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Abstract: As one of the most famous craft-carving stones in China, Shoushan stone commonly
consists of clay minerals, including the kaolinite, pyrophyllite, or illite group, which is the product
of hydrothermal alteration. In Fujian Province, the Xiaoxi Formation of the Early Cretaceous is a
critical formation containing pyrophyllite deposits (including Shoushan stone). Here, we carry out a
geological field investigation of a typical section in the Shoushan basin of southeastern China to iden-
tify lithology and volcanic sequences of the Xiaoxi Formation. The section included four lithofacies:
eruption facies, flood lava facies, sedimentary facies, and volcanic channel facies. The petrogenesis
of these lithofacies demonstrates the evolution of volcanism, which is critical for understanding
the formation of the Shoushan-stone-associated hydrothermal system. For the geochronological
study, the samples of unaltered rhyolitic tuff are collected from the layers topping and bottoming
a pyrophyllite orebody. The zircon U-Pb dating results constrain the age of pyrophyllite alteration
during the episodic eruption. Shoushan stone is formed in an epithermal hydrothermal environment,
so we suggest that high-quality Shoushan stone is formed by the hydrothermal alterations in the
interval time of the volcanic episode (135–131 Ma) and after volcanic activity (<131 Ma). Furthermore,
the Shoushan basin’s stratigraphic section suggests that there have been large-scale hydrothermal
systems in the volcanic basin during the Early Cretaceous volcanism. The stratigraphic correlation
and geochemical results indicate that the Mesozoic basins in the Fu’an-Yongtai volcanic eruption belt
have the potential for pyrophyllite deposit exploration.

Keywords: Shoushan stone; stratigraphic section; volcanic lithofacies; stratigraphic correlation;
zircon U-Pb dating; mineralization age

1. Introduction

Shoushan stone, one of China’s most famous craft-carving stones (Figure 1), is mainly
produced in the Shoushan basin in northern Fuzhou City, Fujian Province [1,2]. Shoushan
stone can be divided into four main categories, including the Tianhuang stone, Gaoshan
stone, hibiscus stone, and Wenyang stone based on their production places [2]. Significantly,
the stone produced along the Shoushan river, also named Tianhuang stone (Figure 1b),
is honored as the “emperor of Shoushan stone” due to its great cultural and economic
values [3–7]. In gemology, Shoushan stone is classified as a colored gemstone. However,
its common names are very complicated [8–10], which have been identified in more than
100 varieties by traditional custom [11].

Despite its complicated varieties, the mineral composition of Shoushan stone mainly in-
cludes kaolinite (e.g., kaolinite, dickite, nacrite), pyrophyllite, and illite group minerals [12–16].
These clay minerals are the product of the hydrothermal alteration of felsic magmatic rocks
in common [8,9,11]. The Shoushan basin is a part of the Coastal Volcanic Belt in southeastern
China. Significant volcanic activity during Late Mesozoic provided heat and hydrother-
mal fluids for alteration [17–19]. In theory, Shoushan stone is formed in an epithermal
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hydrothermal environment (100–405 ◦C) [20,21]. It is difficult to obtain accurate syngenetic
age results, so the exact age limits for the Shoushan stone formation remain uncertain.
Studies have demonstrated that the Xiaoxi Formation of the Early Cretaceous is a criti-
cal formation containing nonmetallic deposits, such as pyrophyllite and alum (including
Shoushan stone) [22–25]. Our study chose a caldera (Qishan) in the Shoushan basin as a
typical section to identify volcanic sequences and lithofacies. According to the stratigraphic
correlation from the Early Cretaceous in Fujian Province, samples from the Xiaoxi Forma-
tion at different locations are collected to obtain their chemical compositions. Combined
with the geochemical results, the geological background is revealed to understand the
formation mechanism of Shoushan stone. The Xiaoxi Formation is composed of altered and
unaltered volcanic rocks. Based on the result of a stratigraphic section, the mineralization
(i.e., alteration) age of Shoushan stone is constrained by the magmatic zircon U-Pb age (135
and 131 Ma) of the critical host tuff.
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2. Geologic Setting

Eastern China is formed by the collision of the North and South China Blocks along the
Qinling–Dabie–Sulu Orogen during the Indosinian Period (Late Permian to Triassic) [26,27].
As shown in Figure 2a, the South China Block is separated by the northeast–southwest
trending Jiangshan–Shaoxing Fault into the Yangtze Block and the Cathaysia Block [28].
During the Mesozoic (especially Jurassic and Cretaceous), there were massive volcano-
intrusive emplacements in the Cathaysia Block, which shows a belt distribution within the
coastal area between the Zhenghe-Dapu fault and Changle-Nan’ao fault in Fujian Province
(Figure 2b) [29,30]. This coastal Mesozoic volcanic belt is generally dominated by acidic
volcanic rocks, in contrast to the small content of intermediate-mafic volcanic rocks [29,31].
The Late Mesozoic volcanism in Fujian Province occurs in three cycles: 150–137 Ma for
the Nanyuan Formation, 135–125 Ma for the Xiaoxi Formation, and 110–99 Ma for the
Shimaoshan Group, all of which are the records of volcanism climax [22,25,32].
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Figure 2. (a) Schematic map of geotectonic units in eastern China. (b) Schematic map of the Late
Jurassic Nanyuan Formation and Early Cretaceous Xiaoxi Formation in Southeastern Fujian Province.

The Shoushan basin, as a representative of these Mesozoic volcanic basins, is mainly
composed of the Early Cretaceous Xiaoxi Formation, which overlies the Late Jurassic
Nanyuan Formation (Figure 3). Due to the epithermal hydrothermal alteration, some layers
of the Xiaoxi Formation contain several large-scale nonmetallic deposits, including pyro-
phyllite for industry and Shoushan stone for craft carving [23]. For example, the cumulative
identified reserves of industrial-grade pyrophyllite are more than 12.48 million tons in
the Emei and Shoushan mining areas [24]. As Figure 3 shows, there are several volcanic
eruption centers or reactivated calderas (e.g., Shoushan, Qishan, Gaoshan, Furongshan,
E’meishan) along the northwest-trending fault in the basin. The Qishan preserves the
complete stratigraphic section from Late Jurassic to Early Cretaceous among these volcanic
strata. Therefore, the Qishan is the best location to investigate the volcanic lithofacies and
provide direct evidence to constrain the formation age of Shoushan stone.
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Figure 3. (a) Geologic sketch map of the northwestern Shoushan basin and investigated route of
volcanic lithofacies of the Qishan caldera. (b) The stratigraphic section along the survey route.

3. Sample Description

A systematic field geological survey is carried out at the Qishan caldera along the
route (A–B) shown in Figure 3. Generally, the Early Cretaceous Xiaoxi Formation is mostly
composed of rhyolitic tuff and sample layers of pyrophyllite alteration (Figure 3b). The
samples PM302-14 and PM302-32 (Figure 4) are collected for the geochemical character and
the zircon U-Pb age analysis to obtain the upper and lower limits of magmatic-associated
hydrothermal. In detail, PM302-14 (long. 119◦13′36′′ E, lat. 26◦17′20′′ N) is rhyolitic
tuff with crystal debris (Figure 4d), which belongs to the middle member of the Xiaoxi
Formation in the Qishan Volcanic Edifice. PM302-32 (long. 119◦16′06′′ E, lat. 26◦18′00′′ N)
is rhyolitic tuff with crystal debris but from the upper member of the Xiaoxi Formation
(Figure 4f). Then, PM302-24 is collected as the representative sample of alteration for
research (Figure 4e). For the strong alteration and small grain size of minerals in the rock,
the more lithologic characteristics of these collected samples are identified by observation
of transmitted-light photomicrographs (Figure 4g–i).
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Figure 4. Representative photographs of unaltered rhyolitic tuff (PM302-14 and PM302-32) and
rhyolitic tuff with hydrothermal alteration (PM302-24). (a–c) The outcrop in the route of geological
field survey (d–f)-collected rock for geochemical analysis, (g–i); transmitted-light photomicrographs
of the collected sample. Note: quartz = Qz; pyrophyllite = Prl; diaspore = Dsp; plagioclase = Pl;
feldspar = Fsp.

The transmitted-light photomicrographs (Figure 4g) show that PM302-14 consists of
pyroclastic materials, including crystal debris, breccia, glass debris, and felsic volcanic ash.
The crystal debris consists of quartz (~5%), K-feldspar (~2%), plagioclase (~13%), and minor
biotite. The transmitted-light photomicrographs (Figure 4i) demonstrate that PM302-32
also consists of pyroclastic materials and the matrix with the flow banding of crystallite.
The crystal debris consists of quartz (~7%), K-feldspar (~5%), plagioclase (~3%), and minor
biotite. PM302-24 is the rhyolitic tuff showing hydrothermal alteration associated with
visible pyrophyllite and diaspore (Figure 4e). The transmitted-light photomicrographs show
that pyrophyllite is pseudomorphic feldspar, also indicating the occurrence of hydrothermal
alteration (Figure 4h). Hence, the volcanic rock of the Xiaoxi Formation is the host rock but
produces Shoushan stone after hydrothermal alteration.
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4. Analytical Methods

The collected rhyolitic tuff samples PM302-14 and PM302-32 are crushed for zircon
separation and elemental analysis. In addition, rhyolitic tuff samples from the Zhouling
basin collected during a previous geological survey are also sent to measure elemental
composition to prospect pyrophyllite deposits. The major and trace element compositions
of rhyolitic tuff from the Shoushan and Zhouling basins are all analyzed at the Geological
Test Center of Fujian Province. The major elements are measured by the X-ray fluorescence
spectrometer fluorescence method with an analytical error of less than 2%. The rare-earth
element (REE) and trace elements are tested and analyzed by an inductively coupled
plasma-mass spectrometry (ICP-MS), and the measurement accuracy is better than 5%.

The representative zircon grains of PM302-14 and PM302-32 are handpicked under a
binocular microscope and mounted in epoxy resin. Then the polished zircon grains are ob-
served and photographed under transmitted and reflected light and cathodoluminescence
(CL). According to the CL image of the internal structure of zircons (Figure 5), the U-Pb
ages of magmatic zircon grains are analyzed by laser ablation (LA)-ICP-MS. The zircon
U-Pb geochronological analysis is conducted using an LA-ICP-MS facility housed at the
State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. An
ICP-MS (Agilent 7500a) is used for the analyses involving the ablation of zircon with the
GeoLas 2005 laser ablation system (wavelength of 193 nm, Lambda Physik AG, Göttin-
gen, Germany). The laser spot diameter and frequency adopted are 32 µm and 10 Hz in
this analysis.
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The zircon 91,500 is used as an external standard for calibration, and GJ-1 is adopted
as an unknown sample for monitoring data quality [33]. Combined with 29Si as internal
standardization, the trace element compositions are calibrated against BCR-2G, BHVO-2G,
and BIR-1G, which are the silicate reference materials produced by the United States
Geological Survey (USGS). This data reduction strategy is suggested by Liu et al. [34]. All
the quantitative calibrations for trace element analyses and U-Pb dating are performed by
ICPMSDataCal [33,34]. The common Pb of the analytical result is corrected by the method
suggested by Andersen [35].
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5. Results and Discussion
5.1. Stratigraphic Section Study of the Qishan Caldera and Its Significance for the Forming of
Shoushan Stone

The geological survey and rock analysis of the Shoushan basin reveal that most vol-
canic eruption centers or reactivated calderas consist of middle and lower members of the
Xiaoxi Formation (Figure 3). In contrast, the Qishan caldera preserves relatively complete
strata from the upper to lower members, which is the best target for this stratigraphic
section research. The survey route of the stratigraphic section is from the crater at the
hilltop (i.e., lower member of the Xiaoxi Formation) to the parallel unconformity between
rhyolite and dacite (Late Jurassic Nanyuan Formation) at the hill bottom (Figure 3b).

The total stratigraphic thickness of this section is ~1641 m, including a 44 m lower
member, a 1342.6 m middle member, and a 254.4 m upper member of the Xiaoxi Formation.
According to lithology, the petrogenesis of volcanic rocks is identified as the eruption facies,
flood lava facies, sedimentary facies, and volcanic channel facies (Table 1). The volcanic
channel facies are the crater and conduit pipe of the Qishan caldera. Eruption facies and
flood lava facies record different kinds of volcanic activities. Sedimentary facies means
the sedimentary rock containing volcanic ash, which may record lakes around the Qishan
caldera formed by volcanic collapse. The upper member of the Xiaoxi Formation consists
of the volcanic channel facies (Layer 28), the eruption facies (Layers 23, 24, 26, and 27),
and the flood lava facies (Layer 25). In the middle member, the dominant layer is the
eruption facies (i.e., Layers 4, 6–9, 11, 13, 15, 17–22), which is interlaced by flood lava facies
(i.e., Layers 10, 12, 14, and 16) or sedimentary facies (i.e., Layer 5). The lower member is the
rock of sedimentary facies (i.e., Layer 3) but with silicification. The thickest eruption facies
rock in the middle member is generated by the large-scale eruption of felsic magma that
would empty the underground magma chamber. It is easy to trigger large-scale caldera
collapse after volcanic eruptions and form a basin for subsequent deposition, which agrees
with the widespread existence of sedimentary facies. The large-scale caldera collapse
also forms the system of annular and radial faults that would be the effective migration
channel of hydrothermal fluid. The ore bodies of pyrophyllite or hydrothermal alteration
(Layers 18–20) are controlled by these faults and distributed in arc or ring shapes around
the volcanic center. There is a large-scale hydrothermal system, the heat for which would
be provided by Early Cretaceous magmatism, introducing long-term alteration of some
volcanic rock in the Xiaoxi Formation. Therefore, for the large-scale pyrophyllite deposit
in the Shoushan basin, the hydrothermal alteration (e.g., pyrophyllite alteration, diaspore
alteration, and silicification) would be essential indicators for exploration.

Table 1. The stratigraphic and petrogenesis result of Qishan caldera.

Unit Layer Thickness (m) Lithology Interpretation Petrogenesis Alteration

K1x3

28 6.7
Rhyolitic ignimbrite with

conglomerated breccia and
crystal debris

Volcanic channel -

27 42.6 Rhyolitic ignimbrite with
breccia and crystal debris Eruption -

26 77.9 Rhyolitic ignimbrite with
crystal debris Eruption -

25 40.8 Lithophysa rhyolite Flood lava -

24 20.1 Rhyolitic ignimbrite with
breccia and crystal debris Eruption -

23 66.3 Rhyolitic ignimbrite with
crystal debris Eruption -
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Table 1. Cont.

Unit Layer Thickness (m) Lithology Interpretation Petrogenesis Alteration

K1x2

22 153.3 Alterated rhyolitic tuff with
crystal debris Eruption Diaspore and

pyrophyllite alteration

21 24.1
The ore body of pyrophyllite
(protolith: rhyolitic tuff with

crystal debris)
Eruption

Silicification, diaspore,
and pyrophyllite

alteration

20 92.2 Alterated rhyolitic tuff with
crystal-rock-vitric debris Eruption Pyrophyllite alteration

19 107.3 Alterated rhyolitic tuff with
rock-crystal debris Eruption Pyrophyllite alteration

18 21.1 Alterated rhyolitic tuff with
vitric debris Eruption Pyrophyllite alteration

17 35.8 Rhyolitic tuff with crystal debris Eruption -

16 37.7 Tuffaceous sandstone Sedimentary -

15 309.7 Rhyolitic ignimbrite with
crystal debris Eruption -

14 53.2 Tuffaceous mudstone Sedimentary -

13 84.9 Rhyolitic tuff with crystal debris Eruption -

12 30.2 Tuffaceous mudstone Sedimentary -

11 103.3 Rhyolitic tuff with rock debris Eruption -

10 31.5 Tuffaceous mudstone Sedimentary -

9 20.9 Rhyolitic tuff with breccia and
crystal debris Eruption -

8 5.6 Rhyolitic tuff with vitric debris Eruption Silicification and
pyritization

7 70.3 Rhyolitic tuff with crystal debris Eruption -

6 62.4 Rhyolitic ignimbrite with
crystal debris Eruption -

5 18.1 Lithophysa rhyolite Flood lava -

4 81 Silicified rhyolitic tuff with
crystal debris Eruption Silicification

K1x1 3 44 Tuffaceous mudstone with
banded silicalite Sedimentary Silicification

J3n3
2 55.5 Dacite Flood lava -

1 279 Dacitic ignimbrite with crystal
debris Eruption -

5.2. Zircon U-Pb Geochronology of Rhyolitic Tuff in the Qishan Caldera and Its Limitation for the
Forming of Shoushan Stone

In the CL images, most prismatic grains from rhyolitic tuff in the Qishan caldera are
homogeneous with oscillatory zones under fluorescence light (Figure 5), suggesting that
they are possibly magmatic zircon. Twenty-three and 20 reliable U-Pb ages are obtained
for the zircon grains of PM301-14 and PM301-32. All the U-Pb dating results are sum-
marized in Table 2. The Uranium and thorium content of zircons from PM301-14 and
PM301-32 are respectively in the range of 77.71–609.31 ppm (U), 11.33–410.9 ppm (Th),
and 74.28–342.9 ppm (U), and 11.67–428.36 ppm (Th). The Th/U ratio of most zircons in
PM301-14 and PM301-32 is more than 0.1. The U-Pb dating results of PM301-14 form a
coherent group with a weighted mean 206Pb/238U age of 135.6 ± 1.0 Ma (MSWD = 0.46,
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n = 23) (Figure 6a,b). In contrast, 20 zircon grains from PM301-32 also give a coherent group
age and yield a weighted mean 206Pb/238U age of 131.71 ± 0.86 Ma (MSWD = 0.23, n = 20)
(Figure 6c,d).

Table 2. LA-ICP-MS U-Pb analytical data for zircon from rhyolite tuff (sample PM301-14 and
PM301-32) in the Shoushan volcanic basin.

PM301-14

ConcordanceAnalysis ppm Ratios Corrected Ratios Corrected Ages/Ma

No. Th U Th/U 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ

1 11.33 181.51 0.06 0.14511 0.00495 0.02092 0.00026 137.6 4.39 133.5 1.63 0.97
2 410.9 609.31 0.67 0.14454 0.00978 0.02138 0.00038 137.1 8.67 136.4 2.37 0.99
3 93.33 77.58 1.2 0.14478 0.00882 0.02141 0.00034 137.3 7.83 136.5 2.13 0.99
4 73.19 89.23 0.82 0.14363 0.01465 0.02111 0.00046 136.3 13.01 134.6 2.89 0.99
5 127.91 110.98 1.15 0.14529 0.00788 0.02102 0.00031 137.7 6.98 134.1 1.98 0.97
6 24.47 68.83 0.36 0.14465 0.01709 0.02175 0.00058 137.2 15.16 138.7 3.68 1.01
7 214.95 180.46 1.19 0.14545 0.01083 0.02127 0.0004 137.9 9.6 135.7 2.51 0.98
8 153.84 177.83 0.87 0.14411 0.00968 0.02087 0.00036 136.7 8.59 133.1 2.3 0.97
9 452.5 458.37 0.99 0.14466 0.01827 0.02161 0.00053 137.2 16.2 137.9 3.33 1.01

10 24.93 71.07 0.35 0.14567 0.00895 0.02153 0.00035 138.1 7.93 137.3 2.2 0.99
11 11.76 186.93 0.06 0.14289 0.00708 0.02134 0.0003 135.6 6.29 136.1 1.88 1
12 196.89 197.47 1.00 0.14483 0.01081 0.02091 0.00039 137.3 9.59 133.4 2.46 0.97
13 127.74 128.38 1.00 0.1415 0.01777 0.02137 0.0006 134.4 15.81 136.3 3.78 1.01
14 23.98 69.14 0.35 0.14717 0.01517 0.02117 0.00049 139.4 13.43 135 3.09 0.97
15 59.94 73.84 0.81 0.14882 0.0134 0.02165 0.00046 140.9 11.85 138.1 2.92 0.98
16 94.21 110.4 0.85 0.15408 0.01836 0.02158 0.00058 145.5 16.15 137.6 3.65 0.95
17 99.64 110.65 0.9 0.14678 0.01342 0.02127 0.00046 139.1 11.88 135.7 2.89 0.98
18 27.28 77.71 0.35 0.14385 0.01178 0.02166 0.0004 136.5 10.46 138.1 2.51 1.01
19 12.17 191.66 0.06 0.14604 0.01065 0.02111 0.00038 138.4 9.43 134.6 2.43 0.97
20 218.96 185.35 1.18 0.14642 0.01103 0.02121 0.00041 138.7 9.77 135.3 2.6 0.98
21 173.75 184.65 0.94 0.14682 0.01087 0.02099 0.0004 139.1 9.63 133.9 2.51 0.96
22 134.27 128.24 1.05 0.14445 0.00691 0.02154 0.0003 137 6.13 137.4 1.91 1
23 153.34 223.17 0.69 0.14245 0.01605 0.02142 0.0005 135.2 14.27 136.6 3.14 1.01

PM301-32

ConcordanceAnalysis ppm Ratios Corrected Ratios Corrected Ages/Ma

No. Th U Th/U 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ

1 208.78 231.94 0.9 0.14509 0.00864 0.02041 0.00032 137.6 7.66 130.2 2.01 0.95
2 196.59 261.67 0.75 0.14997 0.01115 0.02064 0.0004 141.9 9.84 131.7 2.53 0.93
3 249.66 219.96 1.14 0.13626 0.00591 0.02063 0.00027 129.7 5.29 131.6 1.72 1.01
4 26.7 75.67 0.35 0.14096 0.00527 0.02066 0.00026 133.9 4.69 131.8 1.64 0.98
5 327.34 308.56 1.06 0.13703 0.00684 0.02062 0.0003 130.4 6.11 131.6 1.87 1.01
6 309.17 282.8 1.09 0.13576 0.01035 0.02082 0.00036 129.3 9.25 132.9 2.3 1.03
7 169.76 139.39 1.22 0.13809 0.00807 0.0208 0.00031 131.3 7.2 132.7 1.95 1.01
8 11.67 183.93 0.06 0.13746 0.01455 0.02059 0.00044 130.8 12.99 131.4 2.81 1
9 109.8 86.66 1.27 0.14167 0.00939 0.0206 0.00035 134.5 8.35 131.4 2.19 0.98

10 138.72 131.56 1.05 0.13459 0.00621 0.02034 0.00028 128.2 5.55 129.8 1.8 1.01
11 230.15 241.93 0.95 0.13602 0.01214 0.02059 0.0004 129.5 10.85 131.4 2.54 1.01
12 25.57 74.28 0.34 0.14469 0.00697 0.02038 0.0003 137.2 6.18 130.1 1.87 0.95
13 267.9 304.5 0.88 0.14137 0.00681 0.0206 0.0003 134.3 6.06 131.4 1.88 0.98
14 219.4 194.08 1.13 0.13885 0.00708 0.02064 0.0003 132 6.31 131.7 1.87 1
15 222.5 228.07 0.98 0.14301 0.00652 0.0207 0.00029 135.7 5.8 132.1 1.81 0.97
16 81.98 70.12 1.17 0.13888 0.00822 0.02096 0.00032 132 7.33 133.7 1.99 1.01
17 192.43 188.87 1.02 0.14215 0.00665 0.02077 0.00028 135 5.91 132.5 1.8 0.98
18 201.46 237.43 0.85 0.14487 0.0082 0.02068 0.00033 137.4 7.27 131.9 2.06 0.96
19 200.06 244.06 0.82 0.13548 0.00531 0.02071 0.00026 129 4.75 132.2 1.66 1.02
20 428.36 342.9 1.25 0.14865 0.00871 0.02073 0.00034 140.7 7.7 132.3 2.17 0.94
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weighted average age of rhyolitic tuff sample PM302-14, (c,d) concordia ages and their weighted
average age of rhyolitic tuff sample PM302-32.

Zircon U-Pb dating results demonstrated that the age range of tuff from Layer 18
to Layer 20 is later than 135.6 ± 1.0 Ma but earlier than 131.7 ± 0.9 Ma, which also
limits the age of host volcanic rock for deposit. The U-Pb isotope system is known for
having the highest sealing temperature, which is beneficial for dating magmatism. The
sealing temperature of Pb diffusion in zircon is up to 900 ◦C [36,37], which is obviously
higher than the temperature of epithermal hydrothermal alteration (100–405 ◦C). As the
alteration product, the clay minerals (e.g., diaspore, pyrophyllite) will be younger than
the zircons. Therefore, the hydrothermal alteration should happen in the interval time of
episodic eruptions or after volcanic activity for lower temperatures. Then, the sedimentary
rock containing volcanic ash (i.e., sedimentary facies) demonstrates the existence of lakes
near the caldera. Combining radial faults by caldera collapse as the fluid channel, it is
reasonable to assume that there has been a large-scale hydrothermal system under the
caldera. Over a long-term alteration, several large-scale pyrophyllite deposits are forming
in the Xiaoxi Formation. The present research is supporting that the formation of Shoushan
stone is a multistage alteration process. Overall, the episodic magmatism and its interval
alteration during 135–131 Ma play crucial roles in mineralization. However, the formation
of high-quality Shoushan stone (i.e., filling type) still requires the continuous contribution
of hydrothermal modification after volcanic activity (<131 Ma).

5.3. Stratigraphic Correlation of Xiaoxi Formation and Indication for Pyrophyllite
Deposit Exploration

In Fujian Province, the Xiaoxi Formation mainly occurs in a belt of volcanic basins
(e.g., Shoushan, Zhouling, Liuyang, and Xiping basins) in a northeast trend, which is also
named the Fu’an-Yongtai volcanic eruption belt. In this study, the stratigraphic correlation
of these basins is collected and summarized in Figure 7, according to the geological survey
results by the Fujian Provincial Institute of Geological Survey and Research [22,25].



Minerals 2022, 12, 1542 11 of 15

Minerals 2022, 12, x 11 of 15 
 

 

pyrophyllite alteration have been found in the Zhouling basin according to the recent ge-

ological survey (unpublished). The volcanic rock in the basin is not only the host rock but 

also the reactant for hydrothermal alteration. Hence, we evaluate the variation in the ge-

ochemical composition between the volcanic rock of the Zhouling basin and Shoushan 

basin (Table 3), which is critical for further pyrophyllite deposit exploration. 

 

  Figure 7. Stratigraphic correlation of Xiaoxi Formation among the sections of typical volcanic basins
in Fujian Province.

The typical stratigraphic sections demonstrate the Early Cretaceous Xiaoxi Formation
all overlying the Late Jurassic Nanyuan Formation in these basins. Except for the Beixi
section lacking the upper member in the Liuyang basin for erosion, all the sections preserve
the upper member, middle member, and lower member of the Xiaoxi Formation. The
rock of eruption facies, flood lava facies, and sedimentary facies occur in the section of
the Shoushan basin, Xiping basin, and Zhouling basin. In contrast, the lithofacies of
rock in the Beixi section is dominantly eruption facies or flood lava facies. There is a
massive variation in the thickness of the Xiaoxi Formation among these sections for the
difference in volcanic regimes and magmatic intensity in the different basins. Generally,
the relatively thick middle member can be observed in all basins (e.g., Shoushan basin:
1342.6 m (Qishan Section) and 291.9 m (Shanxiuyuan Section), Zhouling basin: 835.5 m
(Zaikeng Section), Xiping basin: >755.5 m and 1757.5 m (Shihutou Section)). The giant
eruption of magma in these basins will generate large-scale collapse that provides radial
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faults as the channel for hydrothermal fluid. This agrees with hydrothermal alteration
layers occurring in the section of the Shoushan basin and Xiping basin. As Figure 7 shows,
the Zaikeng Section indeed does not record the hydrothermal alteration, but several rock
samples with pyrophyllite alteration have been found in the Zhouling basin according
to the recent geological survey (unpublished). The volcanic rock in the basin is not only
the host rock but also the reactant for hydrothermal alteration. Hence, we evaluate the
variation in the geochemical composition between the volcanic rock of the Zhouling basin
and Shoushan basin (Table 3), which is critical for further pyrophyllite deposit exploration.

Most Shoushan and Zhouling basin samples are peraluminous rhyolitic in composi-
tion (Figure 8a,b). The peraluminous and subalkaline features are beneficial for producing
clay minerals with high Al content after hydrothermal alteration. On the primitive-mantle-
normalized multielement diagrams (Figure 8c), there is no noticeable difference in multi-
element patterns among samples from the Zhouling and Shoushan basins. Only several
samples from the Zhouling basin show minor depletions of some large ion lithophile ele-
ments (LILEs, e.g., Ba and Sr) and enrichment of rare-earth elements (REE). In geochemical
theory, the LILEs, Ba and Sr, can be dissolved during hydrothermal activity, which may
cause the variation of these elements with strong mobility. In addition, the samples from
these two basins show similar moderately steep REE patterns but significantly different Eu
anomalies that may be in correlation with plagioclase. The Eu*/Eu values from the tuff of
the Shoushan basin are higher than that of the Zhouling basin. This confirms that the tuff of
the Shoushan basin and Zhouling basin are similar in lithology and geochemical composi-
tion. If the tuff of the Zhouling basin is altered by continuous strong hydrothermal activities,
it is reasonable to form a pyrophyllite deposit containing high-quality Shoushan stone.
Therefore, the Early Cretaceous Xiaoxi Formation in the Zhouling basin is an important
target for future deposit explosion.
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Figure 8. (a) Total alkali versus silica (TAS) classification diagram. (b) Molar Al2O3/(CaO + Na2O + K2O)
versus molar Al2O3/(Na2O + K2O) diagram. (c) Primitive-mantle-normalized multielement patterns.
(d) Chondrite-normalized REE patterns of volcanic rock in the Shoushan basin and Zhouling basin.
The REE compositions of chondrite are from Sun and McDonough [38].
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Table 3. Whole-rock major (wt. %) and trace element (ppm) compositions of rock samples from the
Shoushan basin and Zhouling basin.

Sample
Shoushan Basin Zhouling Basin

PM301-14 PM301-32 D3185 D3683-2 D3691 D3713-2 D3713-4 D3714 D3712

SiO2 73.73 76.54 78.37 75.38 70.73 75.24 75.27 77.09 74.2
Al2O3 14 12.56 11.98 12.88 14.43 13.79 12.62 12.76 13.45
Ti2O 0.31 0.13 0.16 0.18 0.26 0.12 0.23 0.11 0.19

Fe2O3 1.71 0.46 1.06 1.24 1.36 1.38 1.36 1.27 2.2
FeO 0.27 0.58 0.3 0.33 0.74 0.28 0.24 0.2 0.56
CaO 0.09 0.28 0.08 0.24 1.62 0.07 0.65 0.05 0.11
MgO 0.37 0.16 0.14 0.26 0.4 0.07 0.24 0.06 0.1
K2O 5.37 5.07 4.69 5.26 5.01 5.36 4.85 5.44 6.25

Na2O 1.37 2.54 1.4 2.29 2.49 1.63 2.87 0.21 0.57
MnO 0.02 0.08 0.03 0.07 0.05 0.03 0.08 0.03 0.06
P2O5 0.04 0.02 0.02 0.03 0.07 0.02 0.04 0.01 0.03
LOI 2.29 1.12 1.39 1.35 2.42 1.65 1.22 2.39 1.89
Total 99.6 99.6 99.7 99.5 99.6 99.7 99.7 99.6 99.7

Cr 3.6 4.5 4.7 8.5 6.15 4 3.7 2.3 4.9
Co 1.56 1.79 1.29 1.2 2.91 1.17 1.94 1.08 1.36
Ni 1.18 1.51 1.82 0.54 2.09 1.86 2.31 2.91 2.53
V 17.5 9.1 2.5 7.2 17.3 3.3 10.9 3.45 6.7

Cu 2.72 1.72 8.12 3.63 5.57 5.85 6.63 5.4 6.35
Pb 27.8 32.7 21.9 35.4 49.1 40.7 49.53 57.91 24.26
Zn 55.3 50.5 161.1 40.1 82.6 151.2 78.1 115 124
Sn 1.82 2.72 1.6 2.7 1.76 2.88 1.35 3.55 2.8
Mo 1.48 1.37 0.83 0.6 0.69 1.39 1.23 1 0.7
Bi 0.08 0.32 0.23 0.12 0.19 0.24 0.14 0.3 0.19
W 2.75 1.61 2.75 1.21 2.22 2.71 2.43 2.17 2.79
Ag 0.1 0.08 0.1 0.04 0.06 0.07 0.05 0.03 0.07
Au 1.28 0.72 0.54 1.94 0.52 0.54 0.52 0.53 0.52
Li 7.91 31.74 12.7 7.42 11.66 8.83 12.06 9.87 13.12
Hf 8.06 3.61 9.2 5.37 6.33 8.84 6.01 8.58 9.2
Nb 18.46 17.8 25.98 14.93 14.51 41.73 15.07 36.53 28.91
Rb 236 189 202 185 209 254 195 252 313
Zr 238 93.5 248 142 165 225 175 228 282
Ti 1858 779 926 1042 1505 694 1331 636 1100
Ba 1509 688 148 618 1018 257 972 248 300
U 4.08 4.61 2.02 2.31 2.16 4.32 3.34 4.1 3.42
Th 21.7 19.1 16.6 19.2 15.7 21.6 21.1 18.7 20.3
Sr 70.2 57.69 19.14 101.3 193.7 57.7 146.9 26.5 39.9
La 77.9 31.2 72.3 56.3 44.9 116 73.3 68.9 35.5
Ce 131 57.8 138 93.4 76.8 191 133 133 82.1
Pr 14.8 6.88 17.2 12.4 9.06 23.9 17.8 13.7 8.99
Nd 50.9 23.4 55.3 39.3 27.86 75.3 58.6 42.1 30.8
Sm 8.56 4.78 10.54 6.53 4.84 12.67 12.53 7.04 6.47
Eu 2.42 0.96 0.53 1.09 1.14 0.62 0.51 1.23 0.23
Gd 7.84 4.68 7.69 5.76 3.44 8.33 9.37 4.47 5
Tb 0.91 0.7 1.3 0.86 0.57 1.31 1.63 0.79 1.1
Dy 4.76 4.05 6.68 4.25 3.01 6.28 8.54 3.92 6.01
Ho 0.89 0.85 1.34 0.78 0.62 1.25 1.72 0.78 1.32
Er 2.64 2.65 4.36 2.35 2.1 4.16 5.62 2.6 4.1
Tm 0.38 0.41 0.51 0.3 0.27 0.51 0.67 0.3 0.5
Yb 2.61 2.91 4.04 2.28 2.05 3.96 5.36 2.46 3.97
Lu 0.39 0.43 0.53 0.33 0.3 0.56 0.7 0.33 0.53
Y 24.1 27.6 47.3 24.9 20.95 45.8 59.2 23.8 49.45

Eu*/Eu 0.9 0.62 0.18 0.54 0.85 0.18 0.14 0.67 0.12
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6. Conclusions

In summary, the Qishan preserves the complete strata from Late Jurassic to Early
Cretaceous in the Shoushan basin. The geological field survey identifies volcanic sequences
and lithofacies of a stratigraphic section. Based on this section’s result, zircon U-Pb dating
results limited the age of pyrophyllite alteration during the episodic eruption. Combining
the mineralization mechanism of Shoushan stone, we suggest that Shoushan stone is altered
by interval hydrothermal alteration during episodic magmatism (135–131 Ma) but modified
by continuous hydrothermal modification after volcanic activity (<131 Ma). The different
petrogenesis demonstrates the evolution of volcanism, providing critical information for
understanding the formation of Shoushan stone and its associated hydrothermal system.
The stratigraphic correlation and geochemical results also allow the potential exploration of
pyrophyllite deposits in other basins, according to the widespread hydrothermal alteration
in the Xiaoxi Formation.
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