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Abstract: The Ruwai skarn deposit is located in the Schwaner Mountain complex within the central
Borneo gold belt and is currently considered the largest Zn skarn deposit in Indonesia. The deposit
has been known to host Zn-Pb-Ag mineralization in the form of massive sulfide ore bodies; however,
the occurrence of Ag-bearing minerals has not been identified yet. This study documents the
mineralogical characteristics of several Bi-Ag sulfosalts and sulfoarsenides, as well as their chemical
compositions. Ten Bi-Ag sulfosalts were identified, including native bismuth, tetrahedrite, cossalite,
tsumoite, bismuthinite, joseite-B, Bi6Te2S, Bi-Pb-Te-S, Bi-Ag-S, and Bi-Te-Ag. Three sulfoarsenides
were identified, including arsenopyrite, glaucodot, and alloclasite. The occurrence of Bi-Ag sulfosalts
is typically associated with massive sulfide mineralization, although tsumoite can also be found
associated with massive magnetite. In terms of sulfoarsenides, both arsenopyrite and glaucodot
are associated with massive sulfide mineralization, whereas alloclasite is associated with massive
magnetite mineralization. The Bi-bearing minerals are characterized by irregular, bleb-like texture
or patch morphology, and occur either as free grains or inclusions within sulfides, such as galena
or pyrite. Tetrahedrite typically has an anhedral shape with a rim or atoll texture surrounding
sphalerite or galena. In contrast, sulfoarsenides are typically found as euhedral–subhedral grains
where glaucodot typically is rimmed by arsenopyrite. Both Bi-Ag sulfosalt and sulfoarsenides were
formed during the retrograde stage under high oxidation and a low sulfidation state condition. The
ore-forming temperature based on arsenopyrite geothermometry ranges from 428 ◦C to 493 ◦C.

Keywords: Ruwai; skarn; sulfosalts; bismuth; silver; arsenides; Borneo

1. Introduction

The Ruwai skarn deposit is one of the few Zn-Pb skarn deposits in Indonesia, along
with Tuboh on Sumatra Island and Gunung Malang on Java Island [1–3]. The recent
resource estimation indicates a total resource of up to 14.43 Mt at 4.94% Zn; 3.28% Pb;
108.11 g/t Ag [4], which identifies Ruwai as the largest zinc skarn deposit in Indonesia.
The Ruwai skarn deposit was discovered in 1918 by a Dutch investigation program and is
currently under the management of PT Kapuas Prima Coal, Tbk. Several previous studies
mentioned that this deposit is enriched in Ag and Bi [5–7]; however, silver and bismuth
minerals have not been reported so far. This study presents the first detailed account of the
occurrence and chemical compositions of several Bi-Ag sulfosalts and sulfoarsenides in the
Ruwai skarn deposit, which implies a better understanding of their ore-forming conditions.

2. Geological Background

The Ruwai skarn deposit is located within the Central Borneo gold belt in the Schwaner
Mountains (Figure 1) (modified after [8]). The oldest stratigraphic unit in this area consists

Minerals 2022, 12, 1564. https://doi.org/10.3390/min12121564 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12121564
https://doi.org/10.3390/min12121564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-4511-156X
https://orcid.org/0000-0003-4083-4811
https://orcid.org/0000-0003-2245-4014
https://doi.org/10.3390/min12121564
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12121564?type=check_update&version=2


Minerals 2022, 12, 1564 2 of 13

of volcanic facies (part of the top of the Triassic Kuayan Formation), overlying the older
Jurassic Ketapang Complex consisting of limestone, siltstone, and sandstone (Figure 2) [6,9,10].
Most of the skarn mineralization at Ruwai is hosted in the limestone unit of the Ketapang
Complex [5,6]. The intrusions in this area belong to the Cretaceous Sukadana Granitoids [5,6,
11]. At least three types of intrusions are found including intermediate, felsic, and mafic dykes,
where the felsic and intermediate intrusions are interpreted to be the syn-mineralization
intrusion, whereas the mafic dykes intruded post-mineralization [6,11]. In terms of the
structural framework, NNW-SSE, NW-SE, and WSW-ENE lineaments dominate the studied
area [6]. A magnetic and VLF survey showed two major faults, a NNE sinistral strike-slip
fault zone, and an ENE normal fault zone [12].
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Figure 2. Simplified regional (a) and local (b) geological map of the Ruwai skarn deposit (modified
after [6,9,10]).

The formation of the Ruwai skarn deposit can be divided into three main stages,
including prograde, retrograde, and supergene stages. Garnet and pyroxene predomi-
nantly occur in the prograde stage whereas epidote–chlorite–actinolite are abundant in the
retrograde stage. The initial mineralization of Fe- minerals, such as pyrite, magnetite, and
chalcopyrite occurred in the prograde stage, whilst the formation of massive ore bodies
(i.e., massive sulfides and magnetite) took place in the retrograde phase (Figure 3). Those
mineral assemblages then went into the supergene alteration as characterized by the for-
mation of metal-bearing hydrous minerals, such as chalcanthite and hemimorphite. Most
of the mineralization at Ruwai is developed in mantos at the contact between siltstone
(upper strata) and limestone (lower strata) and within the limestone itself as the favorable
host rock. The mineralization is spatially related to small stocks and dykes that are be-
lieved to originate from the main intrusive center [6,10]. Minor disseminated base metal
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mineralization is usually found in the prograde skarn, with drill hole assays being in the
range of 1–5% Pb+Zn and less than 50 g/t Ag [6]. Outward from the prograde skarn, the
retrograde skarn shows significant grades of base metals of up to 10% Pb+Zn and 100 g/t
Ag occurring in disseminated form and veins or veinlets [6]. The main mineralization zone
is developed in massive sulfide bodies with high grades of up to 30% Pb+Zn and 1000 g/t
Ag [6,7]. Massive sulfide bodies tend to occur enveloped in retrograde skarn and at the
contact of siltstone and limestone, similar to many other Zn-Pb skarns worldwide [13,14].
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Figure 3. Representative drill core samples from Ruwai: (a) massive magnetite–epidote skarn;
(b) disseminated pyrite-pyrrhotite in altered wall rock; (c) disseminated chalcopyrite-sphalerite in
marble; and (d) disseminated sphalerite in epidote skarn. Abbreviations: Py: pyrite; Mag: magnetite;
Ep: epidote; Cal: calcite; Chl: chlorite; Sp: sphalerite; Ccp: chalcopyrite; Po: pyrrhotite.

3. Methods

A total of 15 drill core samples were collected from the Ruwai skarn deposit, which
were then prepared as polished sections. The ore microscopy observation was performed
using a Nikon Eclipse LV100N POL polarizing microscope. Several representative samples
were selected for semi-quantitative analysis using scanning electron microscopy-energy
dispersive spectroscopy (SEM-EDS). For this analysis, the instrument used is a JEOL® JSM-
6610 LV SEM equipped with an Oxford X-MaxN EDS detector. The analytical conditions
were set as follows: accelerating voltage of 15 kV, Std.RC 72.5, working distance 10 mm,
beam current 2.2 nA, and the acquisition time of 20 s. A pure metal cobalt standard was used
for calibration, and the results were normalized to 100%. In addition, a quantitative mineral
chemistry analysis was also performed using a JEOL® JXA-8800 SuperProbe (EPMA). The
analytical conditions for ore minerals were set as follows: voltage 20 kV, beam current
20 nA, beam size 5 µm, peak-background measurement time of 50–25 s, and the X-ray
used were Lα for all elements, except for Pb-Bi (Mα) and Fe-Co-S (Kα). Generally, native
metals were used as standards, except for Bi (Bi2S3), S (FeS2), Cd (CdS), Ga-As (GaAs), Pb
(PbS), Zn (ZnS), and Se (SnSe). The results were calculated using the ZAF correction. All
laboratory analyses were carried out at Akita University.

4. Results
4.1. Mode of Occurrences of Bi-Ag-Co Minerals

In this study, ten Bi and Ag-bearing minerals were documented for the first time in this
deposit (Table 1). Generally, the bismuth and silver-bearing minerals can be grouped into
four types: (1) Ag sulfosalt; (2) native bismuth; (3) Bi-sulfide and telluride; (4) Ag-bearing
Bi compounds. There is only one sulfosalt identified in this studied area, which is Ag-rich
tetrahedrite. It is characterized by an anhedral shape with a rim or atoll texture surrounding
sphalerite or galena (Figure 4). It is also associated with other sulfides, such as arsenopyrite
and chalcopyrite. It has small sizes ranging from 5 to 30 µm and is typically associated
with high Ag-grade samples. On the other hand, Bi-bearing minerals are typically found as
inclusions within galena or pyrite, although very finely disseminated grains can also be
observed. Native bismuth is typically found as irregular or rounded inclusions in galena



Minerals 2022, 12, 1564 5 of 13

or pyrite (Figure 4). Bi-sulfides and tellurides are compositionally variable compounds,
with at least four different types identified, including tsumoite (BiTe), bismuthinite (Bi2S3),
Joseite-B (Bi4Te2S), Bi6Te2S, and Bi-Pb-Te-S.
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Figure 4. Photomicrographs of Bi-Ag sulfosalts, sulfoarsenides, and their associated ore minerals:
(a) arsenopyrite and tetrahedrite are found as a filling space between sphalerite; (b) sphalerite being
rimmed by tetrahedrite; (c) native bismuth found as blebby and patchy grains associated with
pyrrhotite and galena; (d) cossalite–galena with exsolution texture; (e) euhedral arsenopyrite grains
associated with pyrrhotite and chalcopyrite; (f) galena and pyrrhotite inclusions within euhedral
arsenopyrite grain. Abbreviation: Sp: sphalerite; Thd: tetrahedrite; Ccp: chalcopyrite; Gn: galena;
Asp: arsenopyrite; Po: pyrrhotite; Bi: native bismuth; Cos: cossalite.
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Table 1. Summary of several Bi-bearing minerals found in the Ruwai deposit.

No Mineral
Number

of
Analysis

Ideal Formula Bi (wt.%) Ag (wt.%) Pb (wt.%) Te (wt.%) S (wt.%)

1 Native bismuth 8 Bi0.96Cu0.01
Mn0.03

96.64–97.83 0.01–0.02 bdl 0.02–0.05 0.01–0.02

2 Ag-rich cossalite 9 (Pb0.65Ag0.32
Cu0.03)2.2Bi1.9S4.9

44.25–48.00 6.20–7.00 26.25–28.81 0.03–0.04 15.80–16.31

3 Ag-poor cossalite 6 41.97–42.74 2.31–2.52 36.10–36.76 bdl 15.72–16.02

4 UM2008-43-S:BiTe 4 Bi5.7Te2.23S1.1 73.50–74.50 bdl bdl 19.60–20.37 2.65–2.85

5 Bismuthinite 1 Bi2S3 79.5 n.d. n.d. n.d. 18.83

6 Tsumoite 2 BiTe 65.9–66.5 n.d. n.d. 33.5–34.1 n.d.

7 Joseite-B 3 Bi4Te2S 76.3–76.8 n.d. n.d 20.1–20.9 2.7–2.8

8 Bismuth-silver
sulfide 2 Bi-Ag-S 45.2–45.3 16.5–16.8 n.d n.d. 35.3–35.8

9 Bismuth-silver
telluride 1 Bi-Ag-Te 79.0 2.6 n.d. 18.4 n.d.

10 Bismuth-lead-
telluro-sulfide 3 Bi-Pb-Te-S 45.4–67.1 n.d. 5.2–36.2 11.4–26.6 7.0–12.0

Note: n.d.: not detected; bdl: below detection limit; 1–4: analyzed by EPMA; 5–10: analyzed by SEM-EDS.

Tsumoite is found as the space-filling between pyrite and is associated with magnetite
and hematite, whereas bismuthinite is found as tiny inclusions within galena. Bi6Te2S,
which currently does not have a mineral name, and is registered as UM2008-43-S:BiTe in
the International Mineralogical Association database, and Bi-Pb-Te-S are typically found
as finely disseminated grains associated with pyrite and galena, although the inclusion
of Bi6Te2S within pyrite was also found. This Bi6Te2S phase had also previously been
reported to be found in the greenstone belt-associated gold deposit in Zimbabwe [15].
The last type of Bi-bearing minerals, Ag-bearing Bi-compounds, consists of Bi-Te-Ag and
Bi-Ag-S. Bi-Te-Ag is found as finely disseminated grains, while Bi-Ag-S is found as a very
fine fibrous phase surrounding the native bismuth (Figure 5). They are found associated
with other Bi-minerals as well as galena and pyrite. Three different sulfoarsenides are docu-
mented in this study including arsenopyrite, glaucodot, and alloclasite. Glaucodot typically
occurs associated with arsenopyrite and pyrrhotite, whereas alloclasite is associated with
magnetite–epidote. Both of them are characterized by fine-grained euhedral–subhedral
shapes with glaucodot typically being rimmed by arsenopyrite. In addition, arsenopyrite
was also found as euhedral single grains with minor inclusions of pyrrhotite and galena.

4.2. Mineral Chemistry
4.2.1. Ag-Sulfosalt

Tetrahedrite is characterized by relatively high Ag concentrations with an average of
16.25 wt.% and is classified as Ag-rich tetrahedrite (Figure 6). The Ag content is negatively
correlated with Cu and Ag+Cu is negatively correlated with Zn + Fe + Cd (Figure 6c,d). In
addition, Fe and Cd are also negatively correlated. The average Cu content is 24.93 wt.%
while the average Zn, Fe, and Cd are 4.88, 2.58, and 0.1 wt.%, respectively. Other elements
that also have negative correlations are Sb and As, and the average Sb concentration is
26.36 wt.%, whereas As is 0.75 wt.%.
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Figure 5. Backscattered electron (BSE) images of Bi-bearing minerals: (a) native bismuth and bismuthinite
found as inclusion within galena; (b) several Bi-bearing mineral assemblages, including native bismuth,
Bi-Te-Ag, Joseite-B, and Bi-Pb-Te-S, associated with galena and pyrite; (c) complex relationship between
galena, native bismuth, and Bi-Ag-S; (d) the occurrence of Bi6Te2S and cossalite associated with galena
and pyrite; (e) alloclasite typically found as euhedral–subhedral grains associated with pyrite and
pyrrhotite; (f) tsumoite associated with Fe-mineralization (magnetite–hematite). Abbreviation: Bi: native
bismuth; Py: pyrite; Cal: calcite; Gn: galena; Bis: bismuthinite; Ttn: titanite; Jos: Joseite-B; Alc: alloclasite;
Mag: magnetite; Hem: hematite: Tsu: tsumoite; Ep: epidote; Cos: cossalite.
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4.2.2. Bi-Sulfosalts

Amongst seven Bi-bearing minerals, only three were chemically analyzed with EPMA
including native bismuth, cossalite and Bi6Te2S, whereas other Bi-phases were semi-
quantitatively identified with SEM-EDS. The chemical analysis indicates that the native
bismuth is almost pure with very minor trace metal impurities. Seven grains of native
Bi have an average Bi content of 97.4 wt.%. The detectable trace metal impurities consist
of Te, S, Cu, Ag, Ga, and Mn, among which Cu (up to 0.4 wt.%) and Mn (up to 1.3 wt.%)
have the highest concentrations. Amongst seven analyzed grains, only two have detectable
Te content (0.02–0.05 wt.%) and three grains contain S (below detection limit-0.02 wt.%).
The Ag content ranges from below detection to 0.018 wt.% (4 out of 7 grains) whereas
Ga 0.02–0.03 (2 out of 7 grains). Analyses of four Bi6Te2S grains indicate that the Bi is
73.49–74.50 wt.%, Te is 19.60–20.37 wt.%, and S is 2.65–2.85 wt.%. This phase also contains
minor amounts of Cu (0.36 to 0.64 wt.%), Mn (1.51–3.20 wt.% measured in two grains),
Se (0.19 to 0.50 wt.%), and Fe (0.02 wt.% in two grains). Analyses of fifteen grains of
cossalite suggest that there are two cossalite compositions, having relatively high-Ag and
low-Ag contents (Figure 7). The Ag-rich cossalite also has higher Bi (44.25–48.00 wt.%)
and S (15.59–16.31 wt.%), whereas in Ag-poor cossalite, Bi ranges from 41.97 to 42.74 wt.%
and S is 15.72–16.02 wt.%. On the other hand, the Pb content is lower in Ag-rich cossalite
compared to Ag-poor cossalite. Moreover, the Cu and Fe contents are also higher in Ag-rich
cossalite than in Ag-poor cossalite. Other significant minor metals are Mn and Cd, which
are relatively similar in both Ag-rich and Ag-poor cossalites, with averages of 1.6 wt.% and
0.12 wt.%, respectively. This Bi-bearing mineral also contains trace amounts of Se and Fe,
where Ag-rich cossalite has relatively high Se but lower Fe than Ag-poor cossalite.
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As previously mentioned, the SEM-EDS analysis indicates the occurrence of two Ag-
bearing minerals including Bi-Ag-S and Bi-Te-Ag. The Bi-Ag-S contains up to 16.8 wt.%
Ag, whereas Bi-Te-Ag has up to 2.6 wt.% Ag. The Bi contents are 45.3 wt.% in Bi-Ag-S
and 79.0 wt.% in Bi-Te-Ag. In addition, Bi-Ag-S also contains small amounts of Fe up to
2.8 wt.%. The Te content of Bi-Te-Ag is 18.4 wt.%. Three grains of Bi-Pb-Te-S were analyzed,
giving variable compositions. Their composition ranges are as follows: Bi 45.3–67.1 wt.%,
Pb 5.2–36.2 wt.%, Te 11.4–26.6 wt.%, and S 7.0–12.0 wt.%. In addition, three different
Bi-bearing minerals were also analyzed, including joseite-B, tsumoite, and bismuthinite.
Joseite-B is characterized by Bi content up to 76.8 wt.%, Te up to 20.9 wt.%, and S up to
2.8 wt.%. Tsumoite has Bi content of up to 66.5 wt.% and Te up to 34.1 wt.%, whereas
bismuthinite has Bi 79.6 wt.% and S content of 18.8 wt.%, with minor Fe up to 1.6 wt.%.

4.2.3. Sulfoarsenides

Two different sulfoarsenides were analyzed using EPMA (arsenopyrite and glaucodot),
whereas alloclastite was analyzed using SEM-EDS. The Fe content in glaucodot ranges from
13.34 to 19.47 wt.% with a decreasing trend towards the rim part (Figure 8c,d), whereas
the Ni content is mostly below the detection limit. In contrast, the Fe content in alloclastite
is 4.1–5.0 wt.% and the Ni content ranges from 3.0 to 5.8 wt.%. In arsenopyrite, As is
negatively correlated with S (Figure 8a), as expected from the As-S replacement. On the
other hand, As and S are positively correlated in glaucodot (core). Both the core and rim
contain trace amounts of Mn with an average of 0.04 wt.%. Although most of them are
below the detection limit, several trace metals including Ag, Zn, Cd, and Ga have the
highest concentrations of 0.06 wt.%, 2.30 wt.%, 0.05 wt.%, and 0.07 wt.%, respectively.
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5. Discussion

Bismuth-bearing mineral assemblages are commonly observed in skarn deposits
worldwide [17–20] although they are mostly associated with Au skarn and are rarely re-
ported in association with Zn-Pb skarn deposits. As previously mentioned, the occurrences
of Bi-Ag-bearing minerals have close relationships with Zn-Pb mineralization, either as-
sociated with massive sulfide or disseminated ore within the skarn body at Ruwai. In
contrast, Co-bearing minerals are typically associated with Fe skarn [21,22], as is also the
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case in Ruwai, where Co-bearing minerals typically are found associated with magnetite
mineralization. Previous studies mentioned that the high Ag and Bi content in this deposit
is derived from galena as it contains up to 0.45 wt.% of Ag and up to 1 wt.% of Bi [5].
The occurrences of several Ag- and Bi-bearing minerals documented in this study clearly
suggest that these minerals also contribute to the high Ag and Bi grade in the ore body. In
terms of the mineralization stage, the formation of the Ruwai skarn deposit can be divided
into three main stages, i.e., prograde, retrograde, and supergene stages, where the main
mineralization stage (including magnetite and massive sulfide) is during the retrograde
stage. As the occurrence of Bi-, Ag-, and Co-bearing minerals are associated with both
magnetite and massive sulfide mineralization, it can be suggested that these minerals were
also formed during the retrograde stage (Figure 9).
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Furthermore, previous studies suggested that the occurrence of Bi assemblages can
be useful to indicate the physiochemical conditions during their formation [23–25]. In this
study, the formation temperature of arsenopyrite can be estimated based on arsenopyrite
geothermometry [26]. The temperature obtained based on the As content in arsenopyrite
(mode: 32–33 at.%) for the assemblage pyrite–arsenopyrite–pyrrhotite ranges from 428 ◦C
to 493 ◦C (Figure 10). However, this estimation should be considered with caution as this
approach may overestimate the temperature compared to other methods [27]. For instance,
this temperature is slightly higher than the temperature suggested by the stability diagram
of [6], which suggests that arsenopyrite formed at temperatures of less than 400 ◦C. On the
other hand, based on the stability diagram of [6], the formation temperature of glaucodot is
typically higher, around 400–650 ◦C, whereas alloclasite is slightly lower, around 300–400 ◦C
(Figure 10). Thus, it can be inferred that glaucodot was formed when the hydrothermal
fluid was still relatively hot and, as the temperature cooled down, arsenopyrite precipitated.
In terms of Bi-sulfosalts, several studies mentioned that the formation of Bi-bearing mineral
assemblages is typically higher than 350 ◦C but less than 500 ◦C [28,29]. In addition, the
arsenopyrite composition also allows us to estimate the sulfur fugacity based on its As
content [26]. The log ƒS2 estimated from As content in arsenopyrite ranges from −6.4 to
−4.6 log units (Figure 10b). In this study, the sulfidation state shows a decreasing trend from
prograde to the retrograde stage as indicated by the evolution of mineral assemblages (e.g.,
from pyrite–chalcopyrite in prograde into pyrrhotite–pyrite–arsenopyrite in the retrograde
stage). In addition, Bi can occur in various oxidation states from Bi0 (native Bi) to Bi3+ in
the form of bismuthinite and Bi-sulfosalts [25,30]. In this study, since the native Bi typically
occurs as blebs overgrown by other sulfides or Bi-sulfosalts (e.g., galena, cossalite), we
suggest that native Bi formed earlier than other Bi-sulfosalts. Thus, it can be inferred that
the increase of the oxidation state is likely responsible for the formation of Bi-sulfosalts in
this deposit. Several previous studies also suggested that magnetite–hematite assemblages
in skarn deposits are indicators of an oxidizing environment [31,32]. At Ruwai, tsumoite
occurs in association with magnetite–hematite (Figure 5f), which also suggests a high
oxidation state condition during its formation.
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6. Conclusions

1. The most common Bi-Ag-bearing minerals identified in the Ruwai skarn deposit
are native Bi, Ag-rich tetrahedrite, cossalite, joseite-B, tsumoite, and bismuthinite,
whereas the most common sulfoarsenides are arsenopyrite and glaucodot.

2. Bi-Ag sulfosalts documented in this study have relatively minor abundance, although
they have non-negligible contributions to the high Ag-grade ore.

3. The formation of Bi-Ag sulfosalt and sulfoarsenides in the Ruwai skarn deposit is
associated with the retrograde stage under highly oxidized conditions and a relatively
low sulfidation state.
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