution curves of the three bolts and the simulated curves, respectively. Ac-
cording to the field test results, in the process of simulation analysis, the ultimate shear
strength of the bonding interface between the bolt and the grout was taken as 2.0 MPa, and
α was taken as 0.3. Then, the calculated ultimate friction resistance Fm and residual friction
resistance Fr of the bolt bonding interface were 233.9 and 70.2 kN, respectively. The three
bolts were analyzed and calculated using the model proposed in this paper, and the results
are shown in Table 1.



Minerals 2022, 12, 1566 11 of 15

Table 1. Calculation results of the three bolts.

Bolt Length l (m) Critical Failure Depth of Shear Plane xtj (m) Ultimate Pull-Out Force P0max (kN)

9 5.6 940
12 8.8 1100
15 11.0 1300

It can be seen from Table 1 that the ultimate calculated values of pull-out force of
these three bolts are all larger than the measured values, and there are large deviations.
There are two main reasons for this problem. On the one hand, because the λ in this test is
slightly larger, the working condition of λ ≈ 0 cannot be perfectly used for analysis. On the
other hand, the ultimate measured pull-out force is determined according to the index of
the creep rate not being more than 2.0 mm, and the value determined from this is much
smaller than the calculated value. The pull-out performance of the bolt is mainly restricted
by the two indexes of bearing capacity and deformation. When the deformation and creep
rate of the bolt are large, it is obvious that more serious damage occurs. However, in fact,
the bolt can still have a larger bearing capacity at this time. Therefore, in comparison, the
ultimate pull-out force determined by the creep rate is safer and more reasonable, and the
calculation and analysis results cannot be trusted blindly.
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Figure 6. Comparison of measured axial force distribution curve and simulated curve: (a) 9 m-long
bolt; (b) 12 m-long bolt; (c) 15 m-long bolt.
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Figure 7. Comparison of measured shear stress distribution curve and simulated curve: (a) 9 m-long
bolt; (b) 12 m-long bolt; (c) 15 m-long bolt.

It can be seen from Figure 6 that the simulated axial force distribution curves of the
three bolts are in good agreement with the measured curves. However, the measured
values of the three bolts in the shallow part (about 0 to 3 m) are smaller than the simulated
values, indicating that the three bolts are not uniformly stressed at this part, which may
be related to the geological conditions of the site. It can be seen from Figure 6a that under
a load of 450 kN, the simulation and measured results of the 9 m-long bolt show that the
bolt has no obvious shear damage. It can be seen from Figure 6b that under loads of 630,
700, and 770 kN, the simulation and measured results of the 12 m-long bolt reflect that
the bolt underwent obvious shear damage. The corresponding shear failure depth xt of
the simulated curves is 0.56, 1.36, and 2.04 m, respectively, while the corresponding xt of
the measured curves is 0.71, 1.53, and 2.55 m (slightly larger values). It can be seen from
Figure 6c that under loads of 720 and 810 kN, the simulated and measured results of the
15 m-long bolt reflect that the bolt underwent obvious shear damage. The corresponding xt
of the simulated curves is 0.51 and 1.32 m, while that of the measured curves is 0.61 and
1.53 m, respectively (the latter slightly larger than the former). Under a load of 900 kN, the
simulated xt is still 1.32 m, but stress–strain observation of the bolt was not carried out in
the field test.

It can be seen from Figure 7 that when the bolts did not undergo shear failure, the
measured shear stress of the three bolts was greater than the simulated value at about 0
to 1 m, and smaller than the simulated value at about 1 to 3 m. This shows that the shear
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stress of the three bolts attenuates too quickly in the range of 0 to 1 m, and the uneven
stress on the bolts at this part is also observed. In other parts, the simulated shear stress
distribution curves of the three bolts basically agree with the measured distribution curves.
It can be seen from Figure 7b,c that the ultimate shear stress of the bonding interface is
about 2.4 MPa and the residual shear stress is about 0.6 MPa, which are close to the values
used in the simulation calculation.

In summary, although the model analysis results are slightly different from the mea-
sured results, the mechanical properties of fully grouted bolts under axial cyclic load in the
working condition of λ ≈ 0 can still be well simulated.

5.2. Case 2 (Working Condition of λ ≈ 1)

For a certain fully grouted bolt, the following are known: bolt length l = 6 m; bolt
radius rb = 16 mm; elastic modulus of bolt Eb = 210 GPa; drilling radius rg = 90 mm; mortar
elastic modulus Eg = 20 GPa; mortar Poisson’s ratio µg = 0.25; shear modulus of rock soil
around bolt Gr = 50 MPa. The test was loaded using a graded multi-cycle method, with a
maximum test load of 550 kN, which was not loaded to the ultimate failure state. Strain
gauges were installed at intervals of 1 m along the axial direction of the bolt to monitor
axial strain.

Figure 8 shows the variation of K and ∆P/∆s with the test load and number of cycles
during the test. It can be seen that under cyclic load, the variation rule of K in this case is
the same as that in case 1, but the variation rule of ∆P/∆s is slightly different. This shows
that under the two working conditions, the mechanical properties of the bolt under cyclic
load are both similar and different. In the seventh and eighth cycles, K and ∆P/∆s both
decreased sharply, indicating that shear failure occurred at the bond interface of the bolt at
this time.
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According to the parameters of this test, ku = 168.9 MN and k′u = 171.2 MPa were
calculated, and the measured initial sidewall spring stiffness was 151.2 MPa. After analysis
and calculation, the value of λ of the test bolt was between 0.8 and 1.2, so the working
condition of λ ≈ 1 could be used for analysis. According to the field test results, in the
process of simulation analysis, the ultimate shear strength of the bonding interface between
the bolt and the grout was taken as 4.5 MPa, and α was taken as 0.2. Ultimate friction
resistance Fm and residual friction resistance Fr of the bolt bonding interface calculated
from this were 452.4 and 90.5 kN, respectively. The model in this paper was used to analyze
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and calculate the test bolt; the critical failure depth of shear plane xtj and the ultimate
pull-out force P0max were about 4.7 m and 770 kN, respectively. In the field test, the bolt
was not loaded to the ultimate failure state, so the actual ultimate pull-out force could not
be obtained.

Figure 9 shows the comparison between the model analysis and field test results of
the bolt. It can be seen from Figure 9b,c that the simulated axial force and shear stress
distribution curves are in good agreement with the measured results. Under loads of 500
and 550 kN, the simulation and actual measurement results show that obvious shear failure
occurred in the shallow part of the bolt, and the corresponding shear-failure depth xt was
0.53 and 1.08 m, respectively. Due to the sparseness of bolt-stress-monitoring points, the
measured results cannot reflect the shear-failure depth and ultimate shear-stress of the bond
interface. In summary, the analytical model in this paper is more suitable for simulating the
mechanical behavior of fully grouted bolts under axial cyclic load in the working condition
of λ ≈ 1.
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6. Conclusions

Based on the idea of discretization, force analysis of bolts was carried out, and the
spring element method for bolt analysis is put forward. In addition, the relationship
between the displacement, axial force, and side resistance distribution functions of the
bonding interface is established.

Assuming that the bolt and the rock soil mass are connected by tangential linear
springs, the load-transfer model of the fully grouted bolt is established by using the spring
element method. Considering the two situations before and after the damage of the sidewall
spring, the displacement, axial force, and shear-stress distribution functions of the bolt are
derived. Through further analysis, it is found that the model in this paper is more suitable
for simulation analysis in the two working conditions of λ ≈ 0 and λ ≈ 1. Furthermore,
the relationship between the sidewall spring stiffness and the pull-out stiffness of the bolt
was established under these two working conditions, and the variation characteristics of
the sidewall spring stiffness under cyclic load were analyzed.

Using two test cases under the two working conditions of λ ≈ 0 and λ ≈ 1, the
variation law of pull-out stiffness and its change rate with the test load and number of
cycles was analyzed, and the analytical model proposed in this study was discussed and
verified. It was verified by tests that the analytical model in this paper is more suitable for
simulating the mechanical behavior characteristics of fully grouted bolts under axial cyclic
load in working conditions of λ ≈ 0 and λ ≈ 1, and comparing the two, the model is more
applicable to λ ≈ 1.
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This study contributes to a comprehensive understanding of the mechanical behavior
of fully grouted bolts under axial cyclic load.
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